This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do SAND2023-05015C
not necessarily represent the views of the U.S. Department of Energy or the United States Government.

LDMS Version 4.3+ Basics Tutorial
https://github.com/ovis-hpc/ovis

Sandia National Laboratories: Jim Brandt, Sara Walton, Ben Allan

Open Grid Computing, Inc.: Tom Tucker

The LDMS Version 4.3+ Basics Tutorial is an updated and expanded version of previous tutorials: SAND2017-5153 O and SAND2021-13510 C

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a

@ Sandia National Laboratories Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly. B
@S N owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security’ Administration under contract nent of Energy’s National Nuclear Security Administration under contract DE-
ENERGY NOYSH DE-NA0003525.

NATUUVOJLY.

‘ Tutorial Format (basic)

Overview of the Lightweight Distributed Metric Service (LDMS)
* Overview of the LDMS framework
* LDMS architecture description

Setup
* Environment setup description and verification
* Introduction to support programs and helper scripts for use in lab work

Hands-on exercises, instructor walk through, and facilitated student exploration:

Configuring and deploying a distributed monitoring system with storage
* Exercise 1: Configuring and Running Samplers (~20 min)
* Sampler startup and local and remote verification
* Intro to ldmsd_controller and Idms_Is
* Exercise 2: Configure Aggregators (~20 min)
» Aggregation startup and verification using local samplers
* Exercise 3: Storing Data In CSV Format (~20 min)

.| LDMS Overview

=< 0GC

What is the Lightweight Distributed Metric Service (LDMS)?
o Daemon based data collection

o Plugin architecture
o Sample numeric data

o Sample application data
° Transport and aggregate data
o Store data

Typical use cases for information “stored” by LDMS
° |dentify application execution behaviors

o |dentify applications memory (and other resource) utilization behaviors
o |dentify network congestion
o |dentify heavy Lustre users

Common Simple Configuration

Setup:

* Compute Nodes have I[dms daemon(s) with
one or more sampler plugins

e Cluster service node(s) has L1 aggregator
ldms daemon(s). Aggregate the data from 1
or more nodes over the high speed
transport. No plugins.

» Off cluster storage node(s) has L2 aggregator
ldms daemon(s) with store plugin(s). Writes
out the aggregated data

* Mixed transports to take advantage of the
HSN

» RDMA is a preference

This topology can be replicated to scale out.
Examples:
* Replicate per “Scalable Unit”

Level 2 aggregation

Socket

Level 1 aggregation

RDMA over

NODE

ldmsd

Sampler
plugin
Store
plugin

Arrow direction
is data flow:

Metricset
pull
transport

* Note that fan-in of ~thousands

to one are possible

Monitored Nodes

s | Anything is possible!

* Not just a tree aggregation! i NODE
Arbitrary split and joins of ldmsd
subsets of data at aggregators

. . Sampler
for redirection (e.g., store to a luin
database AND push to another P8

Store I
as

Arrow direction
is data flow:

Metricset
pull
transport

Event push
transport

ldmsd)

* Multiple ldmsd per host (e.g.,
for scale testing)

* Run sampler and store daemons
on separate ldmsd within a
single host (e.g., to monitor a
host doing aggregation)

* Mixed metricset (pull) and event
publish-subscribe (push over
LDMS Streams) transport

Application

Monitored Nodes

Configuration
Interface

Maestro

Python

Config. Commands

Config. File

/

AN

LDMS Streams
Interface

Darshan

\

Kokkos

2N

| LDMS Plugin Architecture

[

Memory

Metric Set

Network Plugin
Transport
Interface

sock

uGNI

RDMA

LDMS Daemon API

Fabric

J

Sampler Plugin
Interface

stat

Storage Plugin
Interface

netdev

Kafka

slurm

Influx

meminfo

D/S0OS

LDMS Daemon Plugins

csv

Metric Set Memory

Metric Meta Data

* Generation Number

Metric Descriptor Metric Descriptor Metric Descriptor
* Name * Name * Name
* Component ID * Component ID * Component ID
* Type * Type * Type
* Offset ---- * Offset -~~~ * Offset - -+

,/ Metric Data ,’I

'\‘ * Meta Data Generation Number,," l,"

