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Trajectory Optimization

The focus of our work is trajectory optimization, i.e., ODE-constrained
optimization problems of the form

minirpize f(x,u, T)

x—g(x,u,t) (1)

subject to 0= c(x,u, T) =
x(0) — x;

In words, the goal is to find an input function u and terminal time T for
which the objective f is smallest.

The formulation (1) is without loss of generality. Additional (in)equality
constraints can be handled with, e.g., an augmented Lagrangian method
like ALESQP [1]. This class of algorithms wrap an “outer loop” around
(1) that modifies f.



Discretizing ODEs



Dis

ing ODEs

Techniques for discretizing an initial value problem, x = g(x, t), x(0) = xo, include

1. Runge-Kutta (RK)
1

x(ti + h) — x(t;) = h/ g (x(ti + sh), t; + sh)ds
0

Were g a function of t only, we could approximate
the integral with quadrature.

RK methods are quadrature rules with
approximations of x at the quadrature points.

Each RK method is specified by a Butcher tableau:
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The ¢ in the tableau are the quadrature points and
the b; are the quadrature weights [4].

Solution of van der Pol Equation ( = 1) with ODE45
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From MathWorks.

Example:

A midpoint rule with an Euler
approximation of x(t; + 3 h).
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Discretizing ODEs

2. Collocation
Let ¢ = (ci1,...,cn) be grid of n times, e.g.,
%. o O (] (] (] e O &

0 0.2 0.4 0.6 0.8 1
t

Collocation is a finite element method. To solve x = g(x, t), x(0) = xo,
the technique

1. Approximates x as a degree n — 1 polynomial, p,(t) € P" =2 R".

2. Enforces
e the initial condition p,(0) = xo

e the dynamics p, = g(pn, t) at n — 1 of the ¢;.
These n conditions define a system of n equations for n unknowns

ﬁé pnlE = (Pn(C1)7 B pn(Cn))a
which uniquely specify p,(t).



The Same... But Different

Collocation is a special instance of RK.

Instead of differentiating the state, /
however, the RK formulation “goes
backward” by approximating the \

derivative x = g with a polynomial and

Q.lg_

fdt

integrating.

We discretize trajectory optimization problems in this way because it
scales:

e “Derivative-based” collocation genereates equations that become
increasingly ill-conditioned as the discretization size n — oo

(the operator i S(CH - Jloo) = (CO ] - [loo) is unbounded) .

e ‘“Integration-based” collocation does not have this issue [3].

We are unsure why the former is more popular.



RK Collocation

Newton-based methods solve nonlinear equations using a sequence of
linear ones, so — without loss of generality — we consider

x = g(t)x
2
{X(O) = Xp. @)

Our "RK collocation” discretization of (2) is a linear system
(I — BD)5 = b. (3)

Here, | is the identity, D is sparse, and B is dense. Concretely,

@
B,‘j I/ fj(S)dS,
0
where /; is the jth Lagrange polynomial for the collocation points AL

A surprising result: We can solve (3) in O(nlog n) time and space (i.e.,
more cheaply than we can write it down!).

1B is in fact the "RK matrix” in the method’s Butcher tableau.



(1-BD)F=5  (3)

We collocate at Chebyshev points,

Ck = COS k-1

= —Q T | .
. n—1
Doing so allows us to

“apply the integral operator [B
(and hence | — BD)] in O(nlog n)
operations, making iterative
methods more attractive...
Unfortunately, for many situations
of interest, complex behavior of the
solution causes ... the number of
iterations to be large” [3].
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n—1
pa(t) =Y aTi(t),
j=0
where Tj is the jth Chebyshev polynomial:
T;(t) = cos(jarcccos(t)).
B:R" - R"
1. interpolate the values

veR" onc
2. integrate this interpolant | O(n)

FFT

3. evaluate the integral on ¢ | IFFT

We overcame this issue with a problem-independent preconditioner. 6



Preconditioning




Preconditioning

As n — 0o, B converges to indefinite integration .7 (&)(t) fo &(s)ds, which is
the continuous analogue of a cumulative sum. Indeed,

computing the function #(§) is a matter of continually adding the
infinitesimal increment f(t)ds to the running tally fo s)ds

spectral integration matrix, B

© ® N > o A @ N

0.34 030 0.23

0.34 0.30 0.23

The subdiagonal columns of our I3 approximation are each constant and equal
to quadrature weights. This structure means the preconditioner 7 = | — 5D

requires only O(n) operations to invert.



Approximation Accuracy

///

1B~ Bl

Sublinear decay of ||B — B||c-

Theorem 1. (Accuracy of our Preconditioner P = | — BD)

|B = Bllsc — 0 at a rate of O (£2).

Accuracy of Perturbed Linear Systems [2]

Suppose
AF=b and (A+AAG=b+Ab
with [|AA|| < e[|l and [|AB]| < €] B]].
For sufficiently small ¢,
lg—pAll . 27

Bl S1= where v = ex(A). .



O(n~!log n)
—

Theorem 1 (||B — B||

n"tlogn
Step 1: It suffices to show that || U] AT o 0, where U is the

upper triangle of B.
Proof Sketch: The upper triangle of our approximation B is zero, so the upper
triangle of B — B is the upper triangle of B. The lower triangle of B — B is the
lower triangle of
iw. — B.

