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CLDERA Project 2

Can pathways be discovered 
that reveal relationships between 
source and impacts?

Inverse formulation:
• Can CLDERA identify location 

and magnitude of Mt. 
Pinatubo eruption from the 
temperature perturbation?

• How does the attribution 
change as a function of 
eruption characteristics and 
lag from eruption time?
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Project Thrusts

• Simulated Pathways
• Random Forest Regressions
• Sensitivity Analysis
• Tracers
• Profiling
• Simulation-Based Analysis
• Clustering

• Observed Pathways
• Echo State Networks
• Change-Point Detection
• Space-Time Statistical Methods
• Data Fusion

• Attribution
• Inverse Optimization
• Enhanced Fingerprinting
• Causal Modeling
• Dimension Reduction
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Develop new approaches that preserve 
important pathway features in the system, but 
cull the high-dimensional space to enable 
dominant source-to-impact attribution

Develop statistical methods to simultaneously 
account for dynamic spatio-temporal evolution 
and key atmospheric processes

Discover simulated pathways in ESMs between 
a source and its impacts to uncover sound 
causal relationships, rather than piecemeal 
source-impact correlations



Data Sources: Temperature4

Source What is it? Date Range Spatial Resolution Data Type
Integrated Global 
Radiosonde 
Archive (IGRA) Radiosonde

1905-present
varies by station

Point coverage
Vertical: finely resolved Point

NOAA-TOVS
Vertical sounder 
suite 1988-1998

1° x 1°
Vertical: surface to 30mb Areal

IGRA: January 1, 1990 TOVS: January 1, 1990



Change of Support Problem5

This is an observation of 
temperature at this location This is not

IGRA TOVS

TOVS Satellite 
instrument

Information 
about 
Temperature

1-degree by 1-degree area

Average of 
Information

Reporting of 
Average



9 7 4 9 5 4

1 8 7 9 1 5

9 1 3 1 6 9

6 5 2 7 7 8

9 5 4 4 8 9

5 7 6 1 4 1

Change of Support Problem6

Sources of Uncertainty
• Measurement uncertainty (IGRA and TOVS)
• Uncertainty due to averaging (TOVS only)
• Inaccurate uncertainty quantification (TOVS only)

Data Fusion Goal:
Fuse multiple observational datasets
§ Spatially and temporally complete
§ With uncertainty quantification
§ In near-real-time

Accounting for
§ Change of support
§ Spatial and temporal auto-correlation
§ Non-stationarity

For use in
§ Causal pathway analysis
§ Validation of synthetic and re-analysis 

data

6.3 7.3 3.8

5.3 3.3 7.5

6.5 3.8 5.5

Mean = 5.4
Std. Dev. = 2.8

Mean = 5.4
Std. Dev. = 1.6



Interpolation Methods7

General methodology Examples (not comprehensive) Spatio-temporal 
model?

Handles 
COS?

Handles 
large 
datasets?

R package?

Low-rank methods 1. Fixed-rank kriging (Cressie and 
Johannesson)

2. Lattice kriging (Nychka)
3. Predictive processes (Finley)
4. Nguyen, Cressie et al

3. spBayes can do 
space-time or COS 
but not both
4: Nguyen et. al 
2013 extend to 
spatio-temporal
Others spatial only

1, 2, 4: Yes
3. spBayes 
can do 
space-time or 
COS but not 
both

Yes 1. FRK
2. LatticeKrig
3. spBayes
4. No

Sparse covariance 
methods

1. Spatial partitioning (Heaton)
2. Covariance tapering (Furrer)

Spatial only No Yes 1. spBayes
2. No

Sparse precision 
methods

1. Multiresolution approximations (Katzfuss 
and Hammerling)

2. SPDE/INLA (Lindgren)
3. Nearest neighbor (Datta and Finley)
4. Periodic embedding (Guinness)

3. Yes
Others spatial only

2, 3. Yes
Others No

Yes 1. Gpveccia
2. INLA
3. spNNGP
4. GpGp

Algorithmic approaches 1. Metakriging (Guhaniyogi)
2. Gapfill (Gerber)
3. Local approximation Gaussian process 

(Gramacy and Sun)

Spatial only No Yes 1. No
2. No
3. laGP, 

deepGP, 
quack

Re-scaling approaches 1. Spatial downscaling (Mugglin and Carlin)
2. Spatial upscaling (Bradley, Wikle, Holan)

Spatial only Yes No 1. No
2. stcop

Heaton, M.J., et. al. 2019. A case study competition among methods for 
analyzing large spatial data.



laGP8

For an N-dimensional random vector

Gaussian Process

We can partition the vector

with sizes

Similarly

with sizes

The conditional distribution is: 

where and

The laGP package solves the matrix inversion problem by introducing sparsity into the 
covariance matrix, using a nearest-neighbor approach.

In laGP, Σ is a standard squared-
exponential distance function with 
possible tuning using a scale and/or 
nugget 



LatticeKrig

• Spatial process is the sum of radial basis functions
• Constructed using a Wendland compactly-supported correlation function
• Nodes arranged on a rectangular grid

• Coefficients on basis functions are assumed to be correlated
• Distributed according to a Gaussian Markov random field (covariance also Wendland)

• Linear model fit using least squares, then basis functions fit to the residuals
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y: observations
X: matrix of locations, covariates
d: vector of coefficients for the linear model
Φ: matrix of radial basis functions

(evaluated at data points)
c: vector of coefficients on the basis functions
e: measurement error
g(s): true process

The LatticeKrig package solves the matrix inversion problem by introducing sparsity using 
basis functions and covariance functions that are nonzero only on a compact interval



