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Finite Element Analysis and Material Models

FEA to analyze stress and strain Material behavior like hardening and yield Experiments needed to determine
that cannot be analytically studied dictated by material model parameters material parameters
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Experimentation and Calibration of Material Models using Full-Field Methods

Background: | “Complex Geometry” | | “Complex Loading” |

More advanced calibration techniques (Pierron
2023) are gaining popularity because:

« Boundary conditions can be measured
« The measurement data is richer

“Inverse ldentification”
- Finite Element Model Updating
- Virtual Fields Method

« Complex stress states can be achieved

VI

« Experimental parameter space is wider

Problem:

« Errors in the experiment,
measurements, and model
assumptions

TR

Goal:
« Study the role of these errors in the
parameter identification

“Full-Field Measurements”
- Digital Image Correlation




Finite Element Model Updating (FEMU)

Uncalibrated FEA DIC Calibrated FEA
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FEMU Cost Function
q...: Experimentally measure quantity, e.g. displacement/strain

— mln—Z Ne qC(P) q.: the FEA computed quantity

N.: number of total sample points
Solved via Gauss-Newton method (F. Mathieu et al. 2015) p: the material model parameter vector
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Error Sources and Considerations (Presenting initial results)
Experimental/Metrological (Other things to consider)

* DIC filtering biases

* Misalignment between DIC and FE model
* Non-ideal boundary conditions

* DIC errors such as image noise, pattern-induced bias, subpixel
interpolation bias whose effects are small on calibration (Fayad 2022)

Model Form Error

* Assumptions of Plane Stress (Future work)
 Selection of Empirical Models (Future work)
Inverse Technigue

* Choice of Cost Function quantities for the Inverse Method (Future work)
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Experimental/Metrological
e =>DIC filtering biases &
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Factors affecting spatial resolution: FEA and DIC

FEA is mainly affected by element size

Mesh with N = 5,202 elements

Median Element Size 0.01 mm?
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DIC is affected by the subset size and virtual strain gage size
EW (mm/mm)

Y-location (mm)

X-location (mm)

Fayad, S. S., et al. Exp.
Mech. (2022): 1-18.
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Direct-levelling procedure for 2D DIC Steps:
1. Apply DIC grid to the FEA.
FEA Displacement
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Direct-levelling procedure for 2D DIC Steps:
1. Apply DIC grid to the FEA.

FEA Displacement 2. Interpolate the FEA nodal
displacement to the image pixel
locations for each subset.

3. Fit DIC subset shape function e.g.
affine, quadratic to estimate the
DIC-filtered displacement

DIC Step Size

Subset Center
i [ lDic Subset
e FE Node

® Pixel Coord

Representative DIC Subset Size

Zoomed-in region
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Direct-levelling procedure for 2D DIC Steps:
1. Apply DIC grid to the FEA.

FEA Displacement 2. Interpolate the FEA nodal
displacement to the image pixel
locations for each subset.

3. Apply DIC subset shape function
e.g. affine, quadratic

4. Apply the DIC strain shape
function to the subset
displacements within the VSG

DIC Step Size

Subset Center
L :i:-':ff-‘:":’:;:" nDIC Subset
® FE Node

® Pixel Coord

O vsG

Representative DIC Subset Size

Zoomed-in region

The work done by [Lava et al. 2020] accounts
for some image-based errors in stereo DIC
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Experimental/Metrological
* DIC filtering biases—> Levelling the FE Model
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Levelling example using synthetic “experimental” data

Material hardening is given by the

(32. 9.00 _._(b) power law:
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~ oy, = 09 + B(EP)"
2.00 = =~ o :
= 400
(7))
§ — -~ Spec. A
e I T I Spec‘ B
} / % 200 —-—-- Spec.C
1.00 —_l_/ | 2 Nonlinear Fit
&\ =
O I 1 1
R6.43 J 0 0.02 0.04 0.06
Equiv Strain (mm/mm)
5202 CPS4 element plane-stress Ground Truth 200 0.29 1,070  0.645
FE model Initial Guess  N/A (fixed)  N/A (fixed) 305 1,180 0.581

*Ground-truth parameters provide a baseline to measure identification accuracy
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FEMU Analysis using Synthetic DIC Data

(a)
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Synthetically generated images from
(BSpeckleRender Blaysat, B. 2018)

DIC Shape Criterion | Image
Software Function Interpolant
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Experimental

* >Misalignhment between DIC and FE model&
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Calibration Error Source: Misalignment Between DIC and FEA

Typical point cloud alignment algorithm:

T* = argmin[Xp;cT — Xpgal? (Stander 2017) O . Lens Distortion
T R S S R
X: Point cloud locations
T: Transformation matrix
5L
.
> E
Misalignment due to: ::
- Poor registration method
- Lens distortion ST Dropped points
- Lack of DIC data near edges :
- Imprecise fiducial marking
qolteet it et
-5 0 5
X (mm)

Step size of 5 pixels or 0.0408
mm, misalignment could be
similar order of magnitude
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|dentification Error Magnitude due to Misalignment
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Fiducial markings for better alignment of DIC data to FE model

CamO Image

B X 1

Vicker’s microhardness
machine with micrometer
translation stages
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Similar pattern
recovered in both
cameras
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Experimental/Metrological

* = Non-ideal boundary conditions¢
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Non-ldeal Boundary Conditions in Validation Studies

Experiment Modeling and Validation
= TR von Mises von Mises
* Experimental Ideal BCs Exp BCs
Wedge Specimen
s _
Uniaxial extension of a
tensile specimen with a
blind hole Asymmetric grip Asymmetry not Asymmetry captured

(EMC Jones et al. 2018) behavior replicated by FEA by FEA




Using Experimentally measured BCs in FEA
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Using Expenmentally vs |deal BCs in FEA

X (p) = Zﬂexp[ exp EFEA(p)] + = (Fexp FFEA(p))2

+ ExpBCs \ } \ Y }
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Summary

* DIC filtering biases - Levelling the FE Model
* Misalignment between DIC and FE model - Fiducials

* Non-ideal boundary conditions - Experimentally measured BCs

Future Work

Calibration using hourglass

Validation specimen
specimen
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4000 i‘x TN S A R T S R O T P S T

— 0.3

Validation test series of a complex
geometry
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3500
Experimental set-up at the University of lllinois
Quantitative assessment of various |

error sources using FEMU and DIC
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