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2 Problem Formulation Infinite Dimensional Nonsmooth Optimization

Goal: Develop efficient algorithms to solve the regularized nonsmooth optimization problem,

min
z∈Z

F (z) := j(z) + φ(z). (1)

I Z is a Hilbert space with 〈·, ·〉 and ‖·‖;
I φ : Z → [−∞,∞] is proper, closed, and convex, but may be nonsmooth;
I j : Z → R has Lipschitz continuous gradients on an open set containing domφ, but may

be inexact;
I F > −∞, bounded below on domφ.
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3 Smooth Term Objective Function Properties

j(z) may be nonconvex and often impossible to compute exactly.
I Stems from discretization, iterative procedures, adaptive model reduction,

surrogate models, iterative linear and nonlinear solves, etc.

Adaptive Finite Elements Adaptive Quadrature Adaptive Compression
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4 Nonsmooth Regularizers Objective Function Properties

φ(z) are typically sparsity-inducing and temper model complexity, but lack derivatives.
I Sparse regularization: Z ↪→ L1(Ω), β ∈ L∞(Ω), β ≥ 0 a.e., and

φ(z) =
∫

Ω
β(ω)|z(ω)|dω.

Applications: Optimal control, data-science, learning, basis-pursuit.
I Total Variation: U ↪→ BV (Ω), β ∈ L∞(Ω), β ≥ 0 a.e,

φ(u) =
∫

Ω
β(ω)|div u(ω)|dω.

Applications: Image processing, digital image correlation, topology optimization.
I Convex Constraints: C ⊂ Z nonempty, closed and convex,

φ(z) =
{

0, if z ∈ C
+∞, otherwise.

Applications: Optimal control, inverse problems, optimal design.
I Others: Matrix completion (rank), phase retrieval.
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5 Motivation: Nonconvexity, Nonsmoothness, Inexactness

I Arise naturally in physical problems, and are useful in enforcing certain solution properties.

I Problems: local min, numerically complex, lacking derivatives, large-scale.
I Theory/software exists for smoothed/convex counterparts (IPOPT, CVX, various

Matlab/Julia/Python/... implementations).
I Memory required to store state trajectory (and auxiliary info like Lagrange multipliers) is

often prohibitively expensive: O(N(M + m)) for N ≈ 105, M ≈ 1010.
I Key Algorithmic Requirements:

1. Nonconvex functions and nonsmooth regularizers.
2. Handle large-scale problems with rapid convergence, mesh independence, and matrix free

operations.
3. Leverage inexactness by proving convergence for j,∇j computed inexactly via

discretization, reduced-order modeling, compression, etc.
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6 Outline

I Dynamical System Reformulation → problem assumptions.
I Brief Trust Region Overview:

I Inexactness Assumptions,
I Matrix Sketching,
I Convergence Results.

I Numerical Results:
I Measure-Valued Parabolic Control.
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7 Dynamic Optimization Problems I

min
un,zn

N∑
n=1

fn(un−1, un, zn) + φn(zn) s.t. cn(un−1, un, zn) = 0 ∀ n = 1, . . . ,N. (2)

I Replace un with the unique solution to c(un−1, un, zn) = 0 for fixed un−1, zn.
I Stack controls z = [zT

1 , . . . , zT
N ]T ∈ Z := RNm and states u = [uT

1 , . . . , uT
N ]T ∈ U := RNM

c(u, z) :=

 c1(u0, u1, z1)
...

cN(uN−1, uN , zN)

 , f (u, z) :=
N∑

n=1
fn(un, zn), and φ(z) :=

N∑
n=1

φn(zn).

min
u∈U, z∈Z

f (u, z) + φ(z) subject to c(u, z) = 0. (3)
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8 Dynamic Optimization Problems II

Assumption (1 - Function Characteristics)
I Functions f , c are twice continuously differentiable.
I There exists a unique state trajectory z 7→ S(z) : Z → U satisfying c(S(z), z) = 0

for each z ∈ Z.
I The state Jacobian of c duc(u, z), has a bounded inverse for all controls z ∈ Z.

Note: control Jacobian is dzc(u, z) and the partial derivatives are duf (u, z), dzf (u, z).