IGRA: January 1, 1990 TOVS: January 1, 1990
laGP

Predicted Mean Prediction Error



Bootstrap procedure:
1) Calculate variance of ERA5 reanalysis data in 1-deg grid 

square
2) Sample from a Normal

• mean = TOVS/IGRA obs
• var = ERA5 var

3) Create 199 bootstrap samples, plus one with obs values (200 
total dfs)

4) Each bootstrap dataset modeled using laGP
• Each model takes about 11 min using 46 cores: ~ 36 hrs 

total
5) Calculate variance across 200 predicted means for each grid 

cell

laGP Boostrap
Experiment

ERA5 Reanalysis Data: Jan 1, 1990

ERA5, TOVS, IGRA
New Mexico Jan 1, 1990



ERA5 SDs
Min: 0.005 
1st Q: 0.130
Median: 0.250
   4 * median = 1.00
Mean: 0.529
3rd Q: 0.576
Max: 11.074

Bootstrap Pred errors
Min: 9.113 
1st Q: 12.752
Median: 12.910
   4 * median = 51.64
Mean: 12.805
3rd Q: 12.966
Max: 16.667

laGP Pred errors
Min: 0.461 
1st Q: 1.032
Median: 1.595
   4 * median = 6.38
Mean: 2.097
3rd Q: 2.830
Max: 13.102



Comparison of Interpolators13

system.time()
user      system  elapsed
8142.075   0.972  230.416

system.time()
user   system  elapsed
96.272  2.957  99.448

Predictions from laGP using TOVS data Predictions from LatticeKrig using TOVS data



Model Uncertainty14

Min: 0.4779
1st Quart: 1.017
Median: 1.539
Mean: 2.002
3rd Quart: 2.685
Max: 12.57

Min: 0.393
1st Quart: 0.570
Median: 0.677
Mean: 0.995
3rd Quart: 0.930
Max: 9.38

Prediction error from laGP Prediction error from LatticeKrig



LatticeKrig predictions, 199015

Daily model runs in ~6-7 min
Jan 1, 1990 – June 30, 1993: 6.5 days



INLA

• INLA: Approximate Bayesian inference in a latent Gaussian model
• LaPlace approximations for posterior marginals
• Numerical algorithms for sparse matrices

• SPDE: the continuously indexed Gaussian field S(x) is represented as a 
discretely indexed Gaussian Markov random field (GMRF) using basis 
functions
• Basis functions defined on a triangulation of

the region

• Matérn covariance for Gaussian field S

16 Moraga, P, et al. 2017. 



INLA17

Point Observations:
• Weighted average at the vertices of 

the triangle containing the point. 
• Weights = barycentric coordinates

Areal Observations:
• Weighted average at the vertices of the 

triangles within the area. 
• Weights = (number of vertices in area)-1



INLA

A is a projection matrix that maps the GMRF from the observations (rows) to the 
triangulation nodes (columns).

• Point observation
• Up to 3 non-zero values at the columns that represent the vertices of the triangle 

containing the point
• Value is barycentric coordinates

• Areal observation:
• Non-zero values at the m vertices inside the area
• Value is 1/m

18

point

point

areal

areal



INLA Simulations: Areal data19

True Simulated Field:
• 100 x 200 = 20,000 points

Areal data blocks:
• 10 x 20 (each block 100 values)
• 32 x 64 (each block 9-16 values)
• 90 x 180 (each block 1-4 values)

• COSP: we want prediction error to be larger 
when treating areal data properly than when 
treating it as point data

• Difference between the two should disappear as 
the resolution becomes finer



INLA Simulation Results: Areal data20

Areal blocks
Areal 
(fine mesh)

Point
(fine mesh)

Point
(coarse mesh)

10 x 20 (coarsest) 0.115 0.099 0.006

32 x 64 0.031 0.028 0.034

90 x 180 (finest) 0.0018 0.0016 0.0138

Median Prediction Error

Areal blocks
Areal
(fine mesh)

Point
(fine mesh)

Point
(coarse mesh)

10 x 20 (coarsest) 0.128 0.142 0.164

32 x 64 0.078 0.051 0.094

90 x 180 (finest) 0.0261 0.0260 0.0759

RMSE

Fine Mesh

Coarse Mesh



Model Min 1st Q Median 4*Median Mean 3rd Q Max Time
Coarse mesh 0.218 0.328 0.399 1.596 0.529 0.529 9.590 41 sec
Medium mesh 0.321 0.502 0.629 2.516 0.878 0.886 11.452 50 sec
Fine mesh 0.395 0.589 0.745 2.982 1.069 1.063 14.744 156 sec
Mesh size 1 0.398 0.446 0.842 3.367 2.091 2.320 38.744 57 min
As aerial 0.407 0.511 0.782 3.127 1.345 1.469 20.593 44 min

INLA Model Results: Observational Data

Point data

Prediction Error: Fine Mesh Prediction Error: As Aerial Data



Conclusions

• Interpolators:
• Prediction error is too small
• Results from bootstrap using reanalysis aren’t useful
• LatticeKrig vs. laGP
• Better quantitative results
• Better qualitative results
• Faster

• LatticeKrig: 3.5 years of data in ~6.5 days

• INLA
• Handles change-of-support
• Running areal data appropriately probably takes too long
• 3.5 years of data in ~1 month

• Run as point data with fine mesh is a good approximation
• 3.5 years of data in <3 days

22



Challenges and Next Steps23

Data: 0.1-degree resolution
averaged into 1-degree blocks

Model: 1-degree resolution
time: ~ 1 min

Predictions: 1-degree resolution
time: ~ 4 seconds

Prediction error: 200 bootstrap samples
time: ~ 25 min

AOD data: Jan 1990

LatticeKrig predictions Prediction error
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