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Z Machine at Sandia2

Cumberbatch 
for scale

The Z Machine compresses energy 

spatially and temporally



Pulse Forming Capabilities3

Z possesses a unique 

ability to predictably 

shape current pulses in 

the 10+ MA range.



Compression to HED states using magnetic fields4

oZ Machine can deliver a carefully shaped 
current pulse to a magnetically symmetric load 
that allows for compression to HED 
conditions.

oThis current induces magnetic fields which 
propel the sample to high compression ratios.

oShock-ramp: a controlled shock is produced 
(to melt the sample) and then the sample is 
ramp compressed to a higher pressure state. 



Example pulse shapes -- much is possible!5

Not every pulse shape is 

possible. When designing a 

new experiment we don’t 

know if something can be 

done until the design exists.



Defining an experiment6

oLabor intensive manual shot design 
with no inherent uncertainty 
quantification, numerical optimization, 
or probability sampling. 

oSingle bespoke design created. 

➢Metrics defined and weighed for experiment 
success

➢Shockless compression

➢Peak sample input pressure

➢Smooth velocity gradient (surrogate for jitter)

➢Magnitude and uniformity of  initial shock 

➢Ability to differentiate between different 
material models (maximize difference in 
velocity response between models)

➢Uncertainty and probability sampling possible. 

Now Near Future



Large parameter space just from Z7

Variable Number 

on Z

Parameter Space

Basis time shift 36 -250 to 600 ns (5 ns increments)

Basis pulse shape 36 7 options

Marx charge 1 55-85 Volts, 5 Volt increments

Marx triggering 

delay

9 Boolean

Marx triggering 

delay time

1 0 to 500 ns (5 ns increments)

Parameter space consists of 

more than 80 discrete variables 

that are manually adjusted with 

expert insight.

This does not include any 

parameters modified at the 

target (sample thickness, etc.)



Code Workflow8

Dakota-MAD

•Calculate present 
response based on 
metric weights and 
aspirational targets

•Choose new input 
parameters or quit

Z Circuit Model

•Produce current vs 
time waveform

1D MHD

•Drive panel/sample 
configuration

•Generate metric-
relevant data

Python Wrapper

•Calculate resulting 
metrics

•Feed data to Dakota-
MAD

Sandia optimization code Dakota used with a mesh adaptive 

search algorithm to drive scripted workflow.

Rather than one bespoke design, thousands are generated and 

the “best” is identified automatically.



Initial test response9

oShock-ramp experiment, 5 metrics needed

o Initial shock strength (0.10) 122/120 GPa

o Initial shock drift (0.10) 4.79/2.00 GPa

o Peak sample input pressure (0.74) 977/1100 GPa

oVelocity “smoothness” (0.01) norm to O(1)

o Shock strength in window material (0.05) bathtub

All parameters 

needed to generate 

this current are 

known! Eliminates 

existence proof!
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Design 

successfully 

executed on the 

Z Machine!

First experiment design by algorithm
oRamp experiment, only 2 metrics needed

o Peak sample input pressure (0.5) 91/180 GPa

o Target peak pressure set unobtainably high for this 
material to push optimizer to maximize pressure

oVelocity “smoothness” (0.5) norm to O(1)

oNote velocity & pressure “smoothness”, since EOS 
was uncertain this minimizes the chances of  forming 
a shock



“Advanced” metrics under consideration

oDesign an experiment to discriminate between two competing models

oFor each design iteration, run 2+ MHD simulations, one for each model (EOS, Strength, etc.)

oCalculate a new metric that will maximize the difference in velocity response for each model 
(perhaps a specific loading path triggers measurable differences between the models)

oSample dimensions can be optimized to aid other metrics

oThickness and even panel width can be optimized to reach the highest possible peak pressure 
with minimal risk of  inadvertent shock formation

oWithout the optimizer this is essentially designing multiple experiments at the same time

oPulse shaping “best practices”

oResearch in ongoing to develop a list of  “best practices” for pulse shaping that minimizes damage 
to the Z Machine; once imposed those metrics can be coded into the algorithm

oSome of  these metrics are not human intuitive and require additional software models to assess; 
those models can be run inline with the optimizer
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Conclusion and Future Work

oThis framework represents an exciting new capability for metric-based experimental 
optimization for HEDP applications.

oThe initial implementation is cumbersome to initiate but robust and flexible. 

oThe optimization method (mesh adaptive search) can be replaced in the scripted framework 
with little effort. There is interest in exploring Bayesian options.

oThis tool is being applied to experiments that are problematic do design due to the ease of  
unintentional shock creation.
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Abstract

We present a numerical optimization framework for automated design of  high energy density (HED) 
materials science experiments on the Z Machine at Sandia National Laboratories. High energy density 
dynamic compression experiments in the 100s of  GPa regime can only be performed on a limited number 
of  experimental facilities, often requiring bespoke designs tailored to the individual objectives of  the 
experiment. Through rigorous definition of  traditional experimental objectives (peak pressure, shockless 
compression paths, etc.) we have developed a metric-based optimization method that computationally 
designs the experiment end-to-end, starting with the driver (Z Machine) input conditions. The system also 
allows for the incorporation of  metrics less intuitively obvious to a human designer that can increase 
experimental objective success within known shot-to-shot driver variability. Initial results using this method 
will be presented, along with a discussion of  advanced metrics under investigation, including the ability to 
optimize the difference between the observable response of  various material models to design experiments 
to discriminate between theories. 
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