

National
Laboratories

Expressive Surrogate Models via Functional Tensor Networks

COUPLED 2023
June 5-7, 2023

Presented by:

Cosmin Safta

2 Acknowledgement

- Alex Gorodetsky, Nick Galioto (University of Michigan)
- Khachik Sargsyan, John Jakeman (Sandia National Laboratories)
- Daniel Ricciuto (Oak Ridge National Laboratory)

This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Scientific Discovery through Advanced Computing (SciDAC) Program through the FASTMath Institute. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. This presentation describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the presentation do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Science Driver

UQ via Surrogates

Functional Tensor Networks (FTN) – Definitions

FTNs – Examples

FTN – Variance-based Global Sensitivity Analysis

Application - ELM

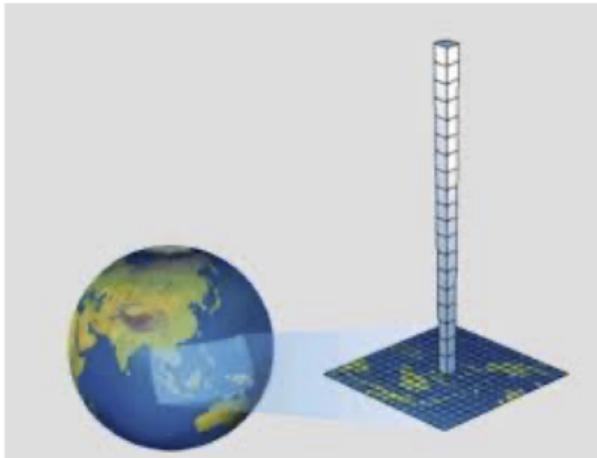
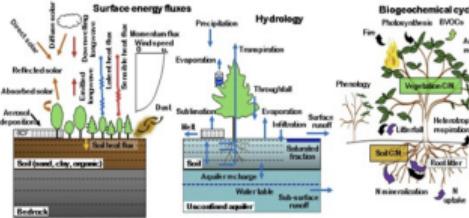
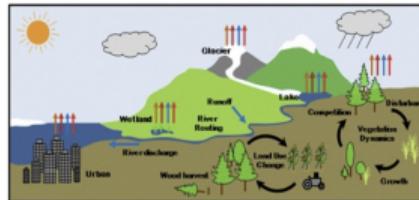
Data

Model Fit

Global Sensitivity Analysis

Summary

Energy Exascale Earth System Model (E3SM) Land Component



- The Land Model (ELM) Component of the Energy Exascale Earth System Model (E3SM) is increasingly complex with many processes
 - Large ensembles are needed for uncertainty quantification are not computationally infeasible
 - Focus on surrogate models that exploit model structure to increase the efficiency of sensitivity analysis and model calibration studies

Cheaper Surrogates are Necessary for UQ Assessments

Requirements:

- expressivity with a limited number of parameters
- once constructed surrogate models need to be computationally cheap analyses often requiring $O(10^6)$ evaluations with limited computational resources

Cheaper Surrogates are Necessary for UQ Assessments

Requirements:

- expressivity with a limited number of parameters
- once constructed surrogate models need to be computationally cheap analyses often requiring $O(10^6)$ evaluations with limited computational resources

Functional Approximations:

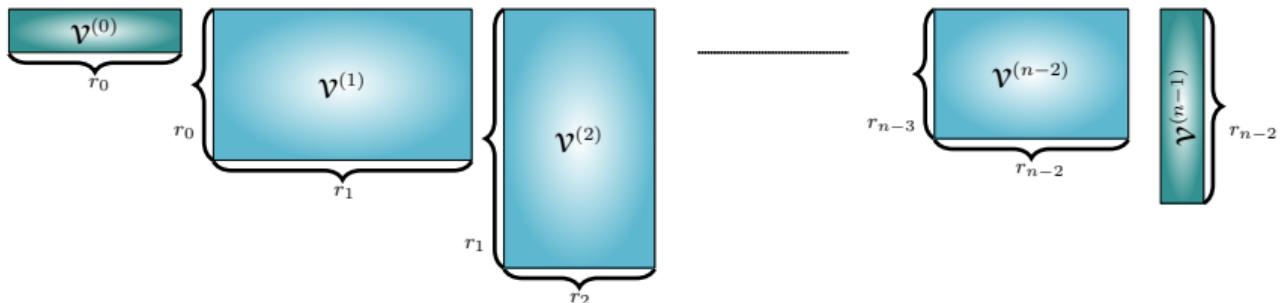
- tensor-product basis approximations

$$f(\boldsymbol{\lambda}) = \sum_{i_1}^{N_1} \sum_{i_2}^{N_2} \dots \sum_{i_d}^{N_d} \phi_1^{(i_1)}(\lambda_1; \boldsymbol{\theta}) \phi_2^{(i_2)}(\lambda_2; \boldsymbol{\theta}) \dots \phi_d^{(i_d)}(\lambda_d; \boldsymbol{\theta})$$

- the curse of dimensionality $O(N^d)$ typically limits the polynomial order/no. of functions
- ... this places limits on the surrogate model capacity to adapt to non-linear behavior
- Instead focus on *low-rank functional tensor network* models

Functional Tensor-Train Models

Analogous to tensor-train models [Oseledets, 2013]: approximate multivariate functions instead of multidimensional arrays

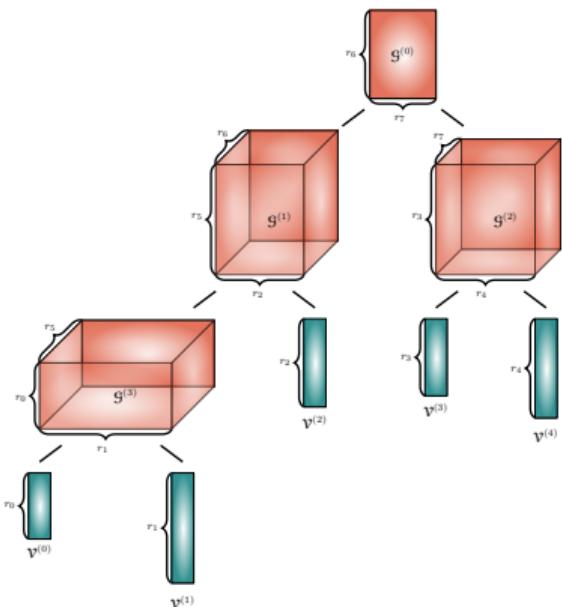


$$v^{(k)}(\lambda_k; \boldsymbol{\theta}_k) = \begin{bmatrix} f_{11}^{(k)}(\lambda_k; \boldsymbol{\theta}_{11}^{(k)}) & f_{12}^{(k)}(\lambda_k; \boldsymbol{\theta}_{12}^{(k)}) & \dots & f_{1r_k}^{(k)}(\lambda_k; \boldsymbol{\theta}_{1r_k}^{(k)}) \\ f_{21}^{(k)}(\lambda_k; \boldsymbol{\theta}_{21}^{(k)}) & f_{22}^{(k)}(\lambda_k; \boldsymbol{\theta}_{22}^{(k)}) & \dots & f_{2r_k}^{(k)}(\lambda_k; \boldsymbol{\theta}_{2r_k}^{(k)}) \\ \vdots & \vdots & \ddots & \vdots \\ f_{r_{k-1}1}^{(k)}(\lambda_k; \boldsymbol{\theta}_{r_{k-1}1}^{(k)}) & f_{r_{k-1}2}^{(k)}(\lambda_k; \boldsymbol{\theta}_{r_{k-1}2}^{(k)}) & \dots & f_{r_{k-1}r_k}^{(k)}(\lambda_k; \boldsymbol{\theta}_{r_{k-1}r_k}^{(k)}) \end{bmatrix}$$

- Model evaluation/gradient computation consists of a sequence of matrix-vector multiplications
 - A.A. Gorodetsky, J.D. Jakeman, doi:10.1016/j.jcp.2018.08.010 (2018)

Tensor Models can have Arbitrary Network Structure

- Increased flexibility to represent model structure
- Example: a hierarchical Tucker format for a 5-dimensional model



- $\mathcal{V}^{(k)}$ represent tensor cores constructed with univariate functions in λ_k .
- $\mathcal{G}^{(i)}$ represent tensor cores with scalar elements (constant functions).

