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2 PrOblem FormUIation Infinite Dimensional Nonsmooth Optimization

Goal: Develop efficient algorithms to solve the regularized nonsmooth optimization problem,

min F(z) = j(z) + ¢(2). (1)

zEZ

» Z is a Hilbert space with (-,-) and ||-||;
> ¢: Z — [—o0,00] is proper, closed, and convex, but may be nonsmooth;

» j: Z — R has Lipschitz continuous gradients on an open set containing dom ¢, but may
be inexact;

» F > —oo, bounded below on dom ¢.
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3| SmOOth Tel’m Objective Function Properties

J(z) may be nonconvex and often impossible to compute exactly.

» Stems from discretization, iterative procedures, adaptive model reduction,
surrogate models, iterative linear and nonlinear solves, etc.

Adaptive Finite Elements Adaptive Quadrature Adaptive Compression
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4 Nonsmooth RegUIarizers Objective Function Properties

¢(z) are typically sparsity-inducing and temper model complexity, but lack derivatives.
» Sparse regularization: Z — [1(Q), 3 € L~(Q), 3> 0 a.e., and

o(2) = / B(w)l2(w)|dw.

Applications: Optimal control, data-science, learning, basis-pursuit.
» Total Variation: U/ — BV(Q), 8 € L*(Q), 5 >0 a.e,

o(u) = /Q B(w)|div u(w)|dw.

Applications: Image processing, digital image correlation, topology optimization.
» Convex Constraints: C C Z nonempty, closed and convex,

o(z) = {o, ifze C

400, otherwise.

Applications: Optimal control, inverse problems, optimal design.
» Others: Matrix completion (rank), phase retrieval.
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st Motivation: Nonconvexity, Nonsmoothness, Inexactness

» Arise naturally in physical problems, and are useful in enforcing certain solution properties.

» Problems: local min, numerically complex, lacking derivatives, large-scale.

> Theory/software exists for smoothed/convex counterparts (IPOPT, CVX, various
Matlab/Julia/Python/... implementations).

> Memory required to store state trajectory (and auxiliary info like Lagrange multipliers) is
often prohibitively expensive: O(N(M + m)) for N ~ 10°, M ~ 10%.

> Key Algorithmic Requirements:

1. Nonconvex functions and nonsmooth regularizers.

2. Handle large-scale problems with rapid convergence, mesh independence, and matrix free
operations.

3. Leverage inexactness by proving convergence for j, Vj computed inexactly via
discretization, reduced-order modeling, compression, etc.
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Outline

» Dynamical System Reformulation — problem assumptions.
» Brief Trust Region Overview:

» |nexactness Assumptions,
> Matrix Sketching,
» Convergence Results.

» Numerical Results:
» Measure-Valued Parabolic Control.
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71 Dynamic Optimization Problems |

N
lrlnizn Z fo(Un—1, Un, Zn) + n(2n) st cp(tn-1,Un,2,) =0 Vn=1,... N. (2)

n=1

» Replace u, with the unique solution to c(u,—1, u,, z,) = 0 for fixed up_1, z,.
> Stack controls z=[z],...,z]]T € Z .= RN™ and statesu = [u] ,...,uf]” e U .= RM

C1(U07 U1,21) N
c(u,z) = : , f(u,z) = Z fo(tn, 2), and d(z) = Zqﬁn(z,,).

env(un—1, Un, Zn)

L f(u,z) + ¢(z) subject to c(u,z) = 0. (3)
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Dynamic Optimization Problems ||

Assumption (1 - Function Characteristics)
» Functions f, c are twice continuously differentiable.

> There exists a unique state trajectory z — S(z) : Z — U satisfying ¢(5(z),z) =0
for eachz € Z.

» The state Jacobian of ¢ dyc(u,z), has a bounded inverse for all controls z € Z.

Note: control Jacobian is d,c(u,z) and the partial derivatives are d,f(u,z), d,f(u, z).

