
LDMS Version 4.3+ Basics Tutorial
https://github.com/ovis-hpc/ovis

OGC | Open Grid Computing, Austin, TX

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a

wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-

NA-0003525.

S a n d i a N a t i o n a l La b o r a t o r i e s : J im B r a n d t , S a r a Wa l t o n , B en A l l a n

O p en G r id Co m p u t in g , I n c . : To m Tu cke r

The LDMS Version 4.3+ Basics Tutorial is an updated and expanded version of previous tutorials: SAND2017-5153 O and SAND2021-13510 C

SAND2023-05015CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do
not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract
DE-NA0003525.

Tutorial Format (basic)

Overview of the Lightweight Distributed Metric Service (LDMS)
• Overview of the LDMS framework

• LDMS architecture description

Setup
• Environment setup description and verification

• Introduction to support programs and helper scripts for use in lab work

Hands-on exercises, instructor walk through, and facilitated student exploration:

Configuring and deploying a distributed monitoring system with storage
• Exercise 1: Configuring and Running Samplers (~20 min)

• Sampler startup and local and remote verification

• Intro to ldmsd_controller and ldms_ls

• Exercise 2: Configure Aggregators (~20 min)

• Aggregation startup and verification using local samplers

• Exercise 3: Storing Data In CSV Format (~20 min)

2

LDMS Overview

What is the Lightweight Distributed Metric Service (LDMS)?
◦ Daemon based data collection

◦ Plugin architecture

◦ Sample numeric data

◦ Sample application data

◦ Transport and aggregate data

◦ Store data

Typical use cases for information “stored” by LDMS
◦ Identify application execution behaviors

◦ Identify applications memory (and other resource) utilization behaviors

◦ Identify network congestion

◦ Identify heavy Lustre users

3

4 NODE

ldmsd

Sampler
plugin

Store
plugin

Arrow direction
is data flow:

Metricset
pull
transport

Common Simple Configuration

• Setup:
• Compute Nodes have ldms daemon(s) with

one or more sampler plugins
• Cluster service node(s) has L1 aggregator

ldms daemon(s). Aggregate the data from 1
or more nodes over the high speed
transport. No plugins.

• Off cluster storage node(s) has L2 aggregator
ldms daemon(s) with store plugin(s). Writes
out the aggregated data

• Mixed transports to take advantage of the
HSN

• RDMA is a preference
• This topology can be replicated to scale out.

Examples:
• Replicate per “Scalable Unit”
• Note that fan-in of ~thousands

to one are possible

RDMA over
HSN

Socket

Monitored Nodes

Level 2 aggregation

Level 1 aggregation

5

NODE

ldmsd

Sampler
plugin

Store
plugin

Arrow direction
is data flow:

Event push
transport

Metricset
pull
transport

Anything is possible!

• Not just a tree aggregation!
Arbitrary split and joins of
subsets of data at aggregators
for redirection (e.g., store to a
database AND push to another
ldmsd)

• Multiple ldmsd per host (e.g.,
for scale testing)

• Run sampler and store daemons
on separate ldmsd within a
single host (e.g., to monitor a
host doing aggregation)

• Mixed metricset (pull) and event
publish-subscribe (push over
LDMS Streams) transport

Application

Monitored Nodes

LDMS Plugin Architecture6

Configuration
Interface

Maestro

Python

Config. Commands

Config. File

LDMS Streams
Interface

Darshan

Kokkos

Network Plugin
Transport
Interface

sock

uGNI

RDMA

Fabric

Sampler Plugin
Interface

stat

netdev

slurm

meminfo

….

Storage Plugin
Interface

Kafka

Influx

D/SOS

CSV

Metric Set
Metric Set

Metric Set

M
e
m

o
ry

LDMS Daemon PluginsLDMS Daemon API

7

• Meta-data only

transferred upon

initialization or

change – this

reduces both CPU

and network

burden

• Separation of

data and meta-

data blocks

enables efficient

RDMA transfer of

data

Resources

Documentation (Building, Using)
◦ https://ovis-hpcreadthedocs.readthedocs.io/en/latest/

Source Code
◦ https://github.com/ovis-hpc/ovis
◦ git clone https://github.com/ovis-hpc/ovis.git
◦ git branch –a # Will show all available branches
◦ git branch -a | grep "\-4.3” # Will show all version 4.3 branches
◦ git checkout –b OVIS-4.3.<x> origin/OVIS-4.3.<x> # Will check out branch origin/OVIS-4.3.<x> under the name OVIS-

4.3.<x>
◦ git branch # Will show currently checked out branch

Publications:
◦ https://ovis.ca.sandia.gov

How you can contribute
◦ Post an issue at: https://github.com/ovis-hpc/ovis/issues

Support
◦ Bug reporting and community support: Post an issue at https://github.com/ovis-hpc/ovis/issues
◦ Development and support: contact tom@ogc.us
◦ Support services: contact tom@ogc.us

8

https://github.com/ovis-hpc/ovis.git
https://ovis.ca.sandia.gov/
https://github.com/ovis-hpc/ovis/issues
https://github.com/ovis-hpc/ovis/issues
mailto:tom@ogc.us
mailto:tom@ogc.us

Supported Platforms and Networks & Dependencies

Linux support
◦ RHEL 7 & 8

◦ SLES 11 – 15

◦ TOSS

◦ Ubuntu

◦ RedHat (7-9)