Functional Tensor Networks – Definitions

A tensor contraction is a binary operation on two tensors $\mathcal{A} \in \mathbb{R}^{I_1 \times \dots \times I_{d_A}}$ and $\mathcal{B} \in \mathbb{R}^{J_1 \times \dots \times J_{d_B}}$ yielding a tensor \mathcal{C} .

$$\mathcal{C} = \mathcal{A} \underset{\Gamma \times \Upsilon}{\times} \mathcal{B}$$

- The operation is parameterized by two index sets, $\Gamma = \{\gamma_1, \dots, \gamma_\ell\}$ and $\Upsilon = \{\eta_1, \dots, \eta_\ell\}$, satisfying certain conditions; after permuting the modes so that the contracting dimensions are first

$$c_{j_1, \dots, j_{d_A-\ell}, k_1, \dots, k_{d_B-\ell}} = \sum_{\gamma_1=1}^{I_{\gamma_1}} \dots \sum_{\gamma_\ell=1}^{I_{\gamma_\ell}} \tilde{a}_{\gamma_1, \dots, \gamma_\ell, j_1, \dots, j_{d_A-\ell}} \tilde{b}_{\gamma_1, \dots, \gamma_\ell, k_1, \dots, k_{d_B-\ell}},$$

with \mathcal{C} having order $d_A + d_B - 2\ell$.

Example: Matrix-Matrix multiplication

$$c_{j,k} = \sum_{\gamma_1=1}^{I_\gamma} \tilde{a}_{\gamma, j} b_{\gamma, k}$$

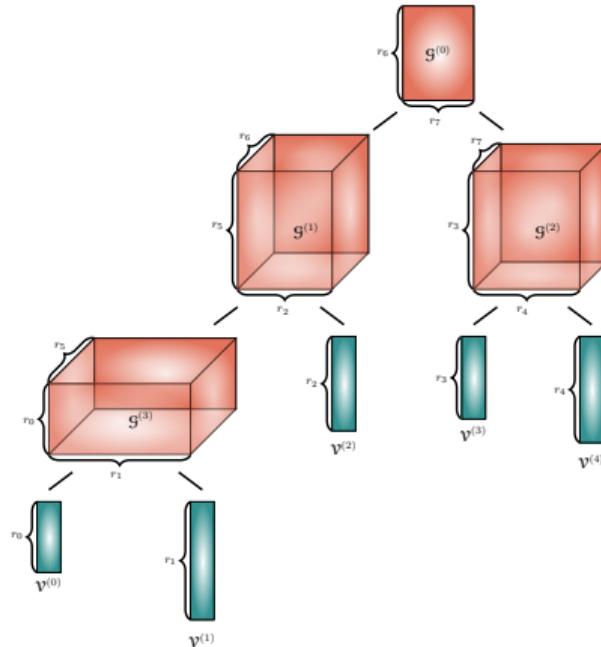
Functional Tensor Networks – Definitions

A tensor network is a connected graph

$$\mathcal{TN} = (V, E)$$

- each vertex $\mathcal{V}^{(i)} \in V$ is a tensor of order $d^{(i)}$
- the set of edges E denote contractions
 - An edge $E^{(ij)}$ from vertex $\mathcal{V}^{(i)}$ to vertex $\mathcal{V}^{(j)}$ is a pair of multi-indices $E^{(ij)} = \{\vec{i}, \vec{j}\}$ and denotes the contraction

$$\mathcal{V}^{(i)} \underset{\vec{i}}{\times} \underset{\vec{j}}{\times} \mathcal{V}^{(j)}.$$



Here, $V = \{\mathcal{V}^{(0)}, \mathcal{V}^{(1)}, \dots, \mathcal{G}^{(0)}, \mathcal{G}^{(1)}, \dots\}$

Full tensor network contraction consists of a set of recursive pairwise contractions until all edges are exhausted.

Functional Tensor Networks – Topologies

A tensor network is a connected graph

$$\mathcal{TN} = (V, E)$$

- each vertex $\mathcal{V}^{(i)} \in V$ is a tensor of order $d^{(i)}$
- the set of edges E denote contractions
 - An edge $E^{(ij)}$ from vertex $\mathcal{V}^{(i)}$ to vertex $\mathcal{V}^{(j)}$ is a pair of multi-indices $E^{(ij)} = \{\vec{i}, \vec{j}\}$ and denotes the contraction

$$\mathcal{V}^{(i)} \underset{\vec{i}}{\times} \underset{\vec{j}}{\times} \mathcal{V}^{(j)}.$$



Full tensor network contraction consists of a set of recursive pairwise contractions until we exhaust all connections

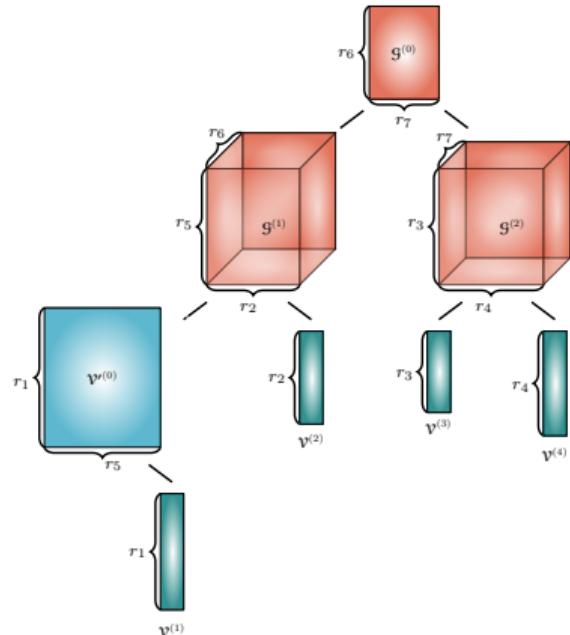
Functional Tensor Networks – Topologies

A tensor network is a connected graph

$$\mathcal{TN} = (V, E)$$

- each vertex $\mathcal{V}^{(i)} \in V$ is a tensor of order $d^{(i)}$
- the set of edges E denote contractions
 - An edge $E^{(ij)}$ from vertex $\mathcal{V}^{(i)}$ to vertex $\mathcal{V}^{(j)}$ is a pair of multi-indices $E^{(ij)} = \{\vec{i}, \vec{j}\}$ and denotes the contraction

$$\mathcal{V}^{(i)} \underset{\vec{i}}{\times} \underset{\vec{j}}{\times} \mathcal{V}^{(j)}.$$



Full tensor network contraction consists of a set of recursive pairwise contractions until we exhaust all connections

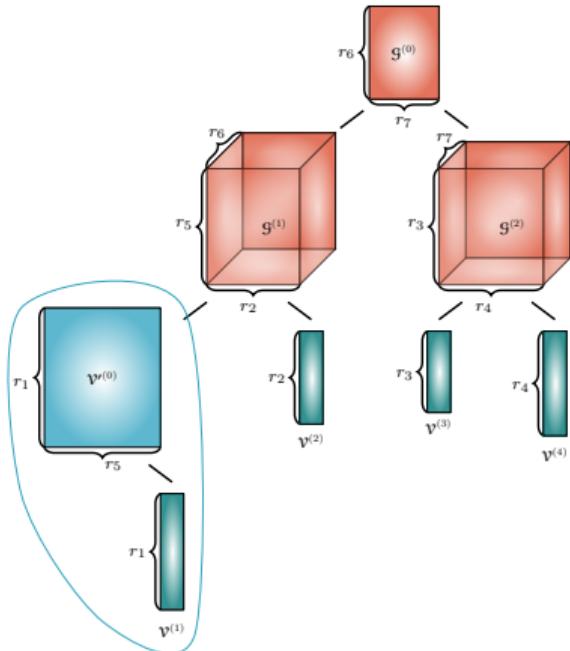
Functional Tensor Networks – Topologies

A tensor network is a connected graph

$$\mathcal{TN} = (V, E)$$

- each vertex $\mathcal{V}^{(i)} \in V$ is a tensor of order $d^{(i)}$
- the set of edges E denote contractions
 - An edge $E^{(ij)}$ from vertex $\mathcal{V}^{(i)}$ to vertex $\mathcal{V}^{(j)}$ is a pair of multi-indices $E^{(ij)} = \{\vec{i}, \vec{j}\}$ and denotes the contraction

$$\mathcal{V}^{(i)} \underset{\vec{i}}{\times} \underset{\vec{j}}{\times} \mathcal{V}^{(j)}.$$



