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4 | Energy Exascale Earth System Model (E3SM) Land Component

m The Land Model (ELM) Component of the Energy Exascale Earth System Model (E3SM) is

increasingly complex with many processes

B Large ensembles are needed for uncertainty quantification are not computationally infeasible

B Focus on surrogate models that exploit model structure to increase the efficiency of sensitivity

analysis and model calibration studies



5 | Cheaper Surrogates are Necessary for UQ Assessments

Requirements:
m expressivity with a limited number of parameters

m once constructed surrogate models need to be computationaly cheap analyses often
requiring O(10°%) evaluations with limited computational resources
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Functional Approximations:

® tensor-product basis approximations
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m the curse of dimensionality O(N¢) typically limits the polynomial order/no. of
functions
.. this places limits on the surrogate model capacity to adapt to non-linear
behavior

m Instead focus on low-rank functional tensor network models




6| Functional Tensor-Train Models

Analogous to tensor-train models [Oseledets, 2013]: approximate multivariate functions instead of

multidimensional arrays
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m Model evaluation/gradient computation consists of a sequence of matrix-vector
multiplications
B A.A. Gorodetsky, J.D. Jakeman, doi:10.1016/j.jcp.2018.08.010 (2018)




7 I Tensor Models can have Arbitrary Network Structure ﬂ

m Increased flexibility to represent model structure

m Example: a hierarchical Tucker format for a 5-dimensional model

m V) represent tensor cores constructed
with univariate functions in Ag.

m 5 represent tensor cores with scalar
elements (constant functions).
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Functional Tensor Networks — Definitions

A tensor contraction is a binary operation on two tensors A € R/t *>*144 and

B € R/1**Ja5 yielding a tensor €.

m The operation is parameterized by two index sets, I' = {v1,...,7/} and
Y ={n1,...,ne}, satisfying certain conditions; after permuting the modes so that the
contracting dimensions are first
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with € having order d4 + dp — 2/.

Example: Matrix-Matrix multiplication
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9 | Functional Tensor Networks — Definitions
A tensor network is a connected graph
TN =(V,E)

m each vertex V(¥ € V is a tensor of order d(9

m the set of edges F denote contractions

-
m An edge E() from vertex V() to vertex TN 2N
V) is a pair of multi-indices {u {u }
EU) = {77} and denotes the e :

contraction S v

YO

Here, V = {V©@ v gO ¢ 1

Full tensor network contraction consists of a set of recursive pairwise contractions until all
edges are exhausted.




10 I Functional Tensor Networks — Topologies

A tensor network is a connected graph

TN =(V,E)
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11 | Functional Tensor Networks — Other Topologies

T4

Full tensor network contraction consists of a set of recursive pairwise contractions until
one vertex is left
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11 I Functional Tensor Networks — Other Topologies

P(01243)

T4

Full tensor network contraction consists of a set of recursive pairwise contractions until
one vertex is left




12 I Functional Representations — Univariate Functions

Linear Representations (e.g. polynomial chaos expansions)

k
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Non-Linear Representations (e.g. radial basis functions)
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12 I Functional Representations — Univariate Functions

Linear Representations (e.g. polynomial chaos expansions)
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Non-Linear Representations (e.g. radial basis functions)
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13 I Functional Tensor Networks — Evaluate (Conditional) Statistics

Each tensor core consists of scalars or univariate functions therefore contractions and integrals
commute

Expectation

(E[TNM] = (EV], E))
where E[V] £ {Ex, [V©],Ex, [VY],...}

B For univariate functions given by polynomial chaos expansions, the elements of a 2D tensor

Ex, [V®] are given by
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B Conditional expectations E;[TN] require marginalization over subset ¢ of the set of tensor

cores, e.g.

