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Trajectory Optimization

The focus of our work is trajectory optimization, i.e., ODE-constrained

optimization problems of the form

minimize
u,T

f (x , u,T )

subject to 0 = c(x , u,T ) ≜

{
ẋ − g(x , u, t)

x(0)− xi

(1)

In words, the goal is to find an input function u and terminal time T for

which the objective f is smallest.

The formulation (1) is without loss of generality. Additional (in)equality

constraints can be handled with, e.g., an augmented Lagrangian method

like ALESQP [1]. This class of algorithms wrap an “outer loop” around

(1) that modifies f .

1
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Discretizing ODEs

Techniques for discretizing an initial value problem, ẋ = g(x , t), x(0) = x0, include

1. Runge-Kutta (RK)

x(ti + h)− x(ti ) ≈ h

∫ 1

0

g
(
x(ti + sh), ti + sh

)
ds

Were g a function of t only, we could approximate

the integral with quadrature.

RK methods are quadrature rules with

approximations of x at the quadrature points.

Each RK method is specified by a Butcher tableau:

c1
... A

cn

b1 · · · bn

The ci in the tableau are the quadrature points and

the bi are the quadrature weights [4].

From MathWorks.

Example:

A midpoint rule with an Euler

approximation of x(ti +
1
2
h).

0 0 0

1/2 1/2 0

0 1 2



Discretizing ODEs

2. Collocation

Let c⃗ = (c1, . . . , cn) be grid of n times, e.g.,

Collocation is a finite element method. To solve ẋ = g(x , t), x(0) = x0,

the technique

1. Approximates x as a degree n − 1 polynomial, pn(t) ∈ Pn ∼= Rn.

2. Enforces

• the initial condition pn(0) = x0

• the dynamics ṗn = g(pn, t) at n − 1 of the ci .

These n conditions define a system of n equations for n unknowns

p⃗ ≜ pn|c⃗ =
(
pn(c1), . . . , pn(cn)

)
,

which uniquely specify pn(t).
3



The Same... But Different

Collocation is a special instance of RK.

Instead of differentiating the state,

however, the RK formulation “goes

backward” by approximating the

derivative ẋ = g with a polynomial and

integrating.

We discretize trajectory optimization problems in this way because it

scales:

• “Derivative-based” collocation genereates equations that become

increasingly ill-conditioned as the discretization size n → ∞(
the operator

d

dt
: (C 1, ∥ · ∥∞) → (C 0, ∥ · ∥∞) is unbounded

)
.

• “Integration-based” collocation does not have this issue [3].

We are unsure why the former is more popular.

4



RK Collocation

Newton-based methods solve nonlinear equations using a sequence of

linear ones, so – without loss of generality – we consider{
ẋ = g(t)x

x(0) = x0.
(2)

Our “RK collocation” discretization of (2) is a linear system

(I − BD)p⃗ = b⃗. (3)

Here, I is the identity, D is sparse, and B is dense. Concretely,

Bij =

∫ ci

0

ℓj(s)ds,

where ℓj is the jth Lagrange polynomial for the collocation points c⃗ .1

A surprising result: We can solve (3) in O(n log n) time and space (i.e.,

more cheaply than we can write it down!).

1B is in fact the “RK matrix” in the method’s Butcher tableau.

5



Spectral Integration [3]

(I − BD)p⃗ = b⃗ (3)

We collocate at Chebyshev points,

ck = cos

(
k − 1

n − 1
π

)
.

Doing so allows us to

“apply the integral operator [B

(and hence I − BD)] in O(n log n)

operations, making iterative

methods more attractive...

Unfortunately, for many situations

of interest, complex behavior of the

solution causes ... the number of

iterations to be large” [3].

pn(t) =
n−1∑
j=0

ajTj(t),

where Tj is the jth Chebyshev polynomial:

Tj(t) = cos(jarcccos(t)).