J

Additionally, the Implicit Function Theorem [Hinze et al., 2009, Th. 1.41] ensures S, and S are
continuously differentiable for S(z) stacked (recursively)

S(Z) = [Sl(UQ,Zl)T ce SN(SN_;[(. .. ,ZN_1),ZN)T]T.
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9

Dynamic Optimization Problems Il|

min {F(2) =j(z) + #(2)}, (4)

zeZ

where j(z) := f(5(z), z) is the continuously differentiable reduced objective function with
gradient
Vi(z) = d:f(5(2), 2) + (dzc(5(2), 2)) " A, (5)

where X € RMN solves the adjoint equation
duc(5(2),2) "A = —duf(S(2), 2). (6)

Note: the adjoint equation (6) is solved backward in time, starting at n = N and requires the
entire state trajectory.

Robert Baraldi Inexact Nonsmooth Optimization



10

General Trust Region Logic & Methodology

Nonsmooth Trust Regions

> Trust-region methods: at the k" iteration, use surrogate (quadratic) model of smooth j
to make progress:
> (Approximate) Gradient V, Hessian By = B/;
» Valid within a region determined by model performance and accuracy.
» Saves numerical cost for expensive forward solutions.

» Problem: nonsmooth trust-region methods are restrictive/impractical and computing
gradient curvature information may be prohibitively expensive.

» Solution: rework standard trust-region literature for regularized functions with inexact
function/gradient calculations (Baraldi and Kouri [2022], Aravkin et al. [2021], Baraldi
and Kouri [2023b,a]).
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Algorithm 1: Nonsmooth Trust-Region Method (Baraldi and Kouri [2022])

Data: zg cdom¢, A >0, 0<m <m<l,and0<y <71 <1<y

for k=1,2,...do

Model Selection: Choose a subproblem model ji of j near zj (jix inexact!).
Step Computation: Compute z,; € Z that solves

mig mi(z) = jk(z) + #(z) subject to |z — z4|| < Ax.
z€

Computed Reduction: Compute cred, ~ aredy (inexact!).
Step Acceptance: Compute ratio of computed and predicted reduction
credy

my(zi) — mi(Zs1

Pk = ) <M =  Zi41 & Z.

[1lk, 2Ak], fpx <m
Update Trust-Region Radius: Ay € < [v204, A4], if px € [n1,m2)

end [Ak, 00), if px > 12.
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12 Approach & SprrOblem Nonsmooth Trust Regions

Trust-region subproblem: at each iteration, we solve
ngig{mk(z) = jk(z) + ¢(z)} subject to ||z — zx||, < Ak
z

where Ay > 0 is the radius, jx : Z — R is a model of j near z.

. J

Quadratic model: jx(x) = (gk,z — z«) 5 + 3 (Bk(z — 2),z — z«) z where g ~ V(z«) and By
contains some curvature information, By ~ V2j(zx) or some quasi-Newton approximation.
Theoretical Challenges:

1. Ensure convergence with ji, gk inexact;

2. Ensure subproblem step yields Fraction of Cauchy Decrease (FCD, shown in Baraldi and
Kouri [2022]);

3. Handle nonsmooth subproblems efficiently (Proximal subproblem solvers, show in Baraldi
and Kouri [2022]).

Robert Baraldi Inexact Nonsmooth Optimization



13 Inexactness Conditions Nonsmooth Trust Regions

Recall: Infinite-dimensional optimization function and gradient evaluations are often
impossible to compute without discretization or even store, leading to inexactness.

When evaluating the reduction of the objective function, we approximate

credy ~ aredy = (j(z«) + ¢(z«)) — ((zk+1) + (zk+1))

and with pred, = my(zx) — mi(zk+1) and construct the bound

[ lared, — credy| < Kobj [1) min{predk,Qk}]< , ] (M)

n < min{nt, (1 —n2)}, {0k};25 C [0,400), limk_yto0 Ok = 0.
Similarly for the gradient with Kgraq > 0 and hy = to_:l |Proxs,e(zk — togk) — z||

[ ”gk - VJ(Zk)” < Kgrad min{Ak, hk} Vk. ] (8)
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14 Randomized SketChing I Inexactness Conditions

Idea: use randomized sketching to compress M x N state trajectory matrix
U= (u]...|luy) € RM*N

and use the sketched state U" for gradient evaluations and Hessian applications.

Goal: Generate an accurate rank-r approximation of U using O(r(M + N)) storage from
[Tropp et al., 2019, Muthukumar et al., 2021].

