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Overview

High level overview by reactor type of:

o Existing models/capabilities

o Active or future code development

Non-LWRs:
o HTGR (PBR and PMR),
FHR,
MSR,
SFR, and
HPR

Conclusions
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High Temperature Gas-Cooled Reactor
(Pebble Bed and Prismatic)
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HTGR (PBR/PMR) Existing Models/Capabilities

Thermal hydraulics and heat transfer

o Matrix (MX) and reflector (RF) components

o Core conduction
= |ntracell (FU/MX)
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* Effective conductivity L e
» Conduction geometry . v
B Power Change 0
Z ——— TotFbk
= Radial Boundary (COR to HS) D
> = WMaderatar Densty Fok 100
E . — Externd Reactivity g
o Core convection P e & -
= Pebble Nusselt number correlation e
) %__35 -300
= MX and RF heat transfer resistance
. -55 Time (5] -500
= Packed bed flow resistance
. . . . PR P S S L) ek g irl .g-..o,,
o Graphite steam and air oxidation LT TRe ARe ] e, !
Correlation Ci Gz Ca Ci
o Point reactor kinetics S orgra) e | ao | oo | -
Meditied Ergun [smoath) 36 360 0.0
Medified Ergun [rough) 8.0 360 0.0
Achenbach 1.76 320 200 0.4

Radionuclide transport and release
o Diffusional fission product release model

o Graphite dust generation and transport

Components

Pebble Bed Reactor Fuel/Matrix

o Fueled part of pebble
o Unfueled shell (matrix) is modeled
2s separate compenent

o Fuel radial temperature profile for
sphere

Fueled pebble core
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Prismatic Modular Reactor
Fuel/Matrix Components
o "Rod-like” geometry
o Part of hex block associated with a
fuel channel is matrix component
o Fuel radial temperature profile for

TRISO {FU)
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HTGR (PBR/PMR) Active/Future Development

RF and MX component support rule revision
o Previously, MX could not support RF above and RF could not support MX above (core/reflector axial boundaries)
o Now, RF can transmit load to/through MX and vice-versa (ultimately to underlying SS)

o Backwards compatibility

Core radial conduction parameters

o Intercell component-wise radial conduction model derives a notion of radial conduction area as the common
radial ring interfacial boundary area scaled by a component volume fraction

o New/revised COR SC1507 for limited parameterization of component volume fraction

RF component geometry flag
o RF can be “cylindrical” or “flat plate” geometry, and this definition factors into RF-side intercell conduction logic

o RF geometry plays a role in RF component convection as well
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FHR Existing Models/Capabilities - shecn ammard '

Thermal hydraulics and heat transfer

N=1 N=1

o Several of the same models applicable to HTGR (PBR in particular)

o Zehner-Schlunder-Bauer effective conductivity models’ radiation component

Intact TRISD
Concentrations

Cagum Molsr Concenbpt:

o FLiBe properties/EOS (condensable hydrodynamic material)

Radionuclide transport and release

PFarticls Baciua |m]

o Diffusional fission product release model compatible with alternative (fueled shell) pebble fuel element
o Control-function pool release with conventional built-in radionuclide forms, or

o Generalized radionuclide transport and retention (GRTR) framework

Aer/Vap Physics

g
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FHR Active/Future Development |

Issues mentioned for PBR/PMR may or may not apply to FHRs ‘

Generalized radionuclide transport and release framework and ORIGEN/MELCOR integration |
o Radionuclide forms in pool, release from pool, chemistry and radionuclide retention, etc.

o ORIGEN/MELCOR may impact the chemistry of the problem
Multiple condensable fluids (CVH/EQOS) — Other than FLiBe in secondary or tertiary loops ‘

Effective conductivity model — Pebble bed in molten salt
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MELCOR
MSR Existing Models/Capabilities |

Thermal hydraulics and heat transfer

o FLiBe properties/EOS (condensable hydrodynamic material) to include treatment for salt freezing

o CVH package fluid fuel/core — power magnitude and distribution I
o Fluid fuel point reactor kinetics model (delayed neutron precursor drift) e
DIF%PJ"PSZZZ\ o .
Radionuclide transport and release R,

BUBBLE
FILM

o Control-function pool release with conventional built-in radionuclide forms, or
o GRTR framework

o Ability to initialize and/or source in (over an initialization period) all RN classes, forms, etc.
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S 0 i \
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» = 1E+06
o Neutrons generated and moderated . 5= 5 B0 MELCOR B
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o Decay in loop or advect back into core-region H LY § LEs01 § 16400 == Lif-BeF2(Cantor 1963)
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MSR Active/Future Development