Additionally, the Implicit Function Theorem [Hinze et al., 2009, Th. 1.41] ensures Sn and S are
continuously differentiable for S(z) stacked (recursively)

S(z) := [S1(u0, z1)T . . . SN(SN−1(. . . , zN−1), zN)T ]T .
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9 Dynamic Optimization Problems III

min
z∈Z
{F (z) := j(z) + φ(z)} , (4)

where j(z) := f (S(z), z) is the continuously differentiable reduced objective function with
gradient

∇j(z) = dzf (S(z), z) + (dzc(S(z), z))>λ, (5)

where λ ∈ RMN solves the adjoint equation

duc(S(z), z)>λ = −duf (S(z), z). (6)

Note: the adjoint equation (6) is solved backward in time, starting at n = N and requires the
entire state trajectory.
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10 General Trust Region Logic & Methodology
Nonsmooth Trust Regions

I Trust-region methods: at the k th iteration, use surrogate (quadratic) model of smooth j
to make progress:
I (Approximate) Gradient ∇j, Hessian Bk = BT

k ;
I Valid within a region determined by model performance and accuracy.

I Saves numerical cost for expensive forward solutions.
I Problem: nonsmooth trust-region methods are restrictive/impractical and computing

gradient curvature information may be prohibitively expensive.
I Solution: rework standard trust-region literature for regularized functions with inexact

function/gradient calculations (Baraldi and Kouri [2022], Aravkin et al. [2021], Baraldi
and Kouri [2023b,a]).
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Algorithm 1: Nonsmooth Trust-Region Method (Baraldi and Kouri [2022])

Data: z0 ∈ domφ, ∆0 > 0, 0 < η1 < η2 < 1, and 0 < γ1 ≤ γ2 < 1 ≤ γ3
for k = 1, 2, . . . do

Model Selection: Choose a subproblem model jk of j near zk (jk inexact!).
Step Computation: Compute zk+1 ∈ Z that solves

min
z∈Z

mk(z) := jk(z) + φ(z) subject to ‖z− zk‖ ≤ ∆k .

Computed Reduction: Compute credk ≈ aredk (inexact!).
Step Acceptance: Compute ratio of computed and predicted reduction

ρk := credk
mk(zk)−mk(zk+1) < η1 ⇒ zk+1 ← zk .

Update Trust-Region Radius: ∆k+1 ∈


[γ1∆k , γ2∆k ], if ρk < η1

[γ2∆k ,∆k ], if ρk ∈ [η1, η2)
[∆k ,∞), if ρk > η2.end

Robert Baraldi Inexact Nonsmooth Optimization



12 Approach & Subproblem Nonsmooth Trust Regions

Trust-region subproblem: at each iteration, we solve

min
z∈Z
{mk(z) := jk(z) + φ(z)} subject to ‖z− zk‖x ≤ ∆k

where ∆k > 0 is the radius, jk : Z → R is a model of j near z.

Quadratic model: jk(x) = 〈gk , z− zk〉Z + 1
2 〈Bk(z− zk), z− zk〉Z where gk ≈ ∇j(zk) and Bk

contains some curvature information, Bk ≈ ∇2j(zk) or some quasi-Newton approximation.
Theoretical Challenges:

1. Ensure convergence with jk , gk inexact;
2. Ensure subproblem step yields Fraction of Cauchy Decrease (FCD, shown in Baraldi and

Kouri [2022]);
3. Handle nonsmooth subproblems efficiently (Proximal subproblem solvers, show in Baraldi

and Kouri [2022]).
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13 Inexactness Conditions Nonsmooth Trust Regions

Recall: Infinite-dimensional optimization function and gradient evaluations are often
impossible to compute without discretization or even store, leading to inexactness.

When evaluating the reduction of the objective function, we approximate

credk ≈ aredk := (j(zk) + φ(zk))− (j(zk+1) + φ(zk+1))

and with predk := mk(zk)−mk(zk+1) and construct the bound

|aredk − credk | ≤ κobj [ηmin{predk , θk}]ζ , (7)

η < min{η1, (1− η2)}, {θk}+∞
k=1 ⊂ [0,+∞), limk→+∞ θk = 0.

Similarly for the gradient with κgrad > 0 and hk := t−1
0 ‖Proxt0φ(zk − t0gk)− zk‖Z :

‖gk −∇j(zk)‖ ≤ κgrad min{∆k , hk} ∀ k. (8)
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14 Randomized Sketching I Inexactness Conditions

Idea: use randomized sketching to compress M × N state trajectory matrix

U = (u1| . . . |uN) ∈ RM×N

and use the sketched state U r for gradient evaluations and Hessian applications.
Goal: Generate an accurate rank-r approximation of U using O(r(M + N)) storage from
[Tropp et al., 2019, Muthukumar et al., 2021].
Matrix Sketching: Given the four random linear dimension reduction maps and r ≥ k ≥ s,
k = 2r + 1, and s = 2k + 1,