E V] 2 (VO E, [vV],v® .}



14 I Functional Tensor Networks — Evaluate (Conditional) Statistics

Variance

(VITAT = TN —E[TAT)

The first term can be written as
(E(TN)?] = (EV], E) )

where E[V] £ {E,,[V(® @ VO], E,, [V) @ VD], ..}
m For univariate functions given by polynomial chaos expansions, the elements
of a 2D tensor Ey, [V*) @ V()] are given by
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15 I Functional Tensor Networks — Sobol Indices

Law of Total Variance

VITN] = Vi[E\[TN]] + Ei[V\;[TN]]
after normalization
- VilEy[TN] N Eq[V\;[TN]]
V[T N] VI[TN]

Si S\7;

m First order S; and total order S/ =1 — S\; are computed using tensor network
algebra described on previous slides.
m Joint sensitivity indices are evaluated through a similar approach
g — Vi [Evig[TNV] S _ g
K V[TN] o




16 | ELM Data Simulations Corresponding to Select Observation sites

Harvard Forest EMS Tower U. of Michigan Biological Station Walker Branch Watershed
o US-Hal - monthly averages US-UMB - monthly averages US-WBW - monthly averages
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m 200 runs corresponding to uniformly randomly sampled parameters over a
10D parameter space
m 160 training runs/40 validations runs
m 8-fold cross validation over 160 training runs




17 I Functional Tensor Network Models — Training

m Data split into 160 training runs / 40 validations runs

m Non-linear least squares with 8-fold cross validation over the training runs

m Univariate functions represented as polynomial expansions based on Legendre
polynomials

m Cross-validation to pick optimum regularization parameter, tensor rank, and
polynomial order
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m Quality of fit assessed via mean-squared error (MSE)
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18 I ELM Fit Results — FTN Models (in Hierarchical Tucker Format)

Tensor rank Tensor rank

r=2 r=3 r=4 r=2 r=3 r=4
5 o=1; 0.043 0.045 0.045 o=1| 0.082 0.085 0.085
o
A
S
B
£ 0=2| 0.027 0=2
s}
c
=

0=3 0.027 0=3, 0.053 0.053 0.053
Hierarchical Tucker Format Tensor Train Format

Site US-Hal/June: Validation mean-squared error for Hierarchical Tucker models
compared to Tensor Train models




19 | ELM Fit Results — FTN Models (in Hierarchical Tucker Format)

US-UMB Us-wew

Tensor rank

r=2 r=3 r=4

FTN Model
FTN Model

o=1{ 0.043 0.045 0.045

o=2 {01027

FTN Model

Polynomial order
FTN Model

o=3{ 0.027

317
3 2 -1 0 1 2
ELM

" ) —— idation data d and i by
Site US-Ha1/June: Validation MSE the monthly standard deviation




20 | ELM Results: Variance-based GSA

Main Effect Sobol Index Total Effect Sobol Index
5, = VarE(GAN) o _y_ VarB( AN
Var[f(X)] ’ Var[f(N)]
m
S | & | & [ &8 | & & | &
flnr 0.70 0.72 0.80 0.83 0.84 0.86 0.76 0.77
mbbopt 0.01 0.02 0.09 0.13 0.04 0.06 0.02 0.02
vcmaxse 0.13 0.15 0.02 0.02 O 0 0.02 0.02
dayl_scaling 0.06 0.07 0 0 0.04 0.05 0.14 0.14

m fnlr (fraction of N in RuBisCO CO2 conversion process)
m mbbopt (stomatal conductance slope net CO2 flux)

m vcmaxse (entropy for photosynthetic parameters)




21 I Closure

m Extended functional tensor train models to accommodate generic tensor network
configurations

m Expanded flexibility in capturing the structure of the original model
m Efficient gradient computations through tensor network contractions
m Alex Gorodetsky, CS, John Jakeman (2021) https://tinyurl.com/2p92thbn

m Functional tensor network models constructed via ridge regression are in good
agreement with validation data for the driver application
m Global Sensitivity Analysis results match subject matter expertise given the

training runs available for this study

m Next steps: account for spatio-temporal dependencies and model calibration in a
Bayesian setting.
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	Science Driver
	UQ via Surrogates
	Functional Tensor Networks (FTN) – Definitions
	FTNs – Examples
	FTN – Variance-based Global Sensitivity Analysis

	Application - ELM
	Data
	Model Fit

	Global Sensitivity Analysis
	Summary