Matrix Sketching: Given the four random linear dimension reduction maps and r > k > s,
k=2r+1, and s =2k +1,

TeRM  QeRN o eR*M  and We RN

X =TU e RN, co-range sketch (row space),
Y = UQ* € RM*K, range sketch (column space),
Z = oUV* € R°**, core sketch (singular values).
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15 Randomized SketChing “ Inexactness Conditions

Algorithm 2: Online State Sketching

Require: X =0,Y =0
1: forn=1,...,N do
2:  Given u,_1 and z,, solve ¢,(up—_1, U, z,) = 0 for u,
3: X+~ X+ TunenT
4: Y« Y+ un(Qen)
5. Z+ Z+ (%u,)(Ve,)T
6: end for

where ¢; is the i unit vector.
Storage Requirement: Sketching requires k(M + N) + s> FLOPs.
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16 Randomized SketChing I” Inexactness Conditions

Algorithm 3: Recovery

(Q, Rz)(—QI"(Y,O), QGRMXk,RQ GRka.
(P, R1)<—qr(XT,O), P e RNXk Ry e Rk*k,
C «+ (CDQ)TZ((\IJP)T)T, C € Rkxk,

W «— CPTW e Rk*N,

up ~ QWe,.

A

» Approximately recover U via QR factorizations of X7 and Y and solve 2 small LS
problems (Muthukumar et al. [2021]).

» Storage Requirement: Recovery requires k(M + N) + k> FLOPs.

» Further reductions can be gained by overwriting X and Y with @ and W: jt column then
becomes U'[:,j] = (QW)[:,j]. This reduces total complexity to O(k(M + N)).
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State Compression Error  Rrandomized Sketching

Lemma (Sketching Error - Muthukumar et al. [2021])
Let U" denote sketch of U associated with rank parameter r. Then

Erooev||U—Ule<v6 | > of(U)

i>r+1

. J

The error is expected to be slightly larger than the best rank r approximation!

Similar results exist for the probability of large deviation in Tropp et al. [2019].

Adaptive Compression: Increase sketch rank r until dynamical system residual, ||c(U", z)||
satisfies required tolerance.
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Algorithm 4: Inexact Gradient Computation with Adaptive Rank

Require: z, € R™ initial r, sketch for state uf, := vec(U"), Ax > 0, Kscale > 0, and
tolerance figraq > 1.

. Set T, & Kscale Ak

: Compute gx < g(A(uf,zk),ul, zk), hk < t=1||Prox,(zx — tgk) — z«|
TZ_ <— KRgcale min{hk, Ak}

3: while 7,7 > 1507, do

4:  while r < min{M, N} do

5 Compute norm of the constraint residual rnorm < ||c(u}, zx)||

6: if rnorm < Tj then

7

8

9

N =

, and

Compute gradient g < g(A(uf, z«), u}, z«), break

end if

r <— 2r and solve state equation at z, and resketch uj,
10:  end while
11:  Set gx < gf and compute hy < t~1||Prox,s(zx — tgk) — z«||
12:  SetT, T;r and T,j  Kscale min{ hy, Ag}
13: end while
14: return Approximate gradient gx ~ Vj(z,) using O(r(M + N) + mN) storage for

r < min{M, N}. Is this guaranteed to converge in finite time?
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19

Convergence for Algorithm 4 I Inexactness Conditions

Assumption (2 - Regularity Properties for (1))
The following conditions hold for the data in (1):
1. There exists Uy C U open and bounded such that
{ue |3z € Zy,c(u,z) =0} C Up.
2. There exists singular value thresholds 0 < og < 01 < +00 such that for any u € Uy
and z € Zy, 09 < omin(duc(u, 2)) < omax(duc(u, 2)) < o7.
3. The following functions are Lipschitz continuous on Uy x Zy with respect to their
first arguments, and their respective Lipschitz moduli are independent of z € Z :
3.1 the state Jacobian of the constraint dyc(u, z);
3.2 the control Jacobian of the constraint duc(u, z);
3.3 the state gradient of the smooth objective term duf(u, z);
3.4 the control gradient of the smooth objective term d,f (u, z).

Robert Baraldi Inexact Nonsmooth Optimization



200  Convergence for Algorithm 4 Il inexactness Conditions

Using Assumption 2, we can bound the state, adjoint and gradient errors as in [Muthukumar
et al., 2021, Prop. 4.1].
We use this to show our gradient approximation algorithm satisfies (8).