B : Rn → Rn

1. interpolate the values

v⃗ ∈ Rn on c⃗
FFT

2. integrate this interpolant O(n)

3. evaluate the integral on c⃗ IFFT

We overcame this issue with a problem-independent preconditioner. 6
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Preconditioning

As n → ∞, B converges to indefinite integration I (ξ)(t) =
∫ t

0
ξ(s)ds, which is

the continuous analogue of a cumulative sum. Indeed,

computing the function I (ξ) is a matter of continually adding the

infinitesimal increment f (t)ds to the running tally
∫ t

0
f (s)ds

spectral integration matrix, B
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The subdiagonal columns of our B approximation are each constant and equal

to quadrature weights. This structure means the preconditioner P = I − BD
requires only O(n) operations to invert.
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Approximation Accuracy

101 102 103

discretization size (n)

10-2

10-1

Sublinear decay of ∥B − B∥∞.

Theorem 1. (Accuracy of our Preconditioner P = I − BD)

∥B − B∥∞ → 0 at a rate of O
(
log n
n

)
.

Accuracy of Perturbed Linear Systems [2]

Suppose

Ap⃗ = b⃗ and (A+∆A)q⃗ = b⃗ +∆b⃗

with ∥∆A∥ ≤ ϵ∥A∥ and ∥∆b⃗∥ ≤ ϵ∥b⃗∥.

For sufficiently small ϵ,

∥q⃗ − p⃗∥
∥p⃗∥ ≤ 2γ

1− γ
, where γ = ϵκ(A).

8



Theorem 1 (∥B − B∥∞
O(n−1 log n)→ 0)

Step 1: It suffices to show that ∥U∥∞
O(n−1 log n)→ 0, where U is the

upper triangle of B.

Proof Sketch: The upper triangle of our approximation B is zero, so the upper

triangle of B − B is the upper triangle of B. The lower triangle of B − B is the

lower triangle of

1⃗w⃗T
cc − B.

Here, w⃗cc is the vector of Clenshaw-Curtis quadrature weights,(
w⃗cc

)
i
=

∫ +1

−1

ℓi (t)dt.

The symmetry of the Chebyshev nodes and the connection between B and

integration gives us

1⃗w⃗T
cc − B = EBE ,

where E is the exchange permutation

E =


1

. .
.

1

 .

9



Theorem 1 (∥U∥∞
O(n−1 log n)→ 0)

Step 2: ∥U∥∞
O(n−1 log n)→ 0.

Proof Sketch: We wrote B as a composition of three operations, i.e.,

B = VIC .

Submultiplicativity of ∥ · ∥∞ is too coarse of a bound. We instead work with

VIC directly.

• The product (VI )C includes sums of cosine products that reduce to terms

of the form

n−1∑
k=1

sin(θk)

k
. (4)

• To bound, (4), we use the complex logarithm:

∞∑
k=1

sin(θk)

k
= Im

[
∞∑
k=1

exp(iθ)k

k

]
= Im

[
− log

(
1− exp(iθ)

)]
.

10



Theorem 1 (∥U∥∞
O(n−1 log n)→ 0)

• Let

Sn(z) = (1− z)
n−1∑
k=1

zk

k

so that∣∣∣∣∣
∞∑
k=1

sin(θk)

k
−

n−1∑
k=1

sin(θk)

k

∣∣∣∣∣ =
∣∣∣∣∣Im

[
∞∑
k=n

exp(iθ)k

k

]∣∣∣∣∣ ≤ sup|z|≤1 |S∞(z)− Sn(z)|∣∣1− exp
(
iθ
)∣∣ .

• On the closed unit disk, Sn ⇒ S∞. The

final step in showing that

∥U∥∞
O(n−1 log n)→ 0

at a rate of
log n

n
is to therefore bound

∣∣1− exp
(
iθ
)∣∣−1

=
1

2

∣∣∣∣csc(θ

2

)∣∣∣∣
tightly enough for a sum over the θs

that constitutes the ∞ norm.