Υ ∈ Rk×M , Ω ∈ Rk×N , Φ ∈ Rs×M , and Ψ ∈ Rs×N

X := ΥU ∈ Rk×N , co-range sketch (row space),
Y := UΩ∗ ∈ RM×k , range sketch (column space),
Z := ΦUΨ∗ ∈ Rs×s , core sketch (singular values).
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15 Randomized Sketching II Inexactness Conditions

Algorithm 2: Online State Sketching

Require: X = 0,Y = 0
1: for n = 1, . . . ,N do
2: Given un−1 and zn, solve cn(un−1, un, zn) = 0 for un
3: X ← X + ΥuneT

n
4: Y ← Y + un(Ωen)
5: Z ← Z + (Φun)(Ψen)T

6: end for
where ei is the i th unit vector.
Storage Requirement: Sketching requires k(M + N) + s2 FLOPs.
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16 Randomized Sketching III Inexactness Conditions

Algorithm 3: Recovery

1: (Q,R2)← qr(Y , 0), Q ∈ RM×k ,R2 ∈ Rk×k .
2: (P,R1)← qr(X T , 0), P ∈ RN×k ,R1 ∈ Rk×k .
3: C ← (ΦQ)†Z ((ΨP)†)T , C ∈ Rk×k .
4: W ← CPT W ∈ Rk×N .
5: un ≈ QWen.

I Approximately recover U via QR factorizations of X T and Y and solve 2 small LS
problems (Muthukumar et al. [2021]).

I Storage Requirement: Recovery requires k(M + N) + k2 FLOPs.
I Further reductions can be gained by overwriting X and Y with Q and W : j th column then

becomes U r [:, j] = (QW )[:, j]. This reduces total complexity to O(k(M + N)).
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17 State Compression Error Randomized Sketching

Lemma (Sketching Error - Muthukumar et al. [2021])
Let U r denote sketch of U associated with rank parameter r . Then

EΥ,Ω,Φ,Ψ ‖U − U r‖F ≤
√

6

 ∑
i≥r+1

σ2
i (U)


1
2

.

The error is expected to be slightly larger than the best rank r approximation!
Similar results exist for the probability of large deviation in Tropp et al. [2019].
Adaptive Compression: Increase sketch rank r until dynamical system residual, ‖c(U r , z)‖
satisfies required tolerance.
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Algorithm 4: Inexact Gradient Computation with Adaptive Rank

Require: zk ∈ RmN , initial r , sketch for state ur
k := vec(U r ), ∆k > 0, κscale > 0, and

tolerance µgrad > 1.
1: Set τ−k ← κscale∆k
2: Compute gk ← g(Λ(ur

k , zk),ur
k , zk), hk ← t−1 ‖Proxrφ(zk − tgk)− zk‖, and

τ+
k ← κscale min{hk ,∆k}

3: while τ−k > µgradτ
+
k do

4: while r < min{M,N} do
5: Compute norm of the constraint residual rnorm← ‖c(ur

k , zk)‖
6: if rnorm < τ+

k then
7: Compute gradient g r

k ← g(Λ(ur
k , zk),ur

k , zk), break
8: end if
9: r ← 2r and solve state equation at zk and resketch ur

k
10: end while
11: Set gk ← g r

k and compute hk ← t−1 ‖Proxrφ(zk − tgk)− zk‖
12: Set τ−k ← τ+

k and τ+
k ← κscale min{hk ,∆k}

13: end while
14: return Approximate gradient gk ≈ ∇j(zk) using O(r(M + N) + mN) storage for

r ≤ min{M,N}. Is this guaranteed to converge in finite time?
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19 Convergence for Algorithm 4 I Inexactness Conditions

Assumption (2 - Regularity Properties for (1))
The following conditions hold for the data in (1):

1. There exists U0 ⊂ U open and bounded such that
{u ∈ U|∃z ∈ Z0, c(u, z) = 0} ⊆ U0.

2. There exists singular value thresholds 0 < σ0 ≤ σ1 < +∞ such that for any u ∈ U0
and z ∈ Z0, σ0 ≤ σmin(duc(u, z)) ≤ σmax(duc(u, z)) ≤ σ1.

3. The following functions are Lipschitz continuous on U0 ×Z0 with respect to their
first arguments, and their respective Lipschitz moduli are independent of z ∈ Z0 :
3.1 the state Jacobian of the constraint duc(u, z);
3.2 the control Jacobian of the constraint duc(u, z);
3.3 the state gradient of the smooth objective term duf (u, z);
3.4 the control gradient of the smooth objective term dzf (u, z).
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20 Convergence for Algorithm 4 II Inexactness Conditions

Using Assumption 2, we can bound the state, adjoint and gradient errors as in [Muthukumar
et al., 2021, Prop. 4.1].
We use this to show our gradient approximation algorithm satisfies (8).