Vendor hardware platforms supported software
◦ ARM

◦ Cray XC and EX

◦ Generic Linux clusters (may not have all
dependencies)

◦ IBM Power (both big and little endian)

Transport Support
◦ Socket

◦ Cray ugni – Aries & Gemini

◦ RDMA – Infiniband, iWarp, libfabric

Typical compute node environment dependencies
◦ Autoconf >=2.63, automake, libtool (collectively

called autotools)

◦ OpenSSH-devel

◦ lib*-devel for specific plugins that are enabled

9

LDMS Installation Methods
1. LDMS Development Containers

◦ Dependencies and pre-requisites already installed

◦ Easy to build and install LDMS

◦ Pull & run development container
◦ docker pull ovishpc/ldms-dev:4.3.11 #(based on Ubuntu 22.04)

◦ docker run -it --name dev -hname dev ovishpc/ldms-dev:4.3.11

Example: Quick build in the dev container
◦ git pull https://github.com/ovis-hpc/ovis

◦ cd ovis

◦ ./autogen.sh

◦ mkdir build && cd build

◦ ../configure --prefix=/opt/ovis

◦ make && make install

For more info, see https://github.com/ovis-hpc/ovis

10

https://github.com/ovis-hpc/ovis
https://github.com/ovis-hpc/ovis

Other LDMS Installation Methods

1. Build and install using VM’s or containers

2. Manually build and install using autoconf and automake

3. Build and install RPMs

Note 1: For this tutorial, LDMS is pre-installed on attendee containers in /opt/ovis

Note 2: We will be using the pre-installed software, scripts and configuration files for the exercises

11

Setup

12

Getting started: Log in and set up your
environment
We will be using a container cluster provided by Open Grid Computing.

Instructions to download and access the LDMSCON2023 containers are shown below.

An email with an SSH identity file attached was sent out to those who registered to LDMSCON2023 via
Eventbrite.

1. Download the SSH identity file (id_rsa) that was sent to your email address

2. Login to the container

$ ssh –i <path-to-id_rsa>/id_rsa root@<email-username>.ldms-ug.dev

Note: The “-i” option tells 'ssh' to use the specified id_rsa file instead of the default '~/.ssh/id_rsa’. This file will
only work on your designated host so do not share with others.

You will want at least 2 terminal windows up for the tutorial

13

Getting started: Directory structure

Containers include source code, scripts and configuration files for every exercise, helper mini-applications for
use in the exercises

Directory structure:

/root/ldmscon2023/basic/ # Location of exercise related directories

/root/ldmscon2023/basic/conf/e*/ # Exercise configuration files

/root/ldmscon2023/basic/data/ # LDMS data

/root/ldmscon2023/basic/env/ # Scripts to configure environment variables

/root/ldmscon2023/basic/scripts/e*/ # Helper scripts for deploying LDMS daemons

/root/ldmscon2023/basic/logs/ # Place to write log files

14

Getting started: Set up and verify your
environment

Source your environment configuration file (ldms-env.sh):
$ source /root/ldmscon2023/basic/env/ldms-env.sh

Contents of ldms-env.sh:
#!/bin/bash

TOP=/opt/ovis

export LD_LIBRARY_PATH=$TOP/lib64/:$LD_LIBRARY_PATH

export LDMSD_PLUGIN_LIBPATH=$TOP/lib/ovis-ldms

export ZAP_LIBPATH=$TOP/lib/ovis-ldms

export PYTHONPATH=$TOP/lib/python3.10/site-packages/:$PYTHONPATH

export PATH=$TOP/sbin:$TOP/bin:$PATH

15

*A live example of these commands can be found here:
Verify Environment Variables

Note: Container environments are already set so sourcing this file is optional.

https://snell1224.github.io/OVIS-Tutorial/FY21/tutorial_links/verify-environment-fy21.html

Exercise 1: Configuring
and Running Samplers

16

Start and Check Status of a LDMS Daemon

Exercise Goals:
Basic LDMS daemon startup and flags/args

◦ Command line configuration

◦ Run-Time Configuration

Use of ldms_ls utility as a diagnostic tool

For more help and information please visit the man pages
◦ man ldmsd – displays ldmsd man pages

◦ man ldmsd_controller – displays “ldmsd_controller” man pages

◦ man ldms_ls – displays ldms_ls man pages

17

Start a LDMS daemon

• Start ldmsd with minimum configuration

$ ldmsd –x sock:10001 –l ~/ldmscon2023/basic/logs/sampler1.log

-x: transport : listening port

-l: Specify the log file path and name(this is not strictly necessary)

Commands should be written in the command prompt window. Copy and paste may introduce non-printing
characters and unexpected results

18

Terminal #1

Check ldmsd Running Status
• Using ps

$ps auxw | grep ldmsd | grep –v grep

• Returns something like:

“ovis_pu+ 3582 0.0 0.1 401604 2204 ? Ssl 12:51 0:00 ldmsd

-x sock:10001“ if running
• Returns: blank line if not running

Note: This is only a single method in checking the LDMS daemon process and is not an LDMS related command.

• Using ldms_ls

$ldms_ls –h localhost –x sock –p 10001 -v

• Returns: “Connection failed/rejected.” if ldmsd specified does not exist or authentication fails

• Returns: blank line if the ldmsd specified exists but has no metric sets configured

• Check the log file. This can be used to find clues when troubleshooting.

