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2 I Thermal runaway and energy flows
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The boundary between propagation and mitigation

Examining the energy flows in an ESS, cascading failure at the module level is the primary
source of energy (produces flaming gases, ignites plastics).

How do the relative time scales of these flows affect the propagation rate?

How do the properties of the system impact the boundary between propagation
and mitigation of thermal runaway?
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+ I Cascading failure predictions at the module scale

Nail penetration test in a stack of 5 lithium cobalt oxide pouch cells (3Ah).
o Experiments from Torres-Castro et al. 2020.

o Simulations from open source software Lithium-ion Modeling with 1-D Thermal
Runaway (LIM1TR) https://github.com/ajkur/lim1tr
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https://github.com/ajkur/lim1tr

Mitigation of cascading failure at the module scale: 5 cell stack with
1/8” copper spacers

Top Perspective View

Torres-Castro, L. et al., (2020) J Electrochem. Soc., 167(9):

P
Adding thermal mass of the copper plates mitigates cascading failure. I
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Simplified scenario and reduced parameter set for mitigation

What is a low-dimensional parameter space that
affects the propagation/mitigation boundary?

Seek to dissipate heat to avoid/slow down
propagation.

Parameters affecting target cell temperature:
> Thermal resistance along the stack.
> Ability to dissipate heat.

> Heat sin LAAL RC (pel). (pclL).
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8 ‘ Simplified scenario: heat transfer along an adiabatic stack
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9 ‘ Characteristic heat transfer: conduction and capacitance

Resistance Ratio

Thermal resistance between cells is
characterized by contact resistance
and inert material resistance:
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o I Map of limiting temperature vs. thermal resistance, capacity, and
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.+ | ldealized rack-scale CFD investigations

Need to characterize module-to-module
heat transfer to develop low fidelity
models and efficiently explore the
parameter space.

Which parameters have the greatest
effect on conductances?

° Inflow/outflow BCs

°Gap between modules

°Module temperatures

Begin with simplified 2-D model to
understand flow and heat transfer.
°Heat transfer between modules and air
°Flow rate and drag through gaps

° Buoyancy-driven heated air

> Relevant non-dimensional parameters:
Rayleigh number, Richardson number, etc

Source: https://cmte.ieee.ora/pes-essb/wp-content/uploads/sites/43/2019/06/2019-SM-UL-9540A-IEC-Lithium-Test-Summary.pdf
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2 | Flow visualization under a small temperature gradient
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s | Effect of module temperature on mass flow through the system
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« | Effect of module temperature on heat flux to neighboring modules
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Effect of gap size on mass flow through each gap
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s | Effect of gap size on mass flow through each gap
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7 I We need to develop low fidelity network models that capture the
essential heat transfer characteristics to explore parameter space
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e I Summary

Understanding of heat transfer scales is critical for system design and
safety.

Non-dimensional parameters can be used to describe heat flows at the
module scale.

Began characterization of heat flows at the rack scale

o See poster “Flow dynamics through simplified battery rack
configurations” for more details

Predictive, low-order models are needed to explore the vast

parameter space. [ \
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