Lemma (Adaptive Rank Gradient Approximation)
If Assumption 2 holds, then Algorithm 4 produces a gradient approximation
gk = g(Λ(ur

k , zk),ur
k , zk), in finitely many iterations, that satisfies the gradient error

bound (8) with κgrad = κ4κscaleµgrad.
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Algorithm 5: Final Sketched Nonsmooth Trust-Region Algorithm
Data: z0 ∈ domφ, ∆0 > 0, 0 < η1 < η2 < 1, and 0 < γ1 ≤ γ2 < 1 ≤ γ3
for k = 1, 2, . . . do

Model Selection: Use Algorithm 4 with rank rk to compute gk and choose Bk
Step Computation: Compute zk+1 ∈ Z (efficient) that solves

min
z∈Z

mk(z) := jk(z) + φ(z) subject to ‖z− zk‖ ≤ ∆k .

Computed Reduction: Compute credk ≈ aredk (inexact!).
Step Acceptance: Compute ratio of computed and predicted reduction

ρk := credk
mk(zk)−mk(zk+1) < η1 ⇒ zk+1 ← zk .

Update Trust-Region Radius: ∆k+1 ∈


[γ1∆k , γ2∆k ], if ρk < η1

[γ2∆k ,∆k ], if ρk ∈ [η1, η2)
[∆k ,∞), if ρk > η2.end
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22 Convergence of Algorithm 1 Nonsmooth Trust Regions

Recall: hk := r−1
0 ‖Proxφ(xk − r0gk)− xk‖X

Theorem (Algorithm Convergence)
Let {xk} be the sequence of iterates generated

lim inf
k→∞

hk = 0 ⇒ lim inf
k→∞

r−1
0 ‖Proxφ(xk − r0∇f (xk))− xk‖X = 0. (9)

Note: Permits unbounded model curvature.

Given ε > 0 and bounded model curvature, then Trust-Region Algorithm satisfies hk ≤
min{ε, 1} in at most O(ε−2) iterations.

Note: This is a worst-case bound; we find much better performance in practice.
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23 Measure - Valued Parabolic Control Numerical Results

Goals: Demonstrate Algorithm 1 inexactness control for adaptive compression.
Let Ω = (0, 1)2, T = 2 and α = 0.1, and solve

min
z∈M(Ω)

1
2

∫ T

0
‖S(z)− w‖2

L2(Ω) dt subject to ‖z‖M(Ω) ≤ α, z � 0,

for w = |(sin(2πx1) sin(2πx2)|10 and S(z) = u solves

∂ut −∆u = 0 in Ω× (0,T )
∇u · n = 0 on ∂Ω× (0,T )

u(0) = z in Ω.

Discretization: P1 FEM + implicit Euler for states and variational discretization for controls.
Problem size: 4225 control degress of freedom.
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24 State Tail Energy Decay
Figure 1 depicts the tail energy and sketching error averaged over 20 realizations for
uncontrolled (random initial point) and optimal z.

The sketching error averaged over 20 realizations and the tail energy for the uncontrolled state (left)
and the optimal state(right). recall that the rank of the sketch is k = 2r + 1.
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25 Measure-Valued Parabolic Control Numerical Results

Termination Criteria: hk ≤ 10−4h1 or
∥∥z+

k − zk
∥∥ ≤ 10−6h1 or k = 40.

Rank Increase Function: r ← 2r .

rank objective niter nobjs ngrad nhess nobjn nprox ζ
∗1 2.680962e-02 16 17 9 521 1036 1726 148.78
2 2.680946e-02 37 38 38 1948 4597 3873 89.12
3 2.680946e-02 31 32 32 1635 3759 3248 63.55
4 2.680946e-02 22 23 23 1163 2654 2308 49.35
5 2.680946e-02 22 23 23 1160 2640 2305 40.31

Adaptive 2.680946e-02 22 23 25 1162 2530 2309 25.95
Full 2.680946e-02 23 24 24 1212 2793 2409 ---

∗ rank 1 experiment failed to converge due to step-size tolerance.

The final adapted rank was r = 8 leading to 26x compression.

Robert Baraldi Inexact Nonsmooth Optimization



26 Conclusions

I Numerical solutions of infinite-dimensional problems requires expensive approximations.
I Objectives and gradients can only be compute inexactly.