Full tensor network contraction consists of a set of recursive pairwise contractions until we exhaust all connections

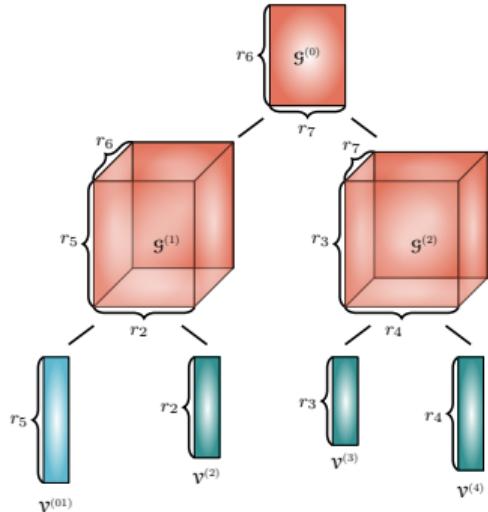
Functional Tensor Networks – Topologies

A tensor network is a connected graph

$$\mathcal{TN} = (V, E)$$

- each vertex $\mathcal{V}^{(i)} \in V$ is a tensor of order $d^{(i)}$
- the set of edges E denote contractions
 - An edge $E^{(ij)}$ from vertex $\mathcal{V}^{(i)}$ to vertex $\mathcal{V}^{(j)}$ is a pair of multi-indices $E^{(ij)} = \{\vec{i}, \vec{j}\}$ and denotes the contraction

$$\mathcal{V}^{(i)} \underset{\vec{i}}{\times} \underset{\vec{j}}{\times} \mathcal{V}^{(j)}.$$



Full tensor network contraction consists of a set of recursive pairwise contractions until we exhaust all connections

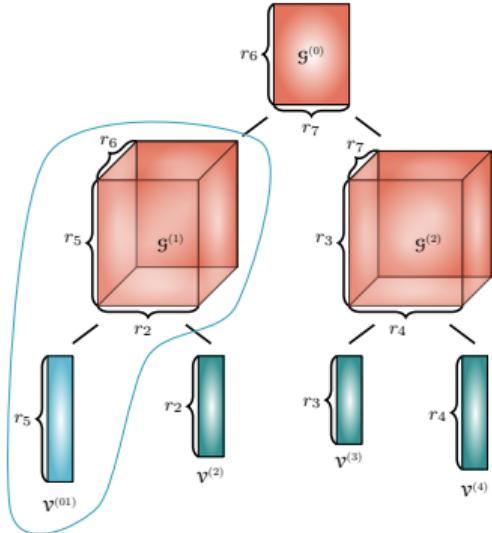
Functional Tensor Networks – Topologies

A tensor network is a connected graph

$$\mathcal{TN} = (V, E)$$

- each vertex $\mathcal{V}^{(i)} \in V$ is a tensor of order $d^{(i)}$
- the set of edges E denote contractions
 - An edge $E^{(ij)}$ from vertex $\mathcal{V}^{(i)}$ to vertex $\mathcal{V}^{(j)}$ is a pair of multi-indices $E^{(ij)} = \{\vec{i}, \vec{j}\}$ and denotes the contraction

$$\mathcal{V}^{(i)} \underset{\vec{i}}{\times} \underset{\vec{j}}{\times} \mathcal{V}^{(j)}.$$



Full tensor network contraction consists of a set of recursive pairwise contractions until we exhaust all connections

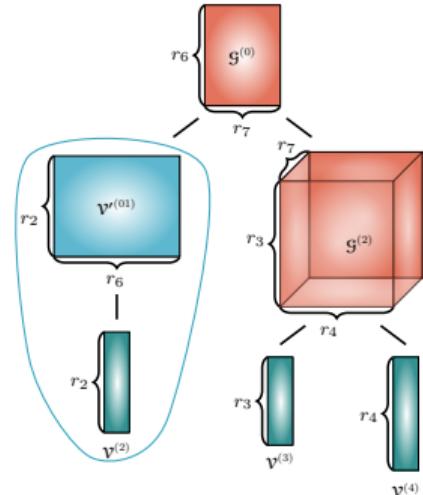
Functional Tensor Networks – Topologies

A tensor network is a connected graph

$$\mathcal{TN} = (V, E)$$

- each vertex $\mathcal{V}^{(i)} \in V$ is a tensor of order $d^{(i)}$
- the set of edges E denote contractions
 - An edge $E^{(ij)}$ from vertex $\mathcal{V}^{(i)}$ to vertex $\mathcal{V}^{(j)}$ is a pair of multi-indices $E^{(ij)} = \{\vec{i}, \vec{j}\}$ and denotes the contraction

$$\mathcal{V}^{(i)} \underset{\vec{i}}{\times} \underset{\vec{j}}{\times} \mathcal{V}^{(j)}.$$



Full tensor network contraction consists of a set of recursive pairwise contractions until we exhaust all connections

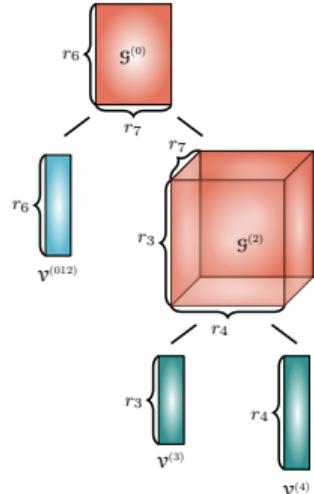
Functional Tensor Networks – Topologies

A tensor network is a connected graph

$$\mathcal{TN} = (V, E)$$

- each vertex $\mathcal{V}^{(i)} \in V$ is a tensor of order $d^{(i)}$
- the set of edges E denote contractions
 - An edge $E^{(ij)}$ from vertex $\mathcal{V}^{(i)}$ to vertex $\mathcal{V}^{(j)}$ is a pair of multi-indices $E^{(ij)} = \{\vec{i}, \vec{j}\}$ and denotes the contraction

$$\mathcal{V}^{(i)} \underset{\vec{i}}{\times} \underset{\vec{j}}{\times} \mathcal{V}^{(j)}.$$



Full tensor network contraction consists of a set of recursive pairwise contractions until we exhaust all connections

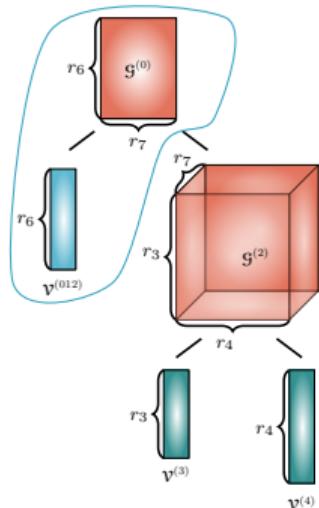
Functional Tensor Networks – Topologies

A tensor network is a connected graph

$$\mathcal{TN} = (V, E)$$

- each vertex $\mathcal{V}^{(i)} \in V$ is a tensor of order $d^{(i)}$
- the set of edges E denote contractions
 - An edge $E^{(ij)}$ from vertex $\mathcal{V}^{(i)}$ to vertex $\mathcal{V}^{(j)}$ is a pair of multi-indices $E^{(ij)} = \{\vec{i}, \vec{j}\}$ and denotes the contraction

$$\mathcal{V}^{(i)} \underset{\vec{i}}{\times} \underset{\vec{j}}{\times} \mathcal{V}^{(j)}.$$



