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4 Energy Exascale Earth System Model (E3SM) Land Component

The Land Model (ELM) Component of the Energy Exascale Earth System Model (E3SM) is
increasingly complex with many processes

Large ensembles are needed for uncertainty quantification are not computationally infeasible

Focus on surrogate models that exploit model structure to increase the efficiency of sensitivity
analysis and model calibration studies



5 Cheaper Surrogates are Necessary for UQ Assessments
Requirements:

expressivity with a limited number of parameters
once constructed surrogate models need to be computationaly cheap analyses often
requiring O(106) evaluations with limited computational resources

Functional Approximations:
tensor-product basis approximations
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N1∑
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the curse of dimensionality O(N d) typically limits the polynomial order/no. of
functions
. . . this places limits on the surrogate model capacity to adapt to non-linear
behavior

Instead focus on low-rank functional tensor network models
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6 Functional Tensor-Train Models
Analogous to tensor-train models [Oseledets, 2013]: approximate multivariate functions instead of
multidimensional arrays
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
Model evaluation/gradient computation consists of a sequence of matrix-vector
multiplications

A.A. Gorodetsky, J.D. Jakeman, doi:10.1016/j.jcp.2018.08.010 (2018)



7 Tensor Models can have Arbitrary Network Structure

Increased flexibility to represent model structure
Example: a hierarchical Tucker format for a 5-dimensional model
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V(k) represent tensor cores constructed
with univariate functions in λk .

G(i) represent tensor cores with scalar
elements (constant functions).



8 Functional Tensor Networks – Definitions
A tensor contraction is a binary operation on two tensors A ∈ RI1×...×IdA and
B ∈ RJ1×...×JdB yielding a tensor C.

C = A Γ×Υ B

The operation is parameterized by two index sets, Γ = {γ1, . . . , γ`} and
Υ = {η1, . . . , η`}, satisfying certain conditions; after permuting the modes so that the
contracting dimensions are first

cj1,...,jdA−`,k1,...,kdB−`
=

Iγ1∑
γ1=1

· · ·
Iγ∑̀
γ`=1

ãγ1,...,γ`,j1,...,jdA−`
b̃γ1,...,γ`,k1,...,kdB−`

,

with C having order dA + dB − 2`.
Example: Matrix-Matrix multiplication

cj,k =

Iγ∑
γ1=1

ãγ,jbγ,k



9 Functional Tensor Networks – Definitions
A tensor network is a connected graph

T N = (V ,E)

each vertex V(i) ∈ V is a tensor of order d(i)

the set of edges E denote contractions
An edge E(ij) from vertex V(i) to vertex
V(j) is a pair of multi-indices
E(ij) = {~i,~j} and denotes the
contraction

V(i)
~i×~j V(j).
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Here, V = {V(0),V(1), . . . ,G(0),G(1), . . .}

Full tensor network contraction consists of a set of recursive pairwise contractions until all
edges are exhausted.
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11 Functional Tensor Networks – Other Topologies
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11 Functional Tensor Networks – Other Topologies
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11 Functional Tensor Networks – Other Topologies
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11 Functional Tensor Networks – Other Topologies
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11 Functional Tensor Networks – Other Topologies
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11 Functional Tensor Networks – Other Topologies
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11 Functional Tensor Networks – Other Topologies
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12 Functional Representations – Univariate Functions

Linear Representations (e.g. polynomial chaos expansions)

f (k)ij (λk(ξk);θ
(k)
ij ) =

pk∑
l=0

θ
(k)
ijl Ψ

(k)
l (ξk)

Non-Linear Representations (e.g. radial basis functions)

f (ij)k (λk ;θ
(ij)
k ) =

pk∑
l=0

θ
(ij)
k,l,1 exp(−θ
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13 Functional Tensor Networks – Evaluate (Conditional) Statistics

Each tensor core consists of scalars or univariate functions therefore contractions and integrals
commute

Expectation
E[T N ] = (E[V],E)

where E[V] , {Eλ0 [V
(0)],Eλ1 [V

(1)], . . .}
For univariate functions given by polynomial chaos expansions, the elements of a 2D tensor
Eλk [V

(k)] are given by

Eλk [V
(k)(λk ;θk)] =


θ
(k)
110 θ

(k)
120 . . . θ

(k)
1 rk0

θ
(k)
210 θ

(k)
220 . . . θ

(k)
2 rk0

...
...