$ cat ~/ldmscon2023/basic/logs/sampler1.log

Note: The default values for transport (-x) and hostname (-h) are “sock” and “localhost”, respectively.

19

Terminal #1

Manually Configure a Sampler Plugin

Exercise Goals:

Basic sampler plugin operation
• Manual configuration using the “ldmsd_controller” utility

• Static configuration using a configuration file

• Plugin_meminfo – Collect memory metrics from the memory usage report in /proc/meminfo

• Plugin_vmstat – Collect system metrics from the monitoring utility “vmstat”

Use of ldms_ls utility as a diagnostic tool

Man Pages
◦ man Plugin_meminfo – opens meminfo plugin man pages

◦ man Plugin_vmstat – opens vmstat plugin man pages

◦ man ldms_ls – opens ldms_ls man pages

20

Configuring a LDMS Daemon Sampler
Plugin

Goals:

Load a sampler plugin

Configure loaded sampler plugin
• Give the set name (instance)

• Give the node name (producer)

• Give the component ID

• Plugin-specific arguments

Start sampler plugin with a particular sampling interval.

21

Interactive Configuration Using The
ldmsd_controller

Using a separate terminal (terminal #2), connect to your ldmsd using the
“ldmsd_controller” utility

$ldmsd_controller -h localhost -x sock -p 10001

Welcome to the LDMSD control processor

sock:localhost:10001> help

Note 1: The prompt tells you <transport>:<hostname>:<port>. You can use “quit” or Ctrl-d to exit or
Ctrl-c to kill the ldmsd_controller

22

*An example of running these commands can be found
here: LDMSD Controller Interface Video

Terminal #2

https://snell1224.github.io/OVIS-Tutorial/FY21/tutorial_links/ldmsd_controller-interface-fy21.html

Load and Configure the “meminfo”
Sampler Using the ldmsd_controller

• Load the “meminfo” sampler plugin:

sock:localhost:10001> load name=meminfo

23

name: plugin name
producer: By convention set to host name (can be any string). Source of the ldms data.
Instance: By convention set to producer/<sampler name> (unique string). Uniquely identifies
the metric set (e.g. where and what type of data is being produced).
component_id: By convention some unique numeric identifier (any uint_64). Another unique
identifier for faster comparison (e.g. number)

• Configure the “meminfo” sampler plugin:
sock:localhost:10001> config name=meminfo producer=${HOSTNAME}
instance=${HOSTNAME}/meminfo component_id=${COMP_ID}

Terminal #2

• Optionally copy & paste above contents from the following text file under # load and configure:

$ cat ~/ldmscon2023/basic/scripts/e1/sampler_plugins.txt

Query Current Sets Using “ldms_ls”

• In terminal #1, use ldms_ls to query the sets currently available on an LDMS daemon

$ldms_ls –h localhost -x sock -p 10001

${HOSTNAME}/meminfo

24

Terminal #1

Get The Set Meta-Data Before Starting The
“meminfo” Sampler Plugin Using –v Flag

$ldms_ls –h localhost -x sock -p 10001 –v ${HOSTNAME}/meminfo

Schema Instance Flags Msize Dsize UID GID Perm
Update Duration Info

-------------- ------------------------ ------ ------ ------ ------ ------
---------- ----------------- ----------------- --------

meminfo ${HOSTNAME}/meminfo L 1952 416 596 742 -
rwxrwxrwx 0.000000 0.000000 "updt_hint_us"="1000000:0"

-------------- ------------------------ ------ ------ ------ ------ -----
- ---------- ----------------- ----------------- --------

Total Sets: 1, Meta Data (kB): 1.95, Data (kB) 0.42, Memory (kB): 2.37

Note 1: The “${HOSTNAME}/meminfo” is optional. Leaving it off will display the meta-data for all metric sets
resident on this LDMS daemon.

Note 2: If you re-run this command multiple times and observe the timestamp, you will see the sampler is not
updating. This means it has not started collecting “meminfo” data yet.

25

Terminal #1

Query Current Metric Values Before Starting
The “meminfo” Sampler Plugin using –l flag

$ldms_ls -x sock -p 10001 -l ${HOSTNAME}/meminfo

${HOSTNAME}/meminfo: inconsistent, last update: Wed Dec 31 17:00:00 1969 -0700 [0us]

M u64 component_id 1

D u64 job_id 0

D u64 app_id 0

D u64 MemTotal 0

D u64 MemFree 0

D u64 MemAvailable 0

D u64 Buffers 0

D u64 Cached 0

D u64 SwapCached 0

D u64 Active 0

D u64 Inactive 0

D u64 Active(anon) 0

D u64 Inactive(anon) 0

26

• Values (set to 0)

have not yet been

collected

Terminal #1

• Note 1: We did not have to specify the hostname with –h
because the default is “localhost”.

• Note 2: The “${HOSTNAME}/meminfo” is optional.
Leaving it off will display the data for all metric sets
resident on this LDMS daemon.