Here, we. is the vector of Clenshaw-Curtis quadrature weights,

+1

(Wee), = / 4i(t)dt.

=il
The symmetry of the Chebyshev nodes and the connection between B and
integration gives us

iw! — B = EBE,

where E is the exchange permutation

E =



Theorem 1 (||U|| o

O(n~tlogn
Step 2: [|U]o 7" %" 0.
Proof Sketch: We wrote B as a composition of three operations, i.e.,
B=VJsC.

Submultiplicativity of || - || is too coarse of a bound. We instead work with
V.# C directly.

e The product (V.#)C includes sums of cosine products that reduce to terms
of the form

i: sin(ka)‘ (a)

k=1

e To bound, (4), we use the complex logarithm:

S0 [Z elit)t ] — m [ log (1 — exp(i6))]

10



Theorem 1 (||U||

o Let
n—1 4
z
Si(z)=(1-23 2
k
k=1
so that
i sin( nil sin Gk) Jm i expf@)k} ‘ < SUP|z|<1 |S°°(z)._ Sn(2)|.
k=1 k=1 k=n ‘1 =@y (n@)’
e On the closed unit disk, S, = Sec. The
final step in showing that
n71 log n :
Ul 7" =" 0 !
| X
at a rate of °gn is to therefore bound .
) sl 1 % 05 10 15 20 25 R
1—exp (HG)| ) ESC (2) ’ An integral overapproximation

of our cosecant terms.
tightly enough for a sum over the 0s

that constitutes the co norm. 11



Numerics




Orbit Transfer

minimize f(x,u, T)
u, T

. 1) trajectory
. x — g(x,u,t) ( " -
subject to 0= c(x,u, T) £ s
o X(O) — Xj 05 r////'/ \\\ \]
RS o
ost 4\ Vo
We study a version of the orbit transfer problem in [5]: | \\&///
f(x,u,T)=T CREE I
X = (r7 Ve, Vt) 0 control I
- z . N Fa\ / \‘
g(x,u,t)=q %+ — 5 +asinu L J | / ‘\
— Y%+ acosu N b “‘\/,
o (r,-,O, ri_1/2) R I

The parameter a > 0 is the thrust amplitude, which we take to be small. "



“Indirect” Methods

The optimality conditions of the continuous problem (1) allow us to
eliminate u, thereby reducing the trajectory optimization problem to a
nonlinear boundary value problem (BVP).

We reorder unknowns so that the values of the state x at the interior
times come first.

A A1

Aot A

The Aq; block here is the “interior” of the | — BD matrix that we can
invert quickly.

We can invert Ay just as easily as | — BD, but we must also contend
with the blocks bordering A;1. This border is “skinny”, so we arrive at a
fast BVP inverse by combining our inverse of Aj; with the Schur

complement Ay — AglAfllAlz. 5



Linear Solves

We are using GMRES for our fast inverse.

unpreconditioned

preconditioned

n Newton average # of GMRES Newton average # of GMRES
steps MVMs per Newton step | steps MVMs per Newton step
1024 13 72.38 12 2.17
2048 13 72.92 12 1.92
4096 12 73.75 12 1.92
8192 12 74.25 12 1.92

Solving a nonlinear orbit transfer ODE.

We can continue to, e.g., n ~ 1,000,000 with just a laptop.

For linear ODEs, we have an accurate implicit method at nearly the cost

of an explicit method.

14



Impact




Returning to trajectory optimization...
minimize f(x,u, T)
u, T

x — g(x,u,t) (1)

subject to 0= c(x,u, T) £
x(0) — x;

The key computational kernel of the ALESQP algorithm is linear solves when
the matrix has the form

R« 0 JT
M=]0 R, CT
J C 0

J is the only dense block, and it is precisely the | — BD matrix that we can
invert in O(nlog n).

We have an equally fast inverse for J7 and hence an equally fast Schur
complement preconditioner for M [6]. This preconditioner, in turn, accelerates
ALESQP.

15



For edge computing we can do “An analog computer ... uses the continuous
more with less. variation aspect of physical phenomena such as
electrical, mechanical, or hydraulic quantities ...

To boot, .
to model the problem being solved. In contrast,
e We require only an FFT digital computers represent varying quantities
library and no direct solvers ... by discrete values ... " — Wikipedia
of any kind.

e Our inverse has helped make
new analog hardware viable
for trajectory optimization,
even at small n.

of Analog Computing.” 16



Current Work

“I always thought that record would stand until

it was broken.”

e Yogi-isms: “statements that, if taken
literally, are ... meaningless ... yet
nevertheless convey something true” [7].

Interpolating a smooth function at Chebyshev
points is superalgebraically accurate: the
approximation error decays faster than O(n™"™)

for all m.

e |s this an “inverse Yogi-ism”? Are these

global discretizations the way to go for

From the public domain.

trajectory optimization?

Software

A Pyomo-interfaced ROL toolkit for trajectory optimization.

Theory

h and p error analyses for our spectral integration discretization of trajectory

optimization. 17



Conclusions

e We collocate with integrals instead of derivatives.

e For linear ODEs, we have a O(nlog n) iterative solve that based on
the FFT and a cumulative sum preconditioner.

e We are using this solve to accelerate trajectory optimization.

Thanks!
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