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2 ‘ Z Machine at Sandia

The Z Machine compresses energy
spatially and temporally
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Pulse Forming Capabilities
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+ I Compression to HED states using magnetic fields
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0Z Machine can deliver a caretfully shaped
current pulse to a magnetically symmetric load
that allows tor compression to HED
condjitions.

oThis current induces magnetic fields which
propel the sample to high compression ratios.

oShock-ramp: a controlled shock is produced
(to melt the sample) and then the sample is
ramp compressed to a higher pressure state.

stress
wave
front



s | Example pulse shapes -- much is possible!
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¢ I Defining an experiment

NOW

Near Future

olLabor intensive manual shot design
with no inherent uncertainty
quantification, numerical optimization,

or probability sampling.

oSingle bespoke design created.

» Metrics defined and weighed for experiment
success

»Shockless comptression

» Peak sample input pressure

»Smooth velocity gradient (surrogate for jitter)
» Magnitude and uniformity of initial shock

» Ability to differentiate between different

material models (maximize difference in
velocity response between models)

» Uncertainty and probability sampling possible.




Large parameter space just from Z
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Basis time shift 36 -250 to 600 ns (5 ns increments)

Basis pulse shape 36 / options Parameter space consists of
more than 80 discrete variables

Marx charge 1 55-85 Volts, 5 Volt increments that are manually adjusted with

expert insight.

Marx triggering 9 Boolean

delay This does not include any

Marx triggering 1 0 to 500 ns (5 ns increments) parameters modified at the

target (sample thickness, etc.)

delay time




8 ‘ Code Workflow

Dakota-MAD

e Calculate present
response based on
metric weights and
aspirational targets

» Choose new input
parameters or quit

shockthresh 80.
steptime 2.

minpeak 200.
allowableshocks 1
shockacceleration 1000.
targetshock 120.
targetdrift 2.
targetpeakp 1100.
smoothscale 1.e3

windowshockvelocity 2300.

(Z Circuit Model | 11D MHD

e Produce current vs e Drive panel/sample
time waveform configuration

e Generate metric-
relevant data

Flyer / Anode
stress
wave
front
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Python Wrapper

« Calculate resulting
metrics

e Feed data to Dakota-
MAD

0.000000000000e+00 1.221220000000e+02
1.000000000000e+00 4.788000000000e+00
2.000000000000e+00 9.774890000000e+02
3.000000000000e+00 5.031986737500e+03
4.000000000000e+00 6.409878858834e-09

-

Sandia optimization code Dakota used with a mesh adaptive

search algorithm to drive scripted workflow.

Rather than one bespoke design, thousands are generated and

the “best” is identified automatically.



Initial Shock Pressure (GPa)
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1 1 “Advanced” metrics under consideration

oDesign an experiment to discriminate between two competing models
o For each design iteration, run 2+ MHD simulations, one for each model (EOS, Strength, etc.)

o Calculate a new metric that will maximize the difference in velocity response for each model
(perhaps a specific loading path triggers measurable differences between the models)

oSample dimensions can be optimized to aid other metrics

o Thickness and even panel width can be optimized to reach the highest possible peak pressure
with minimal risk of inadvertent shock formation

o Without the optimizer this 1s essentially designing multiple experiments at the same time

oPulse shaping “best practices”

o Research in ongoing to develop a list of “best practices” for pulse shaping that minimizes damage
to the Z Machine; once imposed those metrics can be coded into the algorithm

o Some of these metrics are not human intuitive and require additional software models to assess;
those models can be run inline with the optimizer



12 I Conclusion and Future Work

oThis framework represents an exciting new capability for metric-based experimental
optimization for HEDP applications.

oThe initial implementation is cumbersome to initiate but robust and flexible.

oThe optimization method (mesh adaptive search) can be replaced in the scripted framework
with little effort. There is interest in exploring Bayesian options.

oThis tool is being applied to experiments that are problematic do design due to the ease of
unintentional shock creation.

Reach out:
Andrew Porwitzky

ajporwi(@sandia.gov



13 ‘ Abstract

We present a numerical optimization framework for automated design of high energy density (HED)
materials science experiments on the Z Machine at Sandia National Laboratories. High energy density
dynamic compression experiments in the 100s of GPa regime can only be performed on a limited number
of experimental facilities, often requiring bespoke designs tailored to the individual objectives of the
experiment. Through rigorous definition of traditional experimental objectives (peak pressure, shockless
compression paths, etc.) we have developed a metric-based optimization method that computationally
designs the experiment end-to-end, starting with the driver (Z Machine) input conditions. The system also
allows for the incorporation of metrics less intuitively obvious to a human designer that can increase
experimental objective success within known shot-to-shot driver variability. Initial results using this method
will be presented, along with a discussion of advanced metrics under investigation, including the ability to
optimize the difference between the observable response of various material models to design experiments
to discriminate between theories.