• Note 3: The timestamp is the start of epoch time

Start The “meminfo” Sampler Plugin
Using the ldmsd_controller

• In terminal #2, start the “meminfo” sampler with a 1 second (1,000,000us) interval

sock:localhost:10001> start name=meminfo interval=1000000

• This starts the sampler updating the metric values every 1,000,000 micro-seconds = 1 second

Note 1: “interval” defines the number of micro-seconds between successive samples

27

Terminal #2

• Optionally copy & paste above contents from the following text file under # start:

$ cat ~/ldmscon2023/basic/scripts/e1/sampler_plugins.txt

Query Current Metric Values After
Starting The “meminfo” Sampler Plugin
$ ldms_ls -x sock -p 10001 -l ${HOSTNAME}/meminfo

${HOSTNAME}/meminfo: consistent, last update: Tue Oct 08 17:52:45 2019 -0600 [2058us]

M u64 component_id 1

D u64 job_id 0

D u64 app_id 0

D u64 MemTotal 131899768

D u64 MemFree 129843340

D u64 MemAvailable 129364708

D u64 Buffers 20076

D u64 Cached 458024

D u64 SwapCached 0

D u64 Active 184380

D u64 Inactive 393140

D u64 Active(anon) 125324

D u64 Inactive(anon) 284684

28

• Values are being

collected

Terminal #1

• Note 1: We did not have to specify the hostname with –h because the
default is “localhost”.

• Note 2: The “${HOSTNAME}/meminfo” is optional. Leaving it off will
display the data for all metric sets resident on this LDMS daemon.

• Note 3: The number in microseconds is when the sampling is scheduled
to start. We have it to set to zero (every second on the second) and is a
few milliseconds off due to the scheduler.

Check Source (/proc/meminfo) For
Reference

$cat /proc/meminfo

MemTotal: 131899768 kB

MemFree: 129828892 kB

MemAvailable: 129350280 kB

Buffers: 20076 kB

Cached: 458076 kB

SwapCached: 0 kB

Active: 184380 kB

Inactive: 393064 kB

Active(anon): 125324 kB

Inactive(anon): 284680 kB

Active(file): 59128 kB

29

Terminal #1

• Validate that the LDMS daemon is collecting “meminfo” data

$ ldms_ls -x sock -p 10001 -l ${HOSTNAME}/meminfo

${HOSTNAME}/meminfo: consistent, last update: Tue Oct 08 17:52:45 2019 -0600 [2058us]

M u64 component_id 1

D u64 job_id 0

D u64 app_id 0

D u64 MemTotal 131899768

D u64 MemFree 129843340

D u64 MemAvailable 129364708

D u64 Buffers 20076

D u64 Cached 458024

D u64 SwapCached 0

D u64 Active 184384

D u64 Inactive 393140

D u64 Active(anon) 125324

D u64 Inactive(anon) 284684

Change The Sampling Interval

• Using ldmsd_controller, stop the plugin:

sock:localhost:10001> stop name=meminfo

Note: Querying with ldms_ls –v will show that the sampler is not updating

Note: We are still using the same sampler daemon from earlier. It should not be killed yet.

• Restart the plugin with a different (5 sec) interval:

sock:localhost:10001> start name=meminfo interval=5000000

Note: Querying with ldms_ls -v multiple times will show that the metric set is now updating only every
five seconds.

◦ Exit out of the ldmsd_controller with “quit” or Ctrl-d OR kill the ldmsd_controller with Ctrl-c

30

Terminal #2

• Option 1: Kill all ldms daemons

$pkill ldmsd

• Option 2: Kill a particular ldms daemon

$ps auxw | grep ldmsd | grep –v grep
root 1577 0.0 0.0 763812 6088 ? Ssl 18:14 0:00 ldmsd -x sock:10001 -l ~/ldmscon2023/ldms-

basic/logs/sampler1.log

root 1585 0.0 0.0 102660 20768 pts/1 Sl+ 18:15 0:00 python3 /opt/ovis/bin/ldmsd_controller -h local

host -x sock -p 10001

$kill 1577

$kill 1585

• Check to make sure they are dead

$ps auxw | grep ldmsd | grep –v grep

31
Kill Currently Running Daemons

Terminal #1 or #2

Note 1: You can alternatively stop the

ldmsd_controller process by exiting (“quit”

or Ctrl-d) or killing it (Ctrl-c) in terminal #2

Note 2: If you are having issues killing the daemon, you can always run “kill -9 <pid>”

Start a ldmsd and Configure a Sampler
Plugin Using a Configuration File

• Syntax is identical to that used for manual configuration

• Examine the sample configuration file for the meminfo example:

$cat ~/ldmscon2023/basic/conf/e1/simple_sampler.conf

• Alternatively create this file with the content shown below and filling in appropriate information:

load name=meminfo

config name=meminfo producer=${HOSTNAME} instance=${HOSTNAME}/meminfo component_id=${COMP_ID}

start name=meminfo interval=1000000

• Run an ldmsd using this configuration file (argument after the –c flag).
• Using configuration files because bash variables are supported (i.e. $HOSTNAME)

$ldmsd -x sock:10001 -l ~/…/logs/sampler1.log –c ~/…/conf/e1/simple_sampler.conf

32

Terminal #1

Query The Metric Values: The “meminfo”
Sampler Is Configured And Running

$ ldms_ls -x sock -p 10001 -l ${HOSTNAME}/meminfo

${HOSTNAME}/meminfo: consistent, last update: Tue Oct 08 17:52:45 2019 -0600 [2058us]

M u64 component_id 62

D u64 job_id 0

D u64 app_id 0

D u64 MemTotal 131899768

D u64 MemFree 129843340

D u64 MemAvailable 129364708

D u64 Buffers 20076

D u64 Cached 458024

D u64 SwapCached 0

D u64 Active 184380

D u64 Inactive 393140

D u64 Active(anon) 125324

D u64 Inactive(anon) 284684

33

• Values are being

collected

Terminal #1

• Note 1: We did not have to specify the hostname with –h
because the default is “localhost”.

