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s I Project Thrusts

Simulated Pathways
* Random Forest Regressions

« Sensitivity Analysis

« Tracers

*  Profiling

« Simulation-Based Analysis
* Clustering

Observed Pathways
e Echo State Networks

* Change-Point Detection
» Space-Time Statistical Methods
|- Data Fusion |

Attribution
* Inverse Optimization

* Enhanced Fingerprinting
« Causal Modeling
« Dimension Reduction

Discover simulated pathways in ESMs between
a source and its impacts to uncover sound
causal relationships, rather than piecemeal
source-impact correlations

Develop statistical methods to simultaneously
account for dynamic spatio-temporal evolution
and key atmospheric processes

Develop new approaches that preserve
important pathway features in the system, but

cull the high-dimensional space to enable
dominant source-to-impact attribution




4 | Data Sources: Temperature

TOVS: January 1, 1990

AR~
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m What is it? Date Range Spatial Resolution Data Type

Integrated Global

Radiosonde 1905-present Point coverage
Archive (IGRA) Radiosonde varies by station Vertical: finely resolved Point
Vertical sounder 1°x1°

NOAA-TOVS suite 1988-1998 Vertical: surface to 30mb  Areal



1-degree by 1-degree area

5 ‘ Chan‘g‘e of Support Problem

R J"‘;..n. ‘
® @
® @
IGRA  TOVS -
o ®o 0© Information
S N ® about
Hor Inser Page Forr Data Revie View JMP Hom Inser Page Form Data Revie View JMP |» =3 @) @ Temperature
Al v 5 lat v A2 - Je -75.5 v
A B C - A B C D[~ .

1 |lat lon temp 1 |lat lon temp TOVS Satelllte

2 | -1.3036 36.7597 289.75 2 -75.5  -179.5 274.723 INnstrument

3 | -1.3833 -48.4833  298.15 3 -50.5  -179.5 283.883

4 | -12.4239 130.893 298.75 4 -49.5  -179.5 282.274

5 1 -14.3383 -170.719 299.35 5 -47.5  -179.5 284.264

6 -18.8 47.4833  296.95 3 -46.5  -179.5 284.643 ‘

7 -20.15  28.617 292.55 7 -435  -179.5 286.071 Average of

8 | -20.4667 -54.6667  297.15 8 -42.5  -179.5 287.149 .

9 | -22.5667 17.1  294.15 9 415  -179.5 287.943 Information I
10 | -22.8167  -43.25  302.55 10 -40.5  -179.5 289.159

11 | -23.8667  29.45 292.95 11 36,5 -179.5 291,959 I
12 | -25.91 28.2111 .15 12 355  -179.5 2971139

13| -28.25 283333 291.95 13 345 -179.5 290.46 .

M Repoiting of

This is an observation of
temperature at this location This is not I

Average I




s |1 Change of Support Problem

o|7|4|9|5]4 Data Fusion Goal:
6.3 7.3 3.8
1817191115 Fuse multiple observational datasets
9ol 1131116!lo9 = Spatially and temporally complete
5.3 3.3 7.5 = With uncertainty quantification
6512|778 .
= |n near-real-time
91514148 |9 _
6.5 3.8 55 Accounting for
S| /716 T4 = Change of support
Mean = 5.4 Mean = 5.4 : Spatlalar]d temporalauto-correlation
Std. Dev. = 2.8 Std. Dev. = 1.6 * Non-stationarity
For usein
Sources of Uncertainty = Causal pathway analysis
* Measurement uncertainty (IGRA and TOVS) = Validation of synthetic and re-analysis
« Uncertainty due to averaging (TOVS only) data
* |Inaccurate uncertainty quantification (TOVS only)




7 | Interpolation Methods

General methodology | Examples (not comprehensive)

Spatio-temporal
model?

Heaton, M., et. al. 2019. A case study competition among methods for
analyzing large spatial data.

Handles
C0S?

&

Handles R package?
large

Low-rank methods 1.

S YN

Sparse covariance 1.
methods 2.
Sparse precision 1.
methods
2.
3.
4.
Algorithmic approaches 1.
2.
3.
Re-scaling approaches 1.
2.