Generalized radionuclide transport and retention framework and ORIGEN/MELCOR integration

o Work in progress GRTR Physico- Advective and
o Concerned with physico-chemical Inputs to GRTR Model Chemical Transport Fission/Transmutation
forms and their dynamics Dynamics Dynamics
- POOl release (Solublllty’ vapor pressure) Radionuclide mass i;uul_;r' released to) liquid
. Advection of radionuclides in liguid pool ar
= |nsoluble forms and deposition Chanical spacistion atmosphere
Colloidal radionuclide form mass
= Various mass transport mechanisms _

Pressure in hydrodynamic volume

Deposited radionuclide form mass

Temperature in regions of hydrodynamic
volume (e.g., liquid and atmosphere)

HS surface heat transfer with atmosphere S
between hydrodynamic volumes

o Useful in salt spill accident scenarios -~ -

For Each Timestep

Decay of radionuclides in hydrodynamic
control volume
Coupling with ORIGEN

o Mitigate time-step thrashing (HS/CVH coupling)

o Place a physical realizability limit on allowable heat transfer with atmosphere considering all HS surfaces in a CV

Multiple condensable fluids (CVH/EQS)
o Other than FLiBe in secondary or tertiary loops
o New CVH/EQOS fluids, e.g. chloride salts 11
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SFR Existing Models/Capabilities

Thermal hydraulics and heat transfer

PALLLOH 2
s BALLCTN [SWRER)

- }
o Metal FU properties, CL and CN primary materials, sodium bond gap E
o Sodium properties/EOS (condensable hydrodynamic material) ; - -
o Pin and pin plenum fission gas dynamics/transport o ma am e e e
o In-pin molten (contiguous) cavity formation/pressurization i e
o Point reactor kinetics model . - ” e e
o Fuel failure and degradation : \ =, 1 e

N
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Reactivity [pem]

= Candling/blockage,
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= Molten pool models T Temperatre 1

o Ex-vessel (spray fire, pool fire, atmospheric chemistry)

Canding Pin

Radionuclide transport and release 03
05 \ | —u:.r-:::wwa i
o Initialize fuel, sodium bond gap, and pin plena gaseous/solid inventory s 1] o |
o In-pin fission gas dynamics (closed/open porosity, solid to molten, release) 5o
O GRTR framework o 500 1000 1500 I“I!D‘.‘lﬂ 500 3000
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o Control-function pool release with conventional built-in radionuclide forms, or
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SFR Active/Future Development

More detailed fuel pin mechanics and fission gas dynamics model(s) for pre-transient and transient
o System of algebraic expressions to predict fuel/clad stress/strain
o More detailed pin failure logic

o Core degradation modeling benchmark(s) and subsequent improvements

Generalized radionuclide transport and release framework and ORIGEN/MELCOR integration
COR heat transfer limitation/relaxation — physical realizability limit on COR/CVH heat transfer
Multiple condensable fluids (CVH/EQS) - Other than sodium in secondary or tertiary loops

Improved and expanded ex-vessel modeling
o Sodium/limestone ablation (SLAM) model (MCCI for SFRs)

o Spray/pool fire model modifications

MELCOR
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HPR Existing Models/Capabilities

Thermal hydraulics and heat transfer . — - < |8
o HP component and heat pipe performance/response model(s) : \ : . § :Q ; 2

z N oS o v

HP failure and operational limits b\ = X QT 7l E
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o Point reactor kinetics modeling
o

Power (W)
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User-defined heat transfer pathway capability a0 § s Lwick
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HPR Active/Future Development |

Multi-rod modeling extension for heat pipes — would help investigate hypothesized cascading HP failure ‘

Horizontal heat pipes (currently only vertical) |

Fission product release models

17
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Conclusions |

Gave a brief description of MELCOR models/capabilities for non-LWRs ‘
o HTGR (PBR and PMR)
o FHR I
o MSR
o SFR
o HPR

Code models/capabilities are sufficient to demonstrate source term calculations for each reactor type, and ‘
various development tasks are ongoing with several more coming soon

Various domestic and international code users are actively exercising non-LWR models/capabilities, and their
findings are factoring into the development cycle in real time ‘
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