• Note 2: The “${HOSTNAME}/meminfo” is optional.
Leaving it off will display the data for all metric sets
resident on this LDMS daemon.

Multiple Sampler Plugins Running on a Single
ldmsd

• Copy and paste the contents located in ~/…/scripts/e1/sampler_plugins.txt in the ldmsd_controller interface.
• Alternatively modify the “simple_sampler.conf” file to include the above contents at the end of the file and then restart

your ldmsd using -c

load name=vmstat

config name=vmstat producer=${HOSTNAME} instance=${HOSTNAME}/vmstat
component_id=${COMP_ID}

start name=vmstat interval=1000000

• Optionally copy & paste above contents from the following text file under # vmstat plugin:

$cat ~/ldmscon2023/basic/scripts/e1/sampler_plugins.txt

• Query the ldmsd using ldms_ls:

$ldms_ls -h localhost -x sock -p 10001

${HOSTNAME}/vmstat

${HOSTNAME}/meminfo

• Do not kill this LDMS daemon as we will be using it for the next exercise(s).

34

Terminal #1

Configuration Methods Summary

• Dynamic configuration using ldmsd_controller

• ldmsd_controller is a Python script that can connect to a ldmsd via a configured network socket (supports
command completion)

• Startup configuration via configuration file

• Configuration file – loaded at ldmsd runtime

• All commands from this tutorial can be automated

• Example: “echo config.file | ldmsd_controller –x sock –p 10001”

35

Exercise 2: Configure LDMS Aggregators

36

Configure a LDMS Daemon (ldmsd) to
Aggregate Metric Set(s)

Goals:

• Add list of connections to a ldmsd (connections to sampler ldmsd(s))

• Start the connections

• Create an “update policy”
o Define an “update policy” update period and offset

o Define which sets an update policy refers to (or all)

• Start the “update policy”

37

Start a ldmsd That Will Be Used For
Aggregation

• Configure a second ldmsd sampler that listens on a different host with a different component id by first
logging into another node and setting the $COMP_ID variable to 2:

$ ssh node-2

• Start this ldms sampler with the configuration file and have it listen on port 10001 with log file “sampler2.log”

$ldmsd –x sock:10001 –l ~/ldmscon2023/basic/logs/sampler2.log –c
~/…/conf/e1/simple_sampler.conf

• Start a new aggregator ldmsd with minimum configuration:

$ldmsd –x sock:20001 –l ~/ldmscon2023/basic/logs/aggd.log

-x: Transport : listening port

-l: Specify the log file path and name (optional)

-c: Specify the configuration file path and name

38

Terminal #1

Note 1: We are using 10001 for our samplers and port 20001 for our aggregator.
Note 2: The sampler would need to listen on a different port if it was started on
the same node (i.e. 10001).
Note 3: The sampler listening on the second node (i.e. node-2) will only sample
meminfo. If you wish for to sample vmstat, then please repeat the instructions in
the previous exercise for this node OR uncomment the section vmstat for second
sampler in ~/simple_sampler.conf and start it using this file.

Interactive Aggregator Configuration
Using the ldmsd_controller

• Set up “ldmsd_controller” connection to the aggregator over socket

$ldmsd_controller -h localhost –x sock -p 20001

Welcome to the LDMSD control processor

sock:localhost:20001>

Note: We need set the port to 20001 to connect to our aggregator.

39

Terminal #2

Simple Aggregator Producer Configuration

• Configure the aggregator to aggregate from your sampler daemons (listening on port 10001/10001)
• prdcr_add: defines the name of the producer (i.e. daemon collecting the data) to aggregate from

• prdcr_start: Initiates connection with a producer. It does NOT start a producer (which the name implies)

sock:localhost:20001> prdcr_add name=prdcr1 host=${HOSTNAME1} port=10001 xprt=sock
type=active interval=20000000

sock:localhost:20001> prdcr_start name=prdcr1

sock:localhost:20001> prdcr_add name=prdcr2 host=${HOSTNAME2} port=10001 xprt=sock
type=active interval=20000000

sock:localhost:20001> prdcr_start name=prdcr2

name: policy tag (this is just a string)

host: hostname of the sampler daemon that the aggregator is connecting to

port: Port the sampler daemon listens on

xprt: Transport the sampler daemon listens on

type: Choose “active” (aggregator will initiate the connection with the sampler)

interval: Re-connect interval (set to 20 seconds) (This is NOT the sampler interval)

• Optionally copy & paste contents located in the text file under # producers:

$ cat ~/ldmscon2023/basic/scripts/e2/agg_samplers.txt

40

Terminal #2

Note 1: The sequence of commands can
be changed (i.e. the prdcr_add’s can be
inputted before the prdcr_start’s)

Check Aggregator Status
(after producer (prdcr) is started but before the updater (updtr) is started)

sock:localhost:20001> status

41

Name Type Interval Offset Libpath

------------ ------------ ------------ ------------ ------------

Name Host Port Transport State

---------------- ---------------- ------------ ------------ ------------

prdcr1 node-1 10001 sock CONNECTED

node-1/meminfo meminfo START

node-1/vmstat vmstat START

prdcr2 node-2 10001 sock CONNECTED

node-2/meminfo meminfo START

Name Interval:Offset Auto Mode State Skipped counter Oversampled counter

---------------- ---------------- ------ --------------- ------------ --------------- -------------------

Name Container Schema Plugin flush(sec) State

---------------- ---------------- ---------------- ---------------- ------------ ----------------

Terminal #2

Query Current Metric Values On The
Aggregator

$ldms_ls –h localhost -x sock -p 20001 -l

$

Note: While status (previous slide) shows that the aggregator knows what sets the producer has,
the ldms_ls query returns nothing because there is no update policy associated with the connected
prdcr and the sets have not yet been created and populated with data at the aggregator.

