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MOTIVATION

Microstructure of an explosive can have a
significant impact on performance

Aging and thermal environments have the
potential to affect microstructure through: \
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Experiments are needed to support model
development for predicting effects of aging on
microstructure evolution and growth to
detonation

»]oe Monti: Phase-Field Modeling of Aging of
Energetic Thin Films (E06 - Monday 2:75 pm)

»David Damm: Mesoscale Reactive Burn Modeling
of Shock Initiation in Vapor-Deposited PETN Films

(FO3 - Monday 4:30 pm) Pressed explosive with different grain sizes.
Simulations following flyer impact at the same velocity.
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VAPOR-DEPOSITED PETN AS A MODEL SYSTEM \
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Sketch of Sandia’s
deposition system for
energetic materials (top)
and a photograph of PETN
films on a 10 mm silicon
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PETN films are a good model system to N\

investigate the effects of aging \

° Can induce significant changes in microstructure at
moderate time/temperature conditions

° Can be used with Sandia’s High-Throughput Initiation
(HTT) experiment to rapidly characterize growth to
detonation

PETN films deposited in two different geometries
° 100 pm thick films on PMMA for HTI experiments

° 80 — 120 um thick films on silicon for microstructure
characterization

> All films deposit at ~90% TMD

Accelerated aging conditions investigated to date:

° As-deposited - 1 week @ 60°C
° 4 hours @ 60°C - 2 weeks @ 60°C
° 1 day @ 60°C > 1 month @ 70°C




HIGH-THROUGHPUT INITIATION (HTI) EXPERIMENT
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Laser-driven flyer based on work in Dana Dlott's group (UIUC)

Flyer characteristics define shock parameters
 Flyer material (Parylene C) and laser fluence define pressure

 Flyer material and thickness (25 um) defines shock pulse width
* Laser profile defines flyer diameter/spot size (~1.1 mm)
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Knepper et al,J. Appl. Phys., 131, 155901 (2022).

Sandia’s High-Throughput Initiation experiment and photograph of the 96-well sample geometry.




PHOTONIC DOPPLER VELOCIMETRY (PDV) AN
DIAGNOSTICS IN HTI
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PDYV traces of Parylene C flyers launched at

. PDV traces of explosive sample response at
various laser fluences.

various stages of reaction.




ONE-DIMENSIONAL CTH SIMULATIONS SHOW PREDICTED INERT

3 B
)
s Ef
Z
o
e}
2 1t
@
_g L
V.
o L
Rarefaction can 0 I
catch up to the
shock front if the film |
is sufficiently thick

g
-200

. IPETN film :

HTI Experiment at t=19.019 ns

PMMA window 1

(———-— Parylene C Flyer

5(—Aluminum

-100 0 100 200 300 400

X (um)

PETN EOS

= TMD Hugoniot (PETN)

= Porous Hugoniot (PETN)
= JWL Products (PETN)

O DFT-MD calcs. (PETN)

W CJ state = 22.5 GPa

Ppor=1.57 glcm’

Pressure, GPa

T 10 14 12 13

Volume, V=viv,

1D simulation of a shock wave traveling through a
PETN film (left) and a plot showing EOS data for a
PETN film with a density of 1.57 g/cm? (right).

Mesh resolution is 3 zones/um (well-resolved), simulations run with reactions disabled

Deviation of experimental data from the predicted inert response indicates where chemical
reactions begin to impact performance




EVOLUTION OF TOP SURFACE MORPHOLOGY

eks @ 60° C




EVOLUTION OF FRACTURE CROSS-SECTION MORPHOLOGY

As-deposited

-

Fracture cross-section SEM images of as-deposited and aged PETN films.



AGING EFFECTS ON INITIATION THRESHOLD
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AGING EFFECTS ON INITIATION THRESHOLD
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Comparison of the three distinct stages of aging in HTI data on 100 um thick PETN samples.
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CONCLUDING REMARKS \\
N\

PETN films show rapid grain coarsening at elevated temperature, porosity appears to \
take somewhat longer to coarsen

N

HTI can enable rapid quantification of initiation thresholds and run distances in materials
that grow to detonation at sub-millimeter length scales

Initiation threshold and onset of reaction shift rapidly when samples are exposed to
elevated temperatures but level off after some amount of time

Concurrent/Future work:
= Can phase field models capture the observed trends in microstructure evolution?

= Can mesoscale hydrocode simulations capture the observed shifts in initiation threshold?
Informed by binarized images of ion-polished cross-sections that can be imported to the simulations

= Experiments on samples aged at lower temperatures
Do grains coarsen as quickly? Can we capture the coarsening process as it occurs?
Do we see similar trends in initiation threshold following aging?
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ION-POLISHED CROSS-SECTIONS

Aged 1 day @ 60° C

As-deposited

Aged 2 weeks @ 60° C

SEM images of ion-polished cross-sections in as-deposited and aged PETN films.

Can threshold/binarize ion-polished images for quantitative analysis and import to CTH

Similar distributions of porosity in as-deposited and aged 1 day structures; slightly less
porosity and less anisotropy in the aged 2-weeks structure
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