Lemma (Adaptive Rank Gradient Approximation)

If Assumption 2 holds, then Algorithm 4 produces a gradient approximation

gk = g(M(uf, zk), ul, zx), in finitely many iterations, that satisfies the gradient error
bound (8) with Kgraq = KaKscalelgrad-
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Algorithm 5: Final Sketched Nonsmooth Trust-Region Algorithm

Data: zg c dom¢, g >0,0<my <m<l,and 0 <y <71 <1<y

for k=1,2,...do

Model Selection: Use Algorithm 4 with rank ry to compute gx and choose B
Step Computation: Compute z,1 € Z (efficient) that solves

mig mi(z) == jik(z) + ¢(z) subject to ||z — zx|| < Ag.
zc

Computed Reduction: Compute credy = aredy (inexact!).

Step Acceptance: Compute ratio of computed and predicted reduction
credy

mi(zi) — mi(zi41)

Pk = <m = Zgy1 & Zg.

1Ak A, ifpe <m
Update Trust-Region Radius: Ay 1 € ¢ [1244, A, if px € [1m1,72)

end [Ak, 00), if p > 2.
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22 Convergence Of Algorithm ]. Nonsmooth Trust Regions

Recall: h, = rgl [IProxg(xx — rogk) — Xkl x

Theorem (Algorithm Convergence)
Let {xx} be the sequence of iterates generated

|ikriioflf he=0 = |iknlior<1)f ro  |Proxg (xk — oV (xc)) — xk|lx = O. (9)

Note: Permits unbounded model curvature.

Given € > 0 and bounded model curvature, then Trust-Region Algorithm satisfies hx <
min{e, 1} in at most O(¢2) iterations.

. J

Note: This is a worst-case bound; we find much better performance in practice.
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231 Measure - Valued Parabolic Control Numerical Results

Goals: Demonstrate Algorithm 1 inexactness control for adaptive compression.
Let Q =(0,1)2, T =2 and o = 0.1, and solve

17 2 .
zer?)?n)i/o 1S(2) = Wit sublect to 2]y < 20,

for w = |(sin(27x;) sin(2mx2)|1% and S(z) = u solves

Our—Au=0 inQx(0,T)
Vu-n=0 ondQx (0, T)
u(0)=z inQ.

Discretization: P1 FEM + implicit Euler for states and variational discretization for controls.
Problem size: 4225 control degress of freedom.
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241 State Tail Energy Decay

Figure 1 depicts the tail energy and sketching error averaged over 20 realizations for
uncontrolled (random initial point) and optimal z.

Uncontrolled 100 Optimal
10° ——Tail Energy ——Tail Energy
——Sketch Error ——Sketch Error
107
10'5 %1073
1010
-10
10 10715
Ne
N
-15 -20
10 0 50 100 150 200 10 0 50 100 150 200
Rank Parameter r Rank Parameter r

The sketching error averaged over 20 realizations and the tail energy for the uncontrolled state (left)
and the optimal state(right). recall that the rank of the sketch is k = 2r + 1.
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25 Measure-valued ParabOIiC ContrOI Numerical Results

Termination Criteria: h, < 10~*h; or |z — z«|| < 107%hy or k = 40.
Rank Increase Function: r + 2r.

rank objective niter nobjs ngrad mnhess nobjn nprox ¢
*1 | 2.680962e-02 16 17 9 521 1036 1726 148.78
2 | 2.680946e-02 37 38 38 1948 4597 3873 89.12
3 | 2.680946e-02 31 32 32 1635 3759 3248 63.55
4 | 2.680946e-02 22 23 23 1163 2654 2308 49.35
5 | 2.680946e-02 22 23 23 1160 2640 2305 40.31
Adaptive | 2.680946e-02 22 23 25 1162 2530 2309 25.95
Full | 2.680946e-02 23 24 24 1212 2793 2409 -—=

* rank 1 experiment failed to converge due to step-size tolerance.

The final adapted rank was r = 8 leading to 26x compression.
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260 Conclusions

» Numerical solutions of infinite-dimensional problems requires expensive approximations.
» Objectives and gradients can only be compute inexactly.