Fixed-rank kriging (Cressie and
Johannesson)

Lattice kriging (Nychka)
Predictive processes (Finley)
Nguyen, Cressie et al

Spatial partitioning (Heaton)
Covariance tapering (Furrer)

Multiresolution approximations (Katzfuss
and Hammerling)

SPDE/INLA (Lindgren)

Nearest neighbor (Datta and Finley)
Periodic embedding (Guinness)

Metakriging (Guhaniyogi)

Gapfill (Gerber)

Local approximation Gaussian process
(Gramacy and Sun)

Spatial downscaling (Mugglin and Carlin)
Spatial upscaling (Bradley, Wikle, Holan)

3. spBayes can do
space-time or COS
but not both

4: Nguyen et. al
2013 extend to
spatio-temporal
Others spatial only

Spatial only

3. Yes
Others spatial only

Spatial only

Spatial only

1,2, 4:Yes

3. spBayes
can do
space-time or
COS but not
both

No

2, 3.Yes
Others No

No

Yes

datasets?
Yes 1. FRK

|2. LatticeKrig |
. SpBayes

4. No

Yes 1. spBayes
2. No

2. INLA
3. SspNNGP
4. GpGp

1. No

|3. laGP, |I
deepGP,
quack

No 1. No
2. stcop

Yes

Yes




8 | laGP

Gaussian Process

For an N-dimensional random vector x, x~ MVN(pu, ¥)

We can partition the vector

Xq . .
X = (Iz) with sizes

Similarly

((N {i}{q; X 1)

gx1

with sizes ((N —q)x1

ik
5 (111 111)
}.El }.-EE

The conditional distribution is: x;|x,~ MVN(H, )

where = puq + %

((N —Ei q

qx(N—q)
(N q):-s:{N

e

(x; —pp) and =23, — Iy,

—19
222 F

L=

In laGP, X is a standard squared-
exponential distance function with
possible tuning using a scale and/or
nugget

)

Matrix inversion: 0(n?) I

The laGP package solves the matrix inversion problem by introducing sparsity into the
covariance matrix, using a nearest-neighbor approach.




o | LatticeKrig

« Spatial process is the sum of radial basis functions

« Constructed using a Wendland compactly-supported correlation function

* Nodes arranged on a rectangular grid
« Coefficients on basis functions are assumed to be correlated

« Distributed according to a Gaussian Markov random field (covariance also Wendland)
« Linear model fit using least squares, then basis functions fit to the residuals

y=Xd+ dc+ e y: observations

- m X: matrix of locations, covariates
d: vector of coefficients for the linear model
g(s) = Z (pk(.';)a;{ + Z ,(8)C;,  @: matrix of radial basis functions
= — (evaluated at data points)
c: vector of coefficients on the basis functions
e: measurement error
g(s): true process

The LatticeKrig package solves the matrix inversion problem by introducing sparsity using
basis functions and covariance functions that are nonzero only on a compact interval




|laGP

IGRA: January 1, 1990

e
P imet L I .

Predicted Mean Prediction Error




ERAS Reanalysis Data: Jan 1, 1990

| laGP Boostrap
Experiment

ERAS5, TOVS, IGRA
New Mexico Jan 1, 1990

33 o
ckefowodomalonweatomaloaafomalone
SR R Al D S I I BN

L il S Sl D el S Sl e
B S B R S B N R Bootstrap procedure:
S B S BV B B B 280 1) Calculate variance of ERAS reanalysis data in 1-deg grid

E B | A AR AN I S 270 square

O R S SR S SO SRS S S 2) Sample from a Normal
P O S S SRS SIS S 0 * mean = TOVS/IGRA obs
 var=ERA5var
DU | A S S ) D S | 3) Create 199 bootstrap samples, plus one with obs values (200
S S S S el S S S S total dfs)

Sl I D | (i it i Sl S S S S 4) Each bootstrap dataset modeled using laGP
:f:::f!:::f:::f:::f:::::::f:::::: « Each model takes about 11 min using 46 cores: ~ 36 hrs

total

110 -108 106 104 -102 5) Calculate variance across 200 predicted means for each grid
longitude cell



Histogram of standard deviations
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laGP Pred errors
Min: 0.461

1st Q: 1.032
Median: 1.595

4 * median = 6.38

Mean: 2.097
3rdQ: 2.830
Max: 13.102

ERAS5 SDs

Min: 0.005

1st Q: 0.130
Median: 0.250

4 * median = 1.00

Mean: 0.529
3rdQ: 0.576
Max: 11.074

Bootstrap Pred errors
Min: 9.113

1st Q: 12.752
Median: 12.910

4 * median = 51.64

Mean: 12.805

3rdQ: 12.966

Max: 16.667




13 I Comparison of Interpolators

Predictions from laGP using TOVS data Predictions from LatticeKrig using TOVS data

system.time() system.time()
user system elapsed user system elapsed
8142.075 0.972 230.416 96.272 2.957 99.448



12 1 Model Uncertainty

Prediction error from laGP Prediction error from LatticeKrig

I i
I: I
Min: 0.4779 Min: 0.393
1st Quart: 1.017 15t Quart: 0.570
Median: 1.539 Median: 0.677
Mean: 2.002 Mean: 0.995
3rd Quart: 2.685 3rd Quart: 0.930