Full tensor network contraction consists of a set of recursive pairwise contractions until we exhaust all connections

Functional Tensor Networks – Topologies

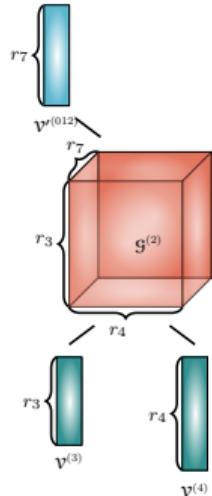
A tensor network is a connected graph

$$\mathcal{TN} = (V, E)$$

- each vertex $\mathcal{V}^{(i)} \in V$ is a tensor of order $d^{(i)}$
- the set of edges E denote contractions
 - An edge $E^{(ij)}$ from vertex $\mathcal{V}^{(i)}$ to vertex $\mathcal{V}^{(j)}$ is a pair of multi-indices $E^{(ij)} = \{\vec{i}, \vec{j}\}$ and denotes the contraction

$$\mathcal{V}^{(i)} \underset{\vec{i}}{\times} \underset{\vec{j}}{\times} \mathcal{V}^{(j)}.$$

Full tensor network contraction consists of a set of recursive pairwise contractions until we exhaust all connections



Functional Tensor Networks – Topologies

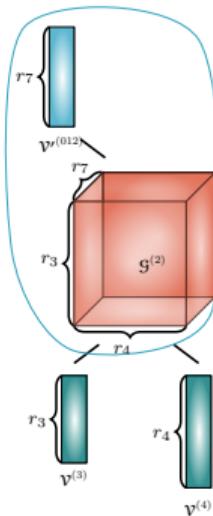
A tensor network is a connected graph

$$\mathcal{TN} = (V, E)$$

- each vertex $\mathcal{V}^{(i)} \in V$ is a tensor of order $d^{(i)}$
- the set of edges E denote contractions
 - An edge $E^{(ij)}$ from vertex $\mathcal{V}^{(i)}$ to vertex $\mathcal{V}^{(j)}$ is a pair of multi-indices $E^{(ij)} = \{\vec{i}, \vec{j}\}$ and denotes the contraction

$$\mathcal{V}^{(i)} \underset{\vec{i}}{\times} \underset{\vec{j}}{\times} \mathcal{V}^{(j)}.$$

Full tensor network contraction consists of a set of recursive pairwise contractions until we exhaust all connections



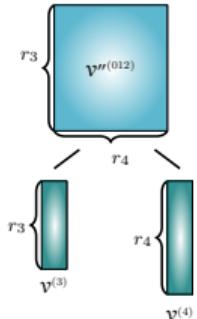
Functional Tensor Networks – Topologies

A tensor network is a connected graph

$$\mathcal{TN} = (V, E)$$

- each vertex $\mathcal{V}^{(i)} \in V$ is a tensor of order $d^{(i)}$
- the set of edges E denote contractions
 - An edge $E^{(ij)}$ from vertex $\mathcal{V}^{(i)}$ to vertex $\mathcal{V}^{(j)}$ is a pair of multi-indices $E^{(ij)} = \{\vec{i}, \vec{j}\}$ and denotes the contraction

$$\mathcal{V}^{(i)} \underset{\vec{i}}{\times} \underset{\vec{j}}{\times} \mathcal{V}^{(j)}.$$



Full tensor network contraction consists of a set of recursive pairwise contractions until we exhaust all connections

Functional Tensor Networks – Topologies

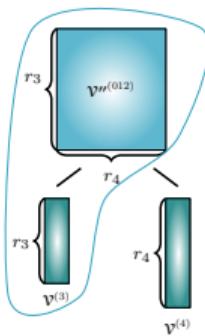
A tensor network is a connected graph

$$\mathcal{TN} = (V, E)$$

- each vertex $\mathcal{V}^{(i)} \in V$ is a tensor of order $d^{(i)}$
- the set of edges E denote contractions
 - An edge $E^{(ij)}$ from vertex $\mathcal{V}^{(i)}$ to vertex $\mathcal{V}^{(j)}$ is a pair of multi-indices $E^{(ij)} = \{\vec{i}, \vec{j}\}$ and denotes the contraction

$$\mathcal{V}^{(i)} \underset{\vec{i}}{\times} \underset{\vec{j}}{\times} \mathcal{V}^{(j)}.$$

Full tensor network contraction consists of a set of recursive pairwise contractions until we exhaust all connections



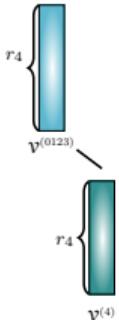
Functional Tensor Networks – Topologies

A tensor network is a connected graph

$$\mathcal{TN} = (V, E)$$

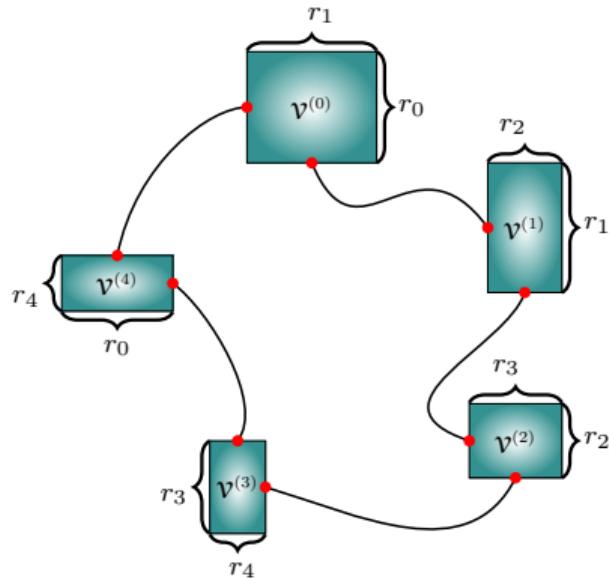
- each vertex $\mathcal{V}^{(i)} \in V$ is a tensor of order $d^{(i)}$
- the set of edges E denote contractions
 - An edge $E^{(ij)}$ from vertex $\mathcal{V}^{(i)}$ to vertex $\mathcal{V}^{(j)}$ is a pair of multi-indices $E^{(ij)} = \{\vec{i}, \vec{j}\}$ and denotes the contraction

$$\mathcal{V}^{(i)} \underset{\vec{i}}{\times} \underset{\vec{j}}{\times} \mathcal{V}^{(j)}.$$



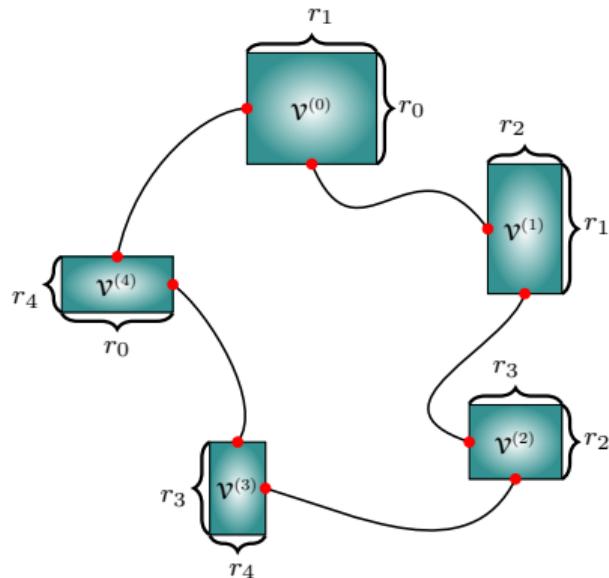
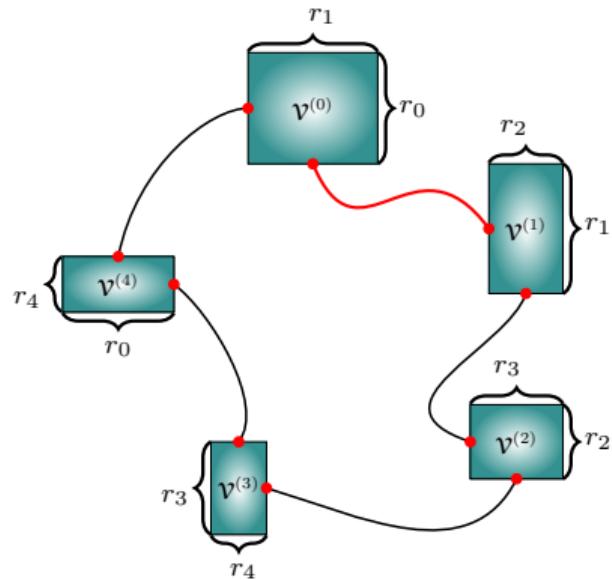
Full tensor network contraction consists of a set of recursive pairwise contractions until we exhaust all connections