42

Terminal #1

Configure and Start Aggregator Updater
Policy

• Configure the aggregator to update all schemas (i.e. meminfo and vmstat).

sock:localhost:20001> updtr_add name=update_all interval=1000000 auto_interval=true

sock:localhost:20001> updtr_prdcr_add name=update_all regex=.*

sock:localhost:20001> updtr_start name=update_all

name: policy tag (string)

interval: update (pull) interval (in usec)

◦ Example: interval=1000000 means it will pull data from associated prdcr every 1 second

auto_interval: Automatically aggregate according to update hint (default false)

◦ Example: This daemon will aggregate every <interval> seconds set in the sampler (i.e. the “updt_hint_us” from ldms_ls -v)

◦ If false, then it will default to the interval specified on the aggregator.

regex: regular expression to match the target producers tag(s)

◦ prdcr1 in this case (see slide 50)

• Optionally copy & paste contents located in the text file under # updater:

$ cat ~/ldmscon2023/basic/scripts/e2/agg_samplers.txt

43

Terminal #2

Check Aggregator Status
(after starting both producer (prdcr) and updater (updtr) policies)

sock:localhost:20001> status

44

Name Type Interval Offset Libpath

------------ ------------ ------------ ------------ ------------

Name Host Port Transport State

---------------- ---------------- ------------ ------------ ------------

prdcr1 node-1 10001 sock CONNECTED

node-1/meminfo meminfo READY

node-1/vmstat vmstat READY

prdcr2 node-2 10001 sock CONNECTED

node-2/meminfo meminfo READY

Name Interval:Offset Auto Mode State Skipped counter Oversampled counter

---------------- ---------------- ------ --------------- ------------ --------------- -------------------

updtr1 1.0s:0.0ms true Pull RUNNING 0 0

prdcr1 node-1 10001 sock CONNECTED

prdcr2 node-2 10001 sock CONNECTED

Name Container Schema Plugin flush(sec) State

---------------- ---------------- ---------------- ---------------- ------------ ----------------
Terminal #2

Query Current Metric Values On The
Aggregator
$ldms_ls -h localhost -x sock -p 20001 -l ${HOSTNAME}/meminfo

${HOSTNAME}/meminfo: consistent, last update: Wed Oct 09 18:30:49 2023 -0600 [2093us]

M u64 component_id 62

D u64 job_id 0

D u64 app_id 0

D u64 MemTotal 131899768

D u64 MemFree 129834752

D u64 MemAvailable 129356628

D u64 Buffers 20228

D u64 Cached 458892

D u64 SwapCached 0

D u64 Active 196708

D u64 Inactive 393768

D u64 Active(anon) 137336

45

Terminal #1

Note: You can query the other sampler with the set
instance name: ${HOSTNAME}/meminfo
Or all of them with –l only.

Start Aggregator ldmsd Using a Configuration File

• A ldmsd for performing aggregation can also be started using a configuration file in the same manner as a

ldmsd for sampling (see slide 40)

• Configuration file syntax is identical to that used for manual configuration

• Check out your sample configuration file:

$cat ~/ldmscon2023/basic/conf/e2/simple_agg.conf

Alternatively create a conf file in this directory and populate it with the contents below:

prdcr_add name=prdcr1 host=${HOSTNAME1} port=10001 xprt=sock type=active interval=20000000

prdcr_start name=prdcr1

prdcr_add name=prdcr2 host=${HOSTNAME2} port=10001 xprt=sock type=active interval=20000000

prdcr_start name=prdcr2

updtr_add name=update_all interval=1000000 auto_interval=true

updtr_prdcr_add name=update_all regex=.*

updtr_start name=update_all

46

Terminal #1

Start Aggregator ldmsd Using a Configuration File

• Exit out of the ldmsd_controller with “quit” or Ctrl-d OR kill the ldmsd_controller with Ctrl-c

• Kill ONLY your aggregator ldmsd (i.e. port 2001).

$ps auxw | grep ldmsd | grep –v grep

ovis_pu+ 3582 0.0 0.1 401604 2204 ? Ssl 12:51 0:00
ldmsd -x sock:20001 -S samplerd.sock

$kill 3582

• Restart your aggregator using the “simple_agg.conf” configuration file

$ldmsd -x sock:20001 -l ~/ldmscon2023/basic/logs/aggd.log –c

~/ldmscon2023/basic/conf/e2/simple_agg.conf

47

Terminal #1

Note: If you kill all LDMS daemons (samplers and aggregator) you can easily restart the samplers using a
configuration file (exercise 1).