Max: 12.57 Max: 9.38



s | LatticeKrig predictions, 1990

Dhate: 129290-01-01

termue ()
S=0

Daily model runs in ~6-7 min
Jan 1, 1990 - June 30, 1993: 6.5 days




« INLA: Approximate Bayesian inference in a latent Gaussian model
 LaPlace approximations for posterior marginals

« Numerical algorithms for sparse matrices

« SPDE: the continuously indexed Gaussian field S(x) is represented as a
discretely indexed Gaussian Markov random field (GMRF) using basis
functions y

 Basis functions defined on a triangulation of ‘ P‘wﬂ‘ “

the region 4

. i 'My 17
S(x) = ;%(‘”) g « ‘» ‘“‘%ﬁ

- Matérn covariance for Ga_ussian field S ‘) 4’ "(' Pw"

16 I INLA ml
!
UBRES |




7 1INLA

S(x) Lig 1 Aag | A
. . X) = 702 T 93
Point Observations: AT A A
« Weighted average at the vertices of
the triangle containing the point.

» Weights = barycentric coordinates

T

Areal Observations: o =%QEESH %’ ')"A‘:’ $3
o T of OV
o Weig%\ts = (number of vertices in area) }“’@"g&'{;{i‘zﬁk i |

Wiy |
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A is a projection matrix that maps the GMRF from the observations (rows) to the

triangulation nodes (columns).

 Point observation

1 point

g=1
0 0 1
2 20
1 1 1
m m m

areal

« Up to 3 non-zero values at the columns that represent the vertices of the triangle

containing the point
* Value is barycentric coordinates

 Areal observation:

« Non-zero values at the m vertices inside the area

« Valueis 1/m



INLA Simulations: Areal data

True Simulated Field:
« 100 x 200 = 20,000 points

Areal data blocks:

* 10 x 20 (each block 100 values)
_» 32x64 (each block 9-16 values)
I * 90 x 180 (each block 1-4 values)

Prediction Error: Standard deviation of .
posterior predictive distribution « COSP: we want prediction error to be larger

when treating areal data properly than when
treating it as point data

RMSE: J PN S(xl) S(xl))  Difference between the two should disappear as
the resolution becomes finer




| INLA Simulation Results: Areal data

Constrained refined Delaunay triangulation

Median Prediction Error e L A
Areal Point Point
Areal blocks (fine mesh) | (fine mesh) | (coarse mesh)
10 x 20 (coarsest) 0.115 0.099 0.006
32 x 64 0.031 0.028 0.034
90 x 180 (finest) 0.0018 0.0016 0.0138
RMSE Constrained refined Delaunay triangulation
Areal Point Point £ u%?/lK\a . xﬁ@\' &
Areal blocks (fine mesh) | (fine mesh) | (coarse mesh) A 5-2,’53#““‘%“"%‘“"‘%"} S
10 x 20 (coarsest) 0.128 0.142 0.164 ?ﬁﬁ e ;—
32 x 64 0.078 0.051 0.094 s AN AN AT A AR A AT A
P W’“{;‘f‘fﬁ%ﬁ}&%? :
90 x 180 (finest) 0.0261 0.0260 0.0759

Coarse Mesh



INLA Model Results: Observational Data

Prediction Error: Fine Mesh Prediction Error: As Aerial Data

i i
= 1 |
Model |Min |19Q |Median |4*Median |Mean |37Q |Max |Time
o - Coarse mesh 0.218 0.328 0.399 1.596 0.529 0.529 9.590 41 sec
% Medium mesh 0.321 0.502 0.629 2.516 0.878 0.886 11.452 50 sec
< 71 Fine mesh 0.395 0.589 0.745 2.982 1.069 1.063 14.744 156 sec
& _ Mesh size 1 0.398 0.446 0.842 3.367 2.091 2.320 38.744 57 min
As aerial 0.407 0.511 0.782 3.127 1.345 1.469 20.593 44 min




»» | Conclusions

 Interpolators:
* Prediction error is too small
* Results from bootstrap using reanalysis aren't useful
- LatticeKrig vs. laGP

Better quantitative results
Better qualitative results
Faster

« LatticeKrig: 3.5 years of data in ~6.5 days

* INLA
« Handles change-of-support

* Running areal data appropriately probably takes too long
3.5 years of data in ~1 month

* Run as point data with fine mesh is a good approximation
3.5 years of data in <3 days




>3 | Challenges and Next Steps

AOD data: Jan 1990 ,
e s o g o o Data: 0.1-degree resolution
_ S ) averaged into 1-degree blocks
g \ s Model: 1-degree resolution
time: ~ 1 min
Predictions: 1-degree resolution
time: ~ 4 seconds
N T E- Prediction error: 200 bootstrap samples
Ly - | N time: ~ 25 min

Prediction error
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