Functional Tensor Networks – Other Topologies



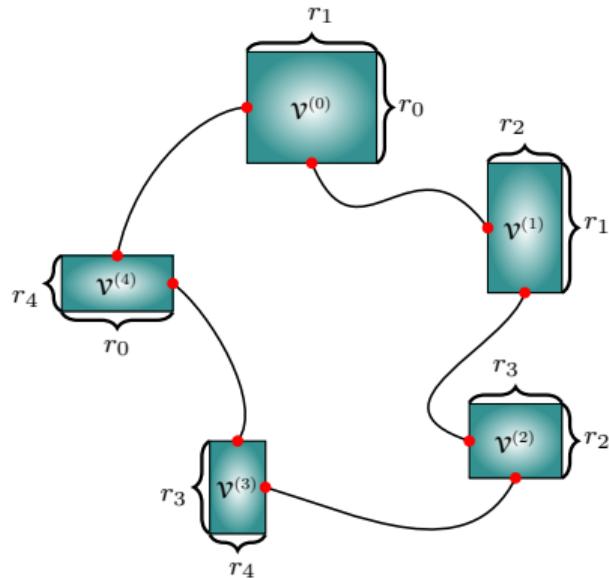
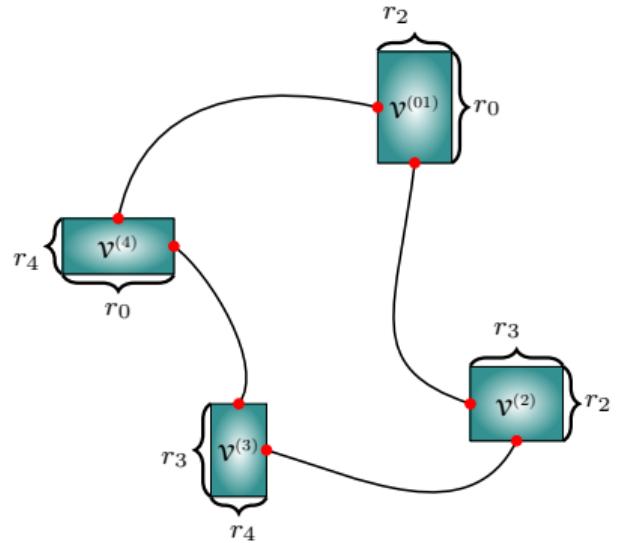
Full tensor network contraction consists of a set of recursive pairwise contractions until one vertex is left

Functional Tensor Networks – Other Topologies



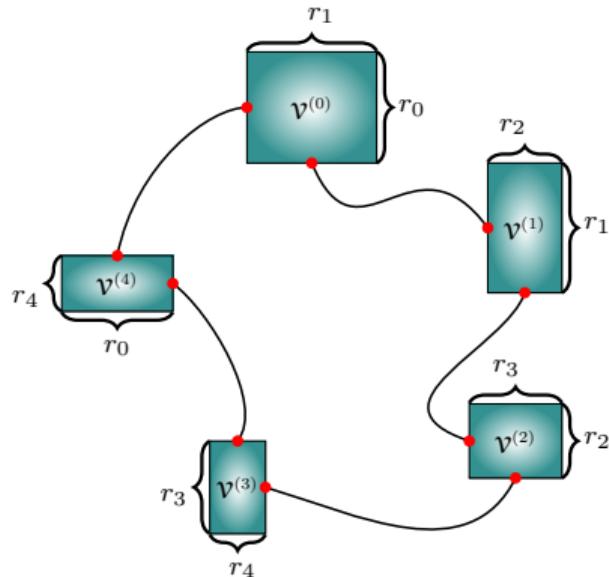
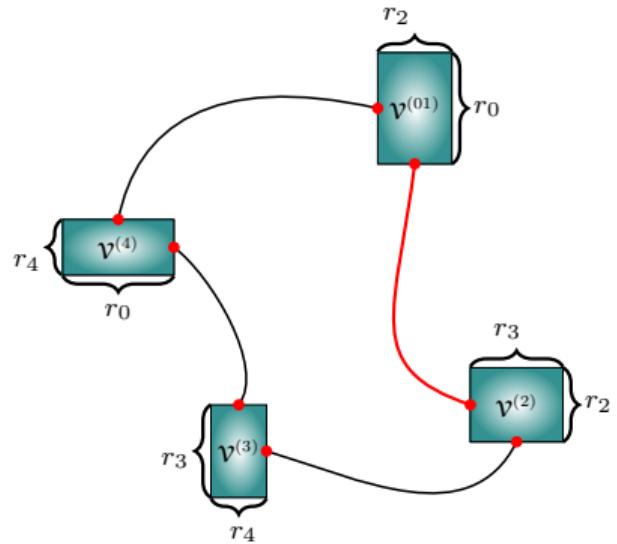
Full tensor network contraction consists of a set of recursive pairwise contractions until one vertex is left

Functional Tensor Networks – Other Topologies



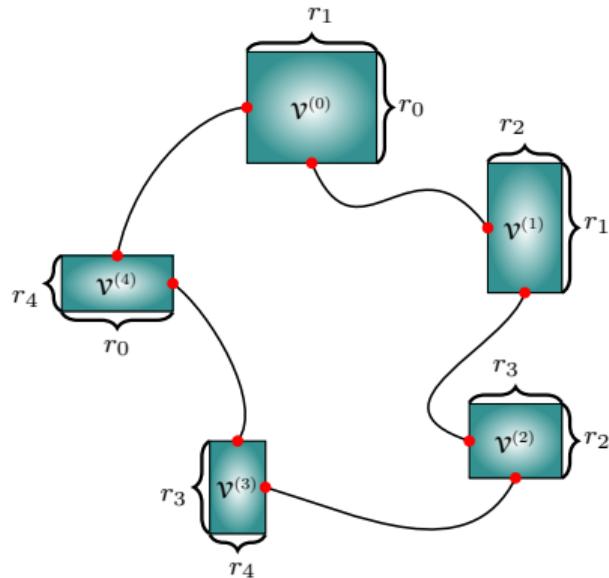
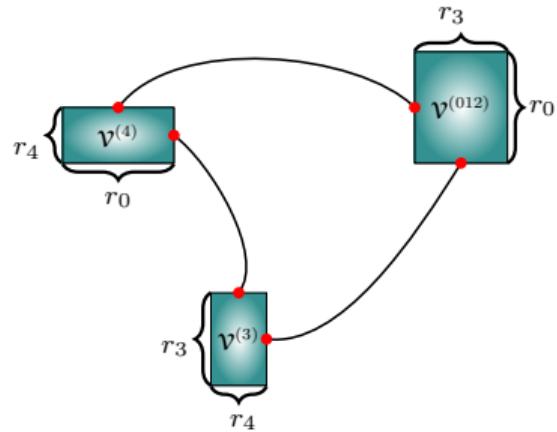
Full tensor network contraction consists of a set of recursive pairwise contractions until one vertex is left