» Nonsmooth trust-region is provably convergent even with inexact computation via matrix
sketching/compression.

> Next: incorporate other compression techniques, harder examples (fluid flow around a
cylinder).
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29 PrOXimaI Operator Nonsmoothness Tools

Definition (Moreau-Yosida Envelope)

For a proper, lower semicontinuous function ¢ : Z — R and a parameter t > 0, the
Moreau envelope ey, : Z — R and the proximal operator Prox;y : Z — Z are defined
by

ees(x) = inf 5 |1z = x|* + é(2), (102)

Prox;(x) := argmin, ¢ z 3 ||z — x| + ¢(2). (10b)

» Interpretation: extension of cost function to minimizing ¢ and near x.

» Utility: many proximal operators have analytic solutions;
> [“Norm: Z = [*(Q), #(z) = 8 lzll 1) = Proxey = sign(z) © (x| — t8)+.
> RelU: Z =R, ¢(z) = max{0,z} = Prox:s = max{z — t,min{0,z}}.
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30l  First-Order Necessary Optimality Conditions

Nonsmooth Stationarity

Definition (Local Minimizer)

Z € Z is a local minimizer of (j + ¢) if there exists a neighborhood U of z on which
U+ 9)Z) <(+9¢)(z) Vze U.Additionally, Z satisfies

—Vj(z) € 06(z) < Z=Prox;y(z—tVj(z))Vt>O0. ] (11)

Lemma (Generalized Gradient & Stationary Point)
Ifz € Z is a stationary point of (j + ¢), then h(z) = 0 where

h(z) =t~ ||Prox:y(z — tVj(z)) — z||

for arbitrary fixed t > 0.
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311 Inexact Function Algorithm

bj bj — .
Assume 7.7 < pobiTi 1, then Koby = (1 + Lobj)Robj Cobj since

laredx — credi| < (1 + pobj)Robj Cobi[n min{pred,, 9,(}]4.

Algorithm 6: Inexact Objective Function Computation

Require: Constants kobj > 0 and pon; > 1, the current objective function tolerance 7y, the
current iterate xx € X and approximate objective value v, = ?(xk,Tk), the new iterate
z,41 € X, and the predicted reduction pred,.

Set Ty41 < Kobj[n min{pred,, 0 }]¢
if HobjTk+1 < Tk then
Compute vy )_’(xk,TkH)
end if
Compute Vi1 < (Zkt1, Tk+1) and set credx = (v + d(xk)) — (Vir1 + ¢(Zk+1))
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32| Inexact Gradient Algorithm

Assume that we have an approximation g : X x [0, +00) — X that satisfies Cgraq > 0 such that

[ 2(x,0) = Vf(x) and IVf(x) — 8(x,7)|| < CgraaT™ VY7 € Ry ] (12)

Algorithm 7: Inexact Gradient Computation
Require: Constant Kgraq > 0, a tolerance pigraq > 1, current iterate x, € X, and Ay.
Set T < Rgrad Dk
Compute gk « &(xk, 7, ) and hg gt ||Prox,,s(xk — rogk) — x«||
Set le — ’_igrad min{hk, Ak}
while ,ugdek+ <7, do
Compute gx < &(xk, 7,) and hy < 1y [|[Prox,s(xk — rogx) — x|
Set TI: — T,j_ and le_ — "_{grad min{hk, Ak}
end while

If h(xx) > 0, Algorithm 7 terminates finitely and the inexact gradient condition holds with
Rgrad = Ng1‘a(IRgrz1(l Cgrad-
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Inexact Gradient Computation |

Define the adjoint equation residual G : U xU x Z — U by
G(A,u,z) :=dyf(u,2z) + (dyc(u,z))* A
with A(u, z) € U the solution of G(A(u, z),u,z) = 0 for the fixed u,z. Next define the equation
g\ u,z) :=d,f(u,z) + (dc(u,2))* .
When evaluated at u = 5(z) and XA = A(u, z), g(\, u,z) is the gradient of the reduced
objective function j as in (5).
Evaluating g(, u, z) at the sketched state u” = vec(U") instead of the full state trajectory

u = 5(z) reduces the memory burden’ for gradient computation but g’(z) = g(A(u", z),u’, z)
an approximation of true gradient g(A(5(2),z), S(2), 2).
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