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Conversion cathodes hold potential for higher energy densities
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Mechanical degradation can limit conversion secondary cells

Can we engineer limited rechargeability in conversion
cathode materials while maintaining high energy density?

oeb/ner et a, jo (2018)




FeS, reaction pathways
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Generalized Reaction Mechanism
(1) FeS+ S+ xLi™ + xe"=FeS + x Li,S Conversion

(2) FeS+xLiS+yLi™ +ye =yLiFeS+xLi,S  Intercalation

(3) yLiFeS+xLi;S+zLi* +ze =Fe’+2Li;8  Conversion

Nshby et al, ACS AMI (2022), 10.1021/acsami.2c01021




Pseudo 2D model for conversion electrodes
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Pseudo 2D model for conversion electrodes

Solid potential (V)
Solid Li concentration (Cy;)
Electrolyte potential (1)
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Effective particle size increases as cathode
discharges
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FeS, leading loss mechanisms
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Extending the P2D model to 2.5D features: P3.5D FeS, models
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2.5D architected cells can provide high power and energy density solutions




Pillars can be very tall before limiting performance
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Pillars rely on radial transport to maintain performance
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Optimal pillar geometry greatly improves performance compared N\

to planar electrodes
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AN

Consideration of particle swelling and mechanical constraints AN
decreases available capacity \
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Volume averaging is nice, but mesoscale models can provide
additional physical insight and fidelity
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Interface representation - CDFEM/cThruAMR
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Swelling of FeS, particles impacts ionic transport
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of FeS, that includes intercalation and conversion

Li Concentration (Core)

Early work towards a coupled electrochemical-mechanical model \q
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Solid Voltage

Li Concentration (Core)

Early work towards a coupled electrochemical-mechanical model

of FeS, that includes intercalation and conversion
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