An integral overapproximation

of our cosecant terms.
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Orbit Transfer

minimize
u,T

f (x , u,T )

subject to 0 = c(x , u,T ) ≜

ẋ − g(x , u, t)

x(0)− xi

(1)

We study a version of the orbit transfer problem in [5]:

f (x , u,T ) = T

x = (r , vr , vt)

g(x , u, t) =


vr
v2t
r
− 1

r2
+ a sin u

− vr vt
r

+ a cos u

xi =
(
ri , 0, r

−1/2
i

)
xf =

(
rf , 0, r

−1/2
f

)
.
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The parameter a > 0 is the thrust amplitude, which we take to be small.
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“Indirect” Methods

The optimality conditions of the continuous problem (1) allow us to

eliminate u, thereby reducing the trajectory optimization problem to a

nonlinear boundary value problem (BVP).

We reorder unknowns so that the values of the state x at the interior

times come first.

Ap⃗ = b⃗ where A =

 A11 A12

A21 A22


The A11 block here is the “interior” of the I − BD matrix that we can

invert quickly.

We can invert A11 just as easily as I − BD, but we must also contend

with the blocks bordering A11. This border is “skinny”, so we arrive at a

fast BVP inverse by combining our inverse of A11 with the Schur

complement A22 − A21A
−1
11 A12.

13



Linear Solves

We are using GMRES for our fast inverse.

n

unpreconditioned preconditioned

Newton

steps

average # of GMRES

MVMs per Newton step

Newton

steps

average # of GMRES

MVMs per Newton step

1024 13 72.38 12 2.17

2048 13 72.92 12 1.92

4096 12 73.75 12 1.92

8192 12 74.25 12 1.92

Solving a nonlinear orbit transfer ODE.

We can continue to, e.g., n ∼ 1,000,000 with just a laptop.

For linear ODEs, we have an accurate implicit method at nearly the cost

of an explicit method.
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Significance

Returning to trajectory optimization...

minimize
u,T

f (x , u,T )

subject to 0 = c(x , u,T ) ≜

ẋ − g(x , u, t)

x(0)− xi

(1)

The key computational kernel of the ALESQP algorithm is linear solves when

the matrix has the form

M =

Rx 0 JT

0 Ru CT

J C 0

 .

J is the only dense block, and it is precisely the I − BD matrix that we can

invert in O(n log n).

We have an equally fast inverse for JT and hence an equally fast Schur

complement preconditioner for M [6]. This preconditioner, in turn, accelerates

ALESQP.

15



Significance

For edge computing we can do

more with less.

To boot,

• We require only an FFT

library and no direct solvers

of any kind.

• Our inverse has helped make

new analog hardware viable

for trajectory optimization,

even at small n.

“An analog computer ... uses the continuous

variation aspect of physical phenomena such as

electrical, mechanical, or hydraulic quantities ...

to model the problem being solved. In contrast,

digital computers represent varying quantities

... by discrete values ... ” – Wikipedia

From Wired: “The Unbelievable Zombie Comeback

of Analog Computing.”
16



Current Work

From the public domain.

“I always thought that record would stand until

it was broken.”

• Yogi-isms: “statements that, if taken

literally, are ... meaningless ... yet

nevertheless convey something true” [7].

Interpolating a smooth function at Chebyshev

points is superalgebraically accurate: the

approximation error decays faster than O(n−m)

for all m.

• Is this an “inverse Yogi-ism”? Are these

global discretizations the way to go for

trajectory optimization?

Software
A Pyomo-interfaced ROL toolkit for trajectory optimization.

Theory
h and p error analyses for our spectral integration discretization of trajectory

optimization. 17



Conclusions

• We collocate with integrals instead of derivatives.

• For linear ODEs, we have a O(n log n) iterative solve that based on

the FFT and a cumulative sum preconditioner.

• We are using this solve to accelerate trajectory optimization.

Thanks!
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