. . .
...

θ
(k)
rk−110 θ

(k)
rk−120 . . . θ

(k)
rk−1rk0


Conditional expectations Ei [T N ] require marginalization over subset i of the set of tensor
cores, e.g.

E1[V] , {V(0),Eλ1 [V
(1)],V(2), . . .}

R. Ballester-Ripoll et al, “Sobol tensor trains for global sensitivity analysis”, Reliability Engineering &
System Safety 183 (2019): 311-322.



14 Functional Tensor Networks – Evaluate (Conditional) Statistics

Variance

V[T N ] = E[(T N )2]− E[T N ]2

The first term can be written as

E[(T N )2] =
(
E[Ṽ],E

)
where E[Ṽ] , {Eλ0 [V

(0) ⊗ V(0)],Eλ1 [V
(1) ⊗ V(1)], . . .}

For univariate functions given by polynomial chaos expansions, the elements
of a 2D tensor Eλk [V

(k) ⊗ V(k)] are given by

pk∑
l=0

θ
(k)
i1j1lθ

(k)
i2j2l〈Ψ

(k)
l (ξk)

2〉



15 Functional Tensor Networks – Sobol Indices

Law of Total Variance

V[T N ] = Vi [E\i [T N ]] + Ei [V\i [T N ]]

after normalization

1 =
Vi [E\i [T N ]]

V[T N ]︸ ︷︷ ︸
Si

+
Ei [V\i [T N ]]

V[T N ]︸ ︷︷ ︸
ST
\i

First order Si and total order ST
i = 1− S\i are computed using tensor network

algebra described on previous slides.
Joint sensitivity indices are evaluated through a similar approach

Sij =
Vi,j [E\i,j [T N ]]

V[T N ]
− Si − Sj



16 ELM Data Simulations Corresponding to Select Observation sites

200 runs corresponding to uniformly randomly sampled parameters over a
10D parameter space

160 training runs/40 validations runs
8-fold cross validation over 160 training runs



17 Functional Tensor Network Models – Training

Data split into 160 training runs / 40 validations runs
Non-linear least squares with 8-fold cross validation over the training runs
Univariate functions represented as polynomial expansions based on Legendre
polynomials

Cross-validation to pick optimum regularization parameter, tensor rank, and
polynomial order

θ∗ = argmin
θ

(
1
2

N∑
i=1

(
f (λ(i); θ)− y(i)

)2
+ α||θ||22

)

Quality of fit assessed via mean-squared error (MSE)

MSE =
1
N

N∑
i=1

(
f (λ(i); θ∗)− y(i)

)2



18 ELM Fit Results – FTN Models (in Hierarchical Tucker Format)

Site US-Ha1/June: Validation mean-squared error for Hierarchical Tucker models
compared to Tensor Train models



19 ELM Fit Results – FTN Models (in Hierarchical Tucker Format)



20 ELM Results: Variance-based GSA

fnlr (fraction of N in RuBisCO CO2 conversion process)
mbbopt (stomatal conductance slope net CO2 flux)
vcmaxse (entropy for photosynthetic parameters)
dayl_scaling (day length scaling parameter)



21 Closure

Extended functional tensor train models to accommodate generic tensor network
configurations

Expanded flexibility in capturing the structure of the original model
Efficient gradient computations through tensor network contractions
Alex Gorodetsky, CS, John Jakeman (2021) https://tinyurl.com/2p92thbn

Functional tensor network models constructed via ridge regression are in good
agreement with validation data for the driver application

Global Sensitivity Analysis results match subject matter expertise given the
training runs available for this study

Next steps: account for spatio-temporal dependencies and model calibration in a
Bayesian setting.

https://tinyurl.com/2p92thbn
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