$ldms_ls -x sock -p 20001 -l ${HOSTNAME}/meminfo

${HOSTNAME}/meminfo: consistent, last update: Wed Oct 09 18:30:49 2019 -0600 [2093us]

M u64 component_id 62

D u64 job_id 0

D u64 app_id 0

D u64 MemTotal 131899768

D u64 MemFree 129834752

D u64 MemAvailable 129356628

D u64 Buffers 20228

D u64 Cached 458892

D u64 SwapCached 0

D u64 Active 196708

D u64 Inactive 393768

48
Query Current Metric Values On The
Aggregator

Terminal #1

Note: You can query the other sampler with the set
instance name: ${HOSTNAME}/meminfo
Or all of them with –l

Exercise 3: Storing Data
In CSV Format

49

Storing Data: CSV Store Plugin

Goals:

• Configure an aggregator ldmsd with a CSV store plugin using ldmsd_controller

• Configure an aggregator ldmsd with a CSV store plugin using a configuration file

• Minimal store options (don’t buffer data)

• Note: The scripts/e1 - e3 directories contain scripts to start ldmsd using associated configuration files

Example output from the “meminfo” sampler:

#Time,Time_usec,ProducerName,component_id,job_id,MemTotal,MemFree,MemAvailable,Buffers,Cached,SwapCached,Active,Inactive,
Active(anon),Inactive(anon),Active(file),Inactive(file),Unevictable,Mlocked,SwapTotal,SwapFree,Dirty,Writeback,AnonPages,Mapped,Sh
mem,Slab,SReclaimable,SUnreclaim,KernelStack,PageTables,NFS_Unstable,Bounce,WritebackTmp,CommitLimit,Committed_AS,VmallocT
otal,VmallocUsed,VmallocChunk,HardwareCorrupted,AnonHugePages,HugePages_Total,HugePages_Free,HugePages_Rsvd,HugePages_S
urp,Hugepagesize,DirectMap4k,DirectMap2M

1487105964.002482,2482,node-3,3,
0,1884188,571028,1688632,0,1212004,6108,104536,1122496,8276,8580,96260,1113916,0,0,839676,793956,420,0,10552,24812,1796
,52124,40104,12020,1792,3280,0,0,0,1781768,387984,34359738367,7216,34359728128,0,2048,0,0,0,0,2048,47040,2050048

1487105963.002583,2583,${HOSTNAME}0,10,
0,1884188,1665280,1671132,948,107512,0,71540,80920,44128,8308,27412,72612,0,0,839676,839676,0,0,44000,22264,8436,35680,2
4304,11376,1600,2940,0,0,0,1781768,296444,34359738367,7216,34359728128,0,6144,0,0,0,0,2048,34752,2062336

1487105963.001964,1964,${HOSTNAME}2,12,
0,1884188,1623168,1644996,948,129700,0,89312,101956,60788,8332,28524,93624,0,0,839676,839676,0,0,60620,23912,8500,36456,
24608,11848,1872,4364,0,0,0,1781768,403252,34359738367,7216,34359728128,0,16384,0,0,0,0,2048,44992,2052096

50

CSV Store: Manual Aggregator Configuration
• DO NOT kill the LDMS daemons (i.e. samplers and aggregator)

• Configure the aggregator to store the “meminfo” set to a CSV file using ldmsd_controller
• Create a directory for the CSV data, load the store_csv plugin and configure the plugin

$ldmsd_controller -h localhost -x sock -p 20001

sock:localhost:20001> load name=store_csv

sock:localhost:20001> config name=store_csv path=/root/ldmscon2023/basic/data/ buffer=0

name: plugin name

path: Path to the base directory for the csv file container. This directory must exist prior to loading this configuration or daemon will

throw an error and terminate.

buffer: ‘0’ to disable buffering. This will flush each row to the csv file and allow us to see live updates of the stored data.

man page:

$man Plugin_store_csv # opens store_csv plugin man pages

51

Terminal #2

• Optionally copy & paste contents located in the text file under # load:

$ cat ~/ldmscon2023/basic/scripts/e3/store_csv.txt

CSV Store: Cont.

• Check status

sock:localhost:20001> status
Name Type Interval Offset Libpath

------------ ------------ ------------ ------------ ------------

csv store 1000000 0 /opt/ovis/lib/ovis-ldms/libstore_csv.so

Name Host Port Transport State

---------------- ---------------- ------------ ------------ ------------

prdcr1 node-1 10001 sock CONNECTED

node-1/meminfo meminfo READY

node-1/vmstat vmstat READY

prdcr2 node-2 10001 sock CONNECTED

node-2/meminfo meminfo READY

Name Interval:Offset Auto Mode State Skipped counter Oversampled counter

---------------- ---------------- ------ --------------- ------------ --------------- -------------------

updtr1 1.0s:0.0ms true Pull RUNNING 0 0

prdcr1 node-1 10001 sock CONNECTED

prdcr2 node-2 10001 sock CONNECTED

Name Container Schema Plugin flush(sec) State

---------------- ---------------- ---------------- ---------------- ------------ ----------------

52

Terminal #2

CSV Store: Cont.

• Configure the aggregator to store the “meminfo” set to a csv file.

sock:localhost:20001> strgp_add name=meminfo-store_csv plugin=store_csv

container=memory_metrics schema=meminfo

name: storage policy tag
plugin: store plugin used for storing metric set data
container: the storage backend container name. For csv, this is the directory where the output file will
go. This will be created in “path”.
schema: metric set schema to be stored

Note: The default for schema is sampler plugin name but can be modified but it is for a more
advanced tutorial.