I Nonsmooth trust-region is provably convergent even with inexact computation via matrix
sketching/compression.
I Next: incorporate other compression techniques, harder examples (fluid flow around a

cylinder).
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29 Proximal Operator Nonsmoothness Tools

Definition (Moreau-Yosida Envelope)
For a proper, lower semicontinuous function φ : Z → R and a parameter t > 0, the
Moreau envelope etφ : Z → R and the proximal operator Proxtφ : Z → Z are defined
by

etφ(x) := inf
z∈Z

1
2t ‖z − x‖2 + φ(z), (10a)

Proxtφ(x) := argminz∈Z
1
2t ‖z − x‖2 + φ(z). (10b)

I Interpretation: extension of cost function to minimizing φ and near x .
I Utility: many proximal operators have analytic solutions;

I L1-Norm: Z = L2(Ω), φ(z) = β ‖z‖L1(Ω) ⇒ Proxtφ = sign(z)� (|x | − tβ)+.
I ReLU: Z = R, φ(z) = max{0, z} ⇒ Proxtφ = max{z− t,min{0, z}}.
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30 First-Order Necessary Optimality Conditions
Nonsmooth Stationarity

Definition (Local Minimizer)
z̄ ∈ Z is a local minimizer of (j + φ) if there exists a neighborhood U of z̄ on which
(j + φ)(z̄) ≤ (j + φ)(z) ∀ z ∈ U. Additionally, z̄ satisfies

−∇j(z̄) ∈ ∂φ(z̄) ⇔ z̄ = Proxtφ(z̄− t∇j(z̄))∀t > 0. (11)

Lemma (Generalized Gradient & Stationary Point)
If z ∈ Z is a stationary point of (j + φ), then h(z̄) = 0 where

h(z) := t−1 ‖Proxtφ(z− t∇j(z))− z‖

for arbitrary fixed t > 0.
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31 Inexact Function Algorithm

Assume τobj
k ≤ µobjτ

obj
k+1, then κobj = (1 + µobj)κ̄objCobj since

|aredk − credk | ≤ (1 + µobj)κ̄objCobj[ηmin{predk , θk}]ζ .

Algorithm 6: Inexact Objective Function Computation
Require: Constants κ̄obj > 0 and µobj ≥ 1, the current objective function tolerance τk , the

current iterate xk ∈ X and approximate objective value vk = f̄ (xk , τk), the new iterate
zk+1 ∈ X , and the predicted reduction predk .
Set τk+1 ← κ̄obj[ηmin{predk , θk}]ζ
if µobjτk+1 < τk then

Compute vk ← f̄ (xk , τk+1)
end if
Compute vk+1 ← f̄ (zk+1, τk+1) and set credk = (vk + φ(xk))− (vk+1 + φ(zk+1))
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32 Inexact Gradient Algorithm
Assume that we have an approximation ḡ : X × [0,+∞)→ X that satisfies Cgrad ≥ 0 such that

ḡ(x , 0) = ∇f (x) and ‖∇f (x)− ḡ(x , τ)‖ ≤ Cgradτ ∀ τ ∈ R+. (12)

Algorithm 7: Inexact Gradient Computation
Require: Constant κ̄grad > 0, a tolerance µgrad > 1, current iterate xk ∈ X , and ∆k .

Set τ−k ← κ̄grad∆k
Compute gk ← ḡ(xk , τ

−
k ) and hk ← r−1

0 ‖Proxr0φ(xk − r0gk)− xk‖
Set τ+

k ← κ̄grad min{hk ,∆k}
while µgradτ

+
k < τ−k do

Compute gk ← ḡ(xk , τ
+
k ) and hk ← r−1

0 ‖Proxr0φ(xk − r0gk)− xk‖
Set τ−k ← τ+

k and τ+
k ← κ̄grad min{hk ,∆k}

end while
If h(xk) > 0, Algorithm 7 terminates finitely and the inexact gradient condition holds with
κgrad = µgradκ̄gradCgrad.
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33 Inexact Gradient Computation I

Define the adjoint equation residual G : U × U × Z → U by

G(λ,u, z) := duf (u, z) + (duc(u, z))∗λ

with Λ(u, z) ∈ U the solution of G(Λ(u, z),u, z) = 0 for the fixed u, z. Next define the equation

g(λ,u, z) := dzf (u, z) + (dzc(u, z))∗λ.

When evaluated at u = S(z) and λ = Λ(u, z), g(λ,u, z) is the gradient of the reduced
objective function j as in (5).
Evaluating g(λ,u, z) at the sketched state ur = vec(U r ) instead of the full state trajectory
u = S(z) reduces the memory burden‘ for gradient computation but g r (z) = g(Λ(ur , z),ur , z)
an approximation of true gradient g(Λ(S(z), z),S(z), z).
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