Functional Tensor Networks – Other Topologies



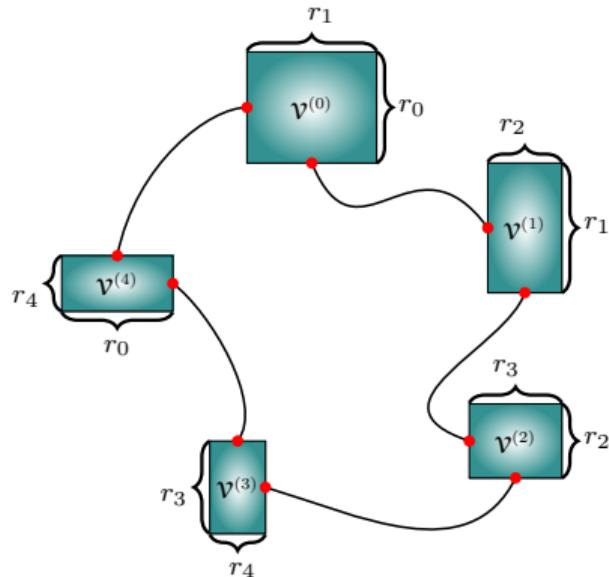
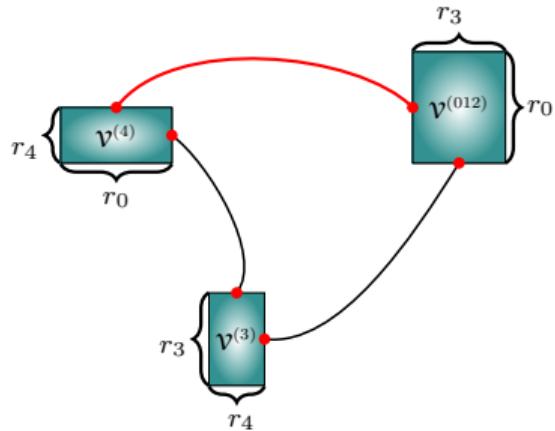
Full tensor network contraction consists of a set of recursive pairwise contractions until one vertex is left

Functional Tensor Networks – Other Topologies



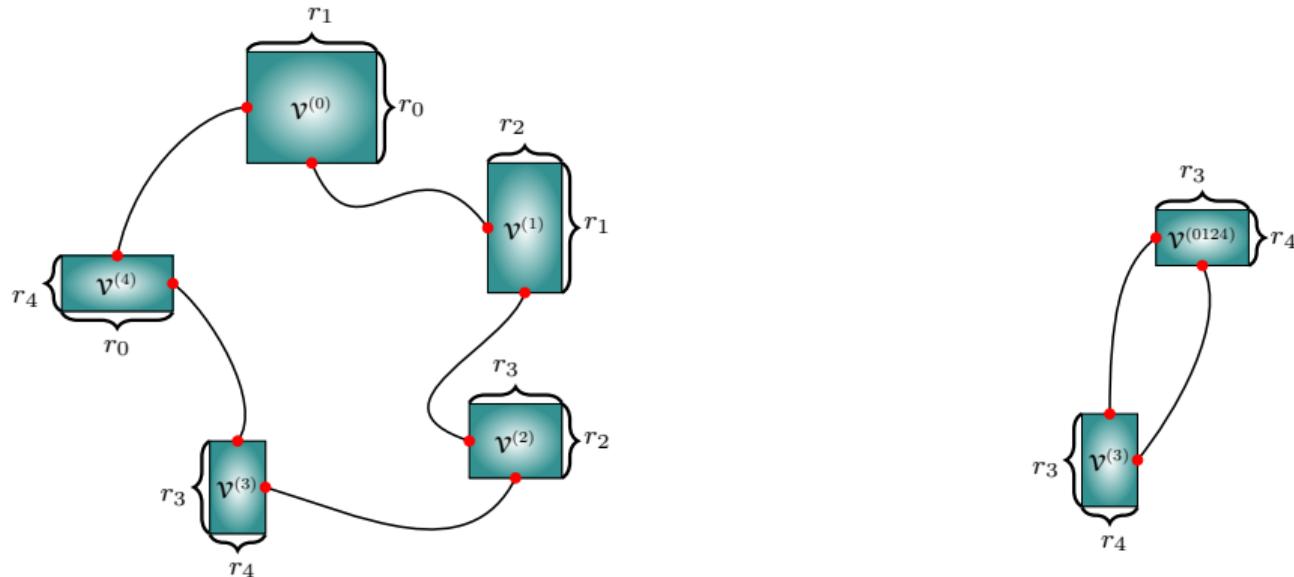
Full tensor network contraction consists of a set of recursive pairwise contractions until one vertex is left

Functional Tensor Networks – Other Topologies



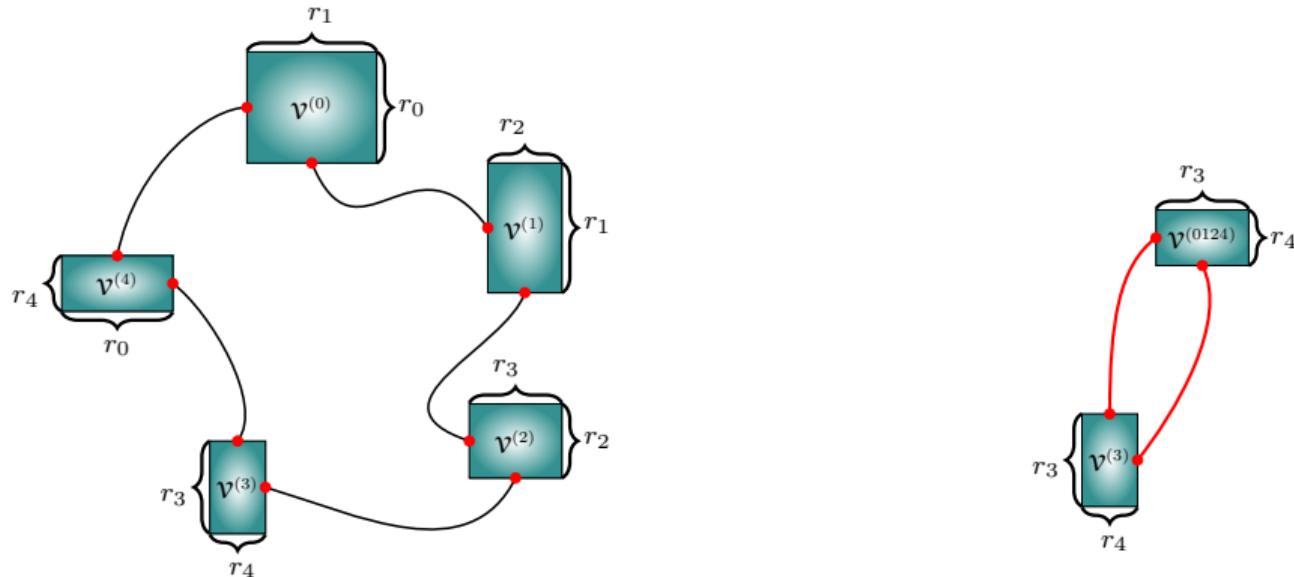
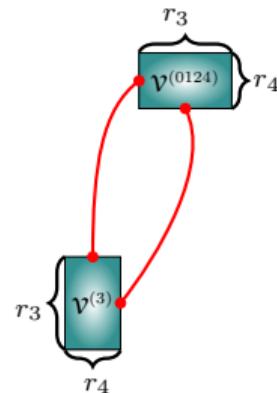
Full tensor network contraction consists of a set of recursive pairwise contractions until one vertex is left