53

Terminal #2

• Optionally copy & paste contents located in the text file under # config:

$ cat ~/ldmscon2023/basic/scripts/e3/store_csv.txt

CSV Store: Cont.

• Check status

sock:localhost:20001> status

Name Type Interval Offset Libpath
------------ ------------ ------------ ------------ ------------
csv store 1000000 0 /opt/ovis/lib/ovis-ldms/libstore_csv.so
Name Host Port Transport State
---------------- ---------------- ------------ ------------ ------------
prdcr1 node-1 10001 sock CONNECTED

node-1/meminfo meminfo READY
node-1/vmstat vmstat READY

prdcr2 node-2 10001 sock CONNECTED
node-2/meminfo meminfo READY

Name Interval:Offset Auto Mode State Skipped counter Oversampled counter
---------------- ---------------- ------ --------------- ------------ --------------- -------------------
updtr1 5.0s:0.0ms true Pull RUNNING 0 0

prdcr1 node-1 10001 sock CONNECTED
prdcr2 node-2 10001 sock CONNECTED

Name Container Schema Plugin flush(sec) State
---------------- ---------------- ---------------- ---------------- ------------ ----------------
meminfo-store_csv memory_metrics meminfo store_csv 0.000000 STOPPED

producers:
metrics:

54

Terminal #2

CSV Store: Continued

• Start meminfo-store_csv policy

sock:localhost:20001> strgp_start name=meminfo-store_csv

name: storage policy tag

55

Terminal #2

• Optionally copy & paste contents located in the text file under # start:

$ cat ~/ldmscon2023/basic/scripts/e3/store_csv.txt

CSV Store: Cont.

• Check status
sock:localhost:20001> status

Name Type Interval Offset Libpath
------------ ------------ ------------ ------------ ------------
csv store 1000000 0 /opt/ovis/lib/ovis-ldms/libstore_csv.so
Name Host Port Transport State
---------------- ---------------- ------------ ------------ ------------
prdcr1 node-1 10001 sock CONNECTED

node-1/meminfo meminfo READY
node-1/vmstat vmstat READY

prdcr2 node-2 10001 sock CONNECTED
node-2/meminfo meminfo READY

Name Interval:Offset Auto Mode State Skipped counter Oversampled counter
---------------- ---------------- ------ --------------- ------------ --------------- -------------------
updtr1 5.0s:0.0ms true Pull RUNNING 0 0

prdcr1 node-1 10001 sock CONNECTED
prdcr2 node-2 10001 sock CONNECTED

Name Container Schema Plugin flush(sec) State
---------------- ---------------- ---------------- ---------------- ------------ ----------------
meminfo-store_csv memory_metrics meminfo store_csv 0.000000 RUNNING

producers:
metrics: component_id job_id app_id MemTotal MemFree MemAvailable Buffers Cached SwapCached Active Inactive Active(anon) Inactive(anon)

Active(file) Inactive(file) Unevictable Mlocked SwapTotal SwapFree Dirty…..

56

Terminal #2

Examining The CSV File

• Check the CSV file

$head ~/ldmscon2023/basic/data/memory_metrics/meminfo

$tail –f ~/ldmscon2023/basic/data/memory_metrics/meminfo

$ls –ltr ~/ldmscon2023/basic/data/memory_metrics/

• Note: You do not have to do tail and head. This is only to show that we can see the data is continuously

being populated.

57

Terminal #1

CSV Store: Start and Configure Aggregator
Using a Configuration File

• View store relevant part of configuration file at: ~/ldmscon2023/basic/conf/e3/agg_store_csv.conf

load name=store_csv

config name=store_csv path=/root/ldmscon2023/basic/data buffer=0

strgp_add name=meminfo-store_csv plugin=store_csv container=memory_metrics
schema=meminfo

strgp_start name=meminfo-store_csv

strgp_add name=vmstat-store_csv plugin=store_csv container=memory_metrics
schema=vmstat

strgp_start name=vmstat-store_csv

• Note 1: This configuration file also stores the vmstat metric set in memory_metric

• Note 2: Can also have different containers for meminfo and vmstat

58

Terminal #1

CSV Store: Start and Configure Aggregator Using a
Configuration File
• Exit out of the ldmsd_controller with “quit” or Ctrl-d OR kill the ldmsd_controller with Ctrl-c

• Kill ONLY your aggregator ldmsd (i.e. port 2001).

$ps auxw | grep ldmsd | grep –v grep

ovis_pu+ 3582 0.0 0.1 401604 2204 ? Ssl 12:51 0:00 ldmsd -x
sock:20001 -S samplerd.sock

$kill 3582

• Restart your aggregator using the “agg_store_csv.conf” configuration file

$ldmsd -x sock:20001 -l ~/ldmscon2023/basic/logs/agg_store.log –c

~/ldmscon2023/basic/conf/e3/agg_store_csv.conf

• Check the CSV file

$head ~/ldmscon2023/basic/data/memory_metrics/meminfo

$tail –f ~/ldmscon2023/basic/data/memory_metrics/meminfo

$ls –ltr ~/ldmscon2023/basic/data/memory_metrics/

59

Terminal #1

Basics End

60