Functional Tensor Networks – Other Topologies



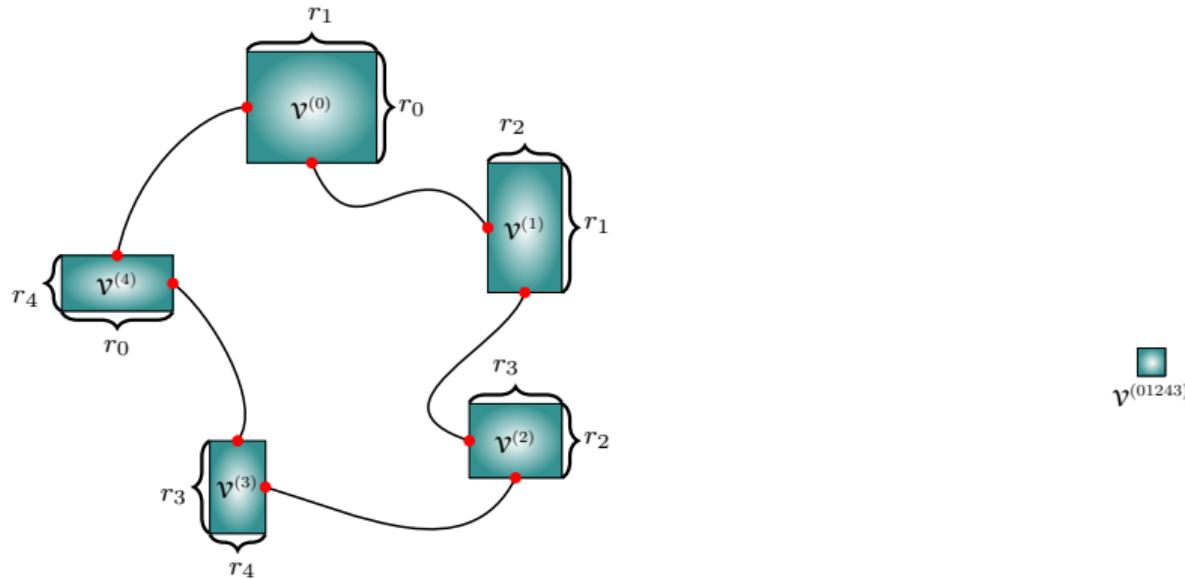
Full tensor network contraction consists of a set of recursive pairwise contractions until one vertex is left

Functional Tensor Networks – Other Topologies



Full tensor network contraction consists of a set of recursive pairwise contractions until one vertex is left

Functional Tensor Networks – Other Topologies



$$v^{(01243)}$$

Full tensor network contraction consists of a set of recursive pairwise contractions until one vertex is left

Linear Representations (e.g. polynomial chaos expansions)

$$f_{ij}^{(k)}(\lambda_k(\xi_k); \boldsymbol{\theta}_{ij}^{(k)}) = \sum_{l=0}^{p_k} \theta_{ijl}^{(k)} \Psi_l^{(k)}(\xi_k)$$

Non-Linear Representations (e.g. radial basis functions)

$$f_k^{(ij)}(\lambda_k; \boldsymbol{\theta}_k^{(ij)}) = \sum_{l=0}^{p_k} \theta_{k,l,1}^{(ij)} \exp(-\theta_{k,l,2}^{(ij)} (\lambda_k - \theta_{k,l,3}^{(ij)})^2)$$

Linear Representations (e.g. polynomial chaos expansions)

$$f_{ij}^{(k)}(\lambda_k(\xi_k); \boldsymbol{\theta}_{ij}^{(k)}) = \sum_{l=0}^{p_k} \theta_{ijl}^{(k)} \Psi_l^{(k)}(\xi_k)$$

Non-Linear Representations (e.g. radial basis functions)

$$f_k^{(ij)}(\lambda_k; \boldsymbol{\theta}_k^{(ij)}) = \sum_{l=0}^{p_k} \theta_{k,l,1}^{(ij)} \exp(-\theta_{k,l,2}^{(ij)} (\lambda_k - \theta_{k,l,3}^{(ij)})^2)$$

Functional Tensor Networks – Evaluate (Conditional) Statistics

Each tensor core consists of scalars or univariate functions therefore contractions and integrals commute

Expectation

$$\mathbb{E}[\mathcal{T}\mathcal{N}] = (\mathbb{E}[\mathcal{V}], E)$$

where $\mathbb{E}[\mathcal{V}] \triangleq \{\mathbb{E}_{\lambda_0}[\mathcal{V}^{(0)}], \mathbb{E}_{\lambda_1}[\mathcal{V}^{(1)}], \dots\}$

- For univariate functions given by polynomial chaos expansions, the elements of a 2D tensor $\mathbb{E}_{\lambda_k}[\mathcal{V}^{(k)}]$ are given by

$$\mathbb{E}_{\lambda_k}[\mathcal{V}^{(k)}(\lambda_k; \boldsymbol{\theta}_k)] = \begin{bmatrix} \theta_{110}^{(k)} & \theta_{120}^{(k)} & \dots & \theta_{1\ r_k 0}^{(k)} \\ \theta_{210}^{(k)} & \theta_{220}^{(k)} & \dots & \theta_{2\ r_k 0}^{(k)} \\ \vdots & \vdots & \ddots & \vdots \\ \theta_{r_{k-1} 10}^{(k)} & \theta_{r_{k-1} 20}^{(k)} & \dots & \theta_{r_{k-1} r_k 0}^{(k)} \end{bmatrix}$$

- Conditional expectations $\mathbb{E}_i[\mathcal{T}\mathcal{N}]$ require marginalization over subset i of the set of tensor cores, e.g.

$$\mathbb{E}_1[\mathcal{V}] \triangleq \{\mathcal{V}^{(0)}, \mathbb{E}_{\lambda_1}[\mathcal{V}^{(1)}], \mathcal{V}^{(2)}, \dots\}$$

Variance

$$\mathbb{V}[\mathcal{TN}] = \mathbb{E}[(\mathcal{TN})^2] - \mathbb{E}[\mathcal{TN}]^2$$

The first term can be written as

$$\mathbb{E}[(\mathcal{TN})^2] = (\mathbb{E}[\tilde{\mathcal{V}}], E)$$

where $\mathbb{E}[\tilde{\mathcal{V}}] \triangleq \{\mathbb{E}_{\lambda_0}[\mathcal{V}^{(0)} \otimes \mathcal{V}^{(0)}], \mathbb{E}_{\lambda_1}[\mathcal{V}^{(1)} \otimes \mathcal{V}^{(1)}], \dots\}$

- For univariate functions given by polynomial chaos expansions, the elements of a 2D tensor $\mathbb{E}_{\lambda_k}[\mathcal{V}^{(k)} \otimes \mathcal{V}^{(k)}]$ are given by

$$\sum_{l=0}^{p_k} \theta_{i_1 j_1 l}^{(k)} \theta_{i_2 j_2 l}^{(k)} \langle \Psi_l^{(k)}(\xi_k)^2 \rangle$$

Law of Total Variance

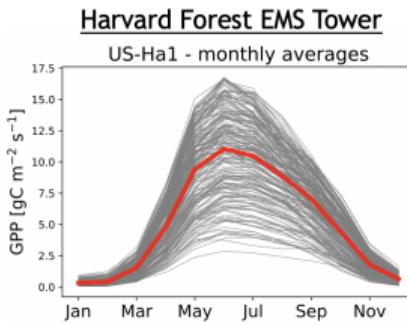
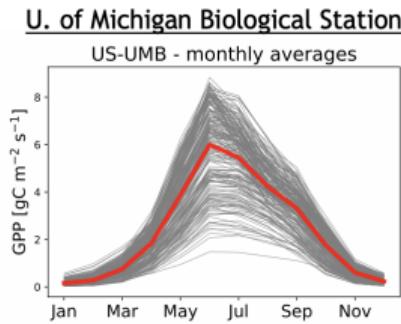
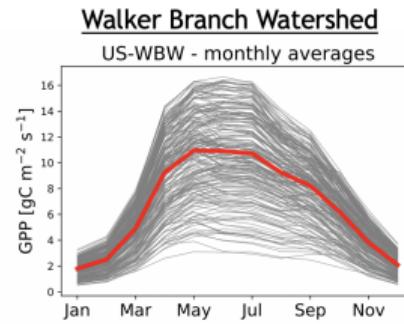
$$\mathbb{V}[\mathcal{TN}] = \mathbb{V}_i[\mathbb{E}_{\setminus i}[\mathcal{TN}]] + \mathbb{E}_i[\mathbb{V}_{\setminus i}[\mathcal{TN}]]$$

after normalization

$$1 = \underbrace{\frac{\mathbb{V}_i[\mathbb{E}_{\setminus i}[\mathcal{TN}]]}{\mathbb{V}[\mathcal{TN}]}}_{S_i} + \underbrace{\frac{\mathbb{E}_i[\mathbb{V}_{\setminus i}[\mathcal{TN}]]}{\mathbb{V}[\mathcal{TN}]}}_{S_{\setminus i}^T}$$

- First order S_i and total order $S_i^T = 1 - S_{\setminus i}$ are computed using tensor network algebra described on previous slides.
- Joint sensitivity indices are evaluated through a similar approach

$$S_{ij} = \frac{\mathbb{V}_{i,j}[\mathbb{E}_{\setminus i,j}[\mathcal{TN}]]}{\mathbb{V}[\mathcal{TN}]} - S_i - S_j$$

ELM Data Simulations Corresponding to Select Observation sites 

- 200 runs corresponding to uniformly randomly sampled parameters over a 10D parameter space
 - 160 training runs/40 validations runs
 - 8-fold cross validation over 160 training runs

Functional Tensor Network Models – Training

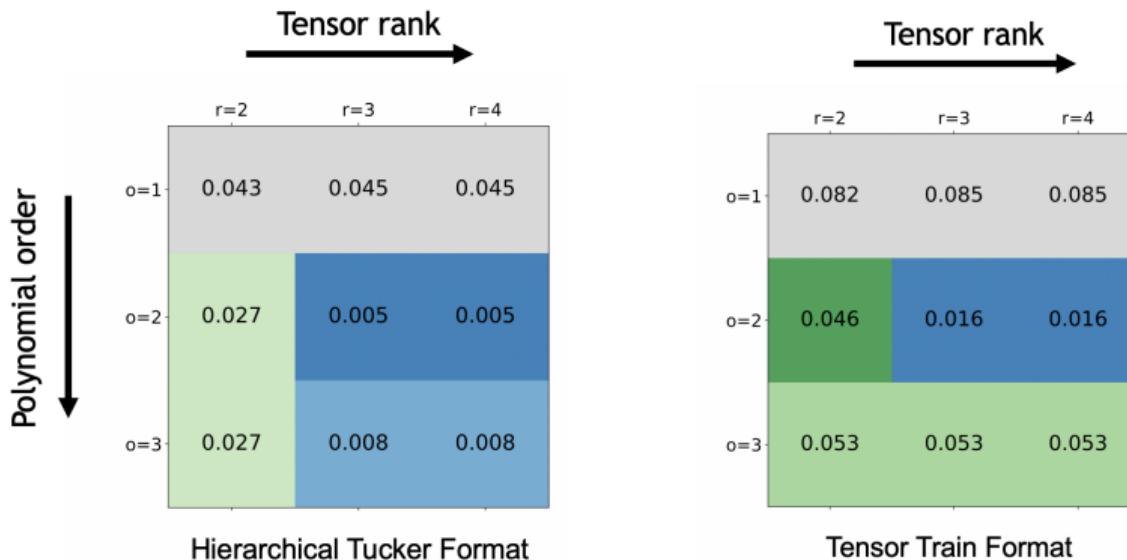
- Data split into 160 training runs / 40 validations runs
- Non-linear least squares with 8-fold cross validation over the training runs
- Univariate functions represented as polynomial expansions based on Legendre polynomials
 - Cross-validation to pick optimum regularization parameter, tensor rank, and polynomial order

$$\theta^* = \arg \min_{\theta} \left(\frac{1}{2} \sum_{i=1}^N \left(f(\lambda^{(i)}; \theta) - y^{(i)} \right)^2 + \alpha \|\theta\|_2^2 \right)$$

- Quality of fit assessed via mean-squared error (MSE)

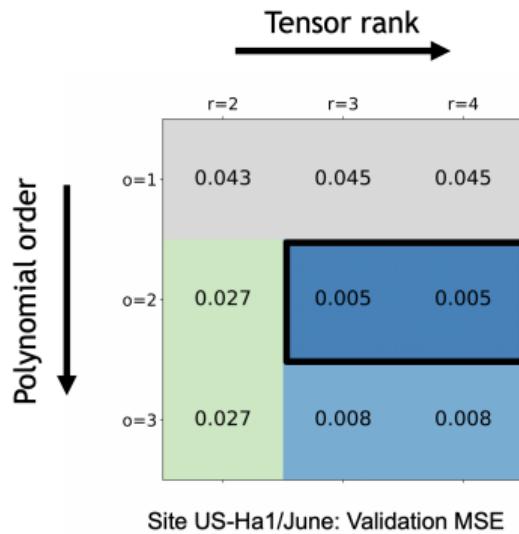
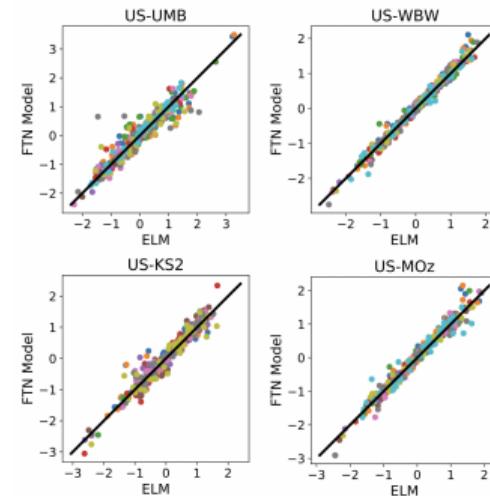
$$MSE = \frac{1}{N} \sum_{i=1}^N \left(f(\lambda^{(i)}; \theta^*) - y^{(i)} \right)^2$$

ELM Fit Results – FTN Models (in Hierarchical Tucker Format)



Site US-Ha1/June: Validation mean-squared error for Hierarchical Tucker models compared to Tensor Train models

ELM Fit Results – FTN Models (in Hierarchical Tucker Format)



ELM Results: Variance-based GSA

Main Effect Sobol Index

$$S_i = \frac{Var[\mathbb{E}(f(\lambda|\lambda_i)]}{Var[f(\lambda)]}$$

Total Effect Sobol Index

$$S_i^T = 1 - \frac{Var[\mathbb{E}(f(\lambda|\lambda_{-i})]}{Var[f(\lambda)]}$$

Parameter	March		June		September		October	
	S_i	S_i^T	S_i	S_i^T	S_i	S_i^T	S_i	S_i^T
fnlr	0.70	0.72	0.80	0.83	0.84	0.86	0.76	0.77
mbbopt	0.01	0.02	0.09	0.13	0.04	0.06	0.02	0.02
vcmaxse	0.13	0.15	0.02	0.02	0	0	0.02	0.02
dayl_scaling	0.06	0.07	0	0	0.04	0.05	0.14	0.14

- fnlr (fraction of N in RuBisCO CO₂ conversion process)
- mbbopt (stomatal conductance slope net CO₂ flux)
- vcmaxse (entropy for photosynthetic parameters)

- Extended functional tensor train models to accommodate generic tensor network configurations
 - Expanded flexibility in capturing the structure of the original model
 - Efficient gradient computations through tensor network contractions
 - Alex Gorodetsky, CS, John Jakeman (2021) <https://tinyurl.com/2p92thbn>
- Functional tensor network models constructed via ridge regression are in good agreement with validation data for the driver application
 - Global Sensitivity Analysis results match subject matter expertise given the training runs available for this study
- Next steps: account for spatio-temporal dependencies and model calibration in a Bayesian setting.