', *Data Generation Number___-* A

'y Consistent Status *. A *
Value Value Value

%OGCI

Meta-data only
transferred upon
initialization or
change - this
reduces both CPU
and network
burden
Separation of
data and meta-
data blocks
enables efficient
RDMA transfer of
data

s | Resources

Documentation (Building, Using)
o https://ovis-hpcreadthedocs.readthedocs.io/en/latest/

Source Code
o https://github.com/ovis-hpc/ovis
git clone https://github.com/ovis-hpc/ovis.git
git branch —a # Will show all available branches
git branch -a | grep "\-4.3” # Will show all version 4.3 branches

gigcheckout —b OVIS-4.3.<x> origin/OVIS-4.3.<x> # Will check out branch origin/OVIS-4.3.<x> under the name OVIS-
4.3.<x>

o git branch # Will show currently checked out branch

o

(¢]

o

(¢]

Publications:
o https://ovis.ca.sandia.gov

How you can contribute
o Post an issue at: https://github.com/ovis-hpc/ovis/issues

Support
o Bug reporting and community support: Post an issue at https://github.com/ovis-hpc/ovis/issues

o Development and support: contact tom@ogc.us
o Support services: contact tom@ogc.us

https://github.com/ovis-hpc/ovis.git
https://ovis.ca.sandia.gov/
https://github.com/ovis-hpc/ovis/issues
https://github.com/ovis-hpc/ovis/issues
mailto:tom@ogc.us
mailto:tom@ogc.us

.| Supported Platforms and Networks & Dependencies

=< 0GC

Linux support Transport Support
c RHEL7 & 8 o Socket
o SLES 11 -15 o Cray ugni— Aries & Gemini
o TOSS o RDMA — Infiniband, iWarp, libfabric
o Ubuntu

Typical compute node environment dependencies

o Autoconf >=2.63, automake, libtool (collectively
called autotools)

(o]

RedHat (7-9)

Vendor hardware platforms supported software
> ARM > OpenSSH-devel

> Cray XC and EX o lib*-devel for specific plugins that are enabled

o Generic Linux clusters (may not have all
dependencies)

> |BM Power (both big and little endian)]

ol | DMS Installation Methods

1. LDMS Development Containers
o Dependencies and pre-requisites already installed
o Easy to build and install LDMS

o Pull & run development container
> docker pull ovishpc/ldms-dev:4.3.11 #(based on Ubuntu 22.04)

> docker run -it --name dev -hname dev ovishpc/ldms-dev:4.3.11

=< 0GC

Example: Quick build in the dev container
o git pull https://github.com/ovis-hpc/ovis

o cd ovis

(¢]

.Jautogen.sh
mkdir build && cd build
../configure --prefix=/opt/ovis

(¢]

(¢]

make && make install i

(¢]

For more info, see https://github.com/ovis-hpc/ovis

https://github.com/ovis-hpc/ovis
https://github.com/ovis-hpc/ovis

« I Qther LDMS Installation Methods

=< 0GC

1. Build and install using VM’s or containers |
2. Manually build and install using autoconf and automake

3. Build and install RPMs

Note 1: For this tutorial, LDMS is pre-installed on attendee containers in /opt/ovis

Note 2: We will be using the pre-installed software, scripts and configuration files for the exercises

ol
-
s
)
V)

» | Getting started: Log in and set up your
environment

We will be using a container cluster provided by Open Grid Computing.
Instructions to download and access the LDMSCON2023 containers are shown below.

An email with an SSH identity file attached was sent out to those who registered to LDMSCON2023 via
Eventbrite.

1. Download the SSH identity file (id_rsa) that was sent to your email address

2. Login to the container

$ ssh -1 <path-to-id_rsa>/id_rsa root@<email-username>. ldms-ug.dev

Note: The “-i” option tells 'ssh' to use the specified id_rsa file instead of the default '"~/.ssh/id_rsa’. This file will
only work on your designated host so do not share with others.

You will want at least 2 terminal windows up for the tutorial

« | Getting started: Directory structure
=< 0GC

Containers include source code, scripts and configuration files for every exercise, helper mini-applications for
use in the exercises
‘

Directory structure:

/root/ldmscon2023/basic/ # Location of exercise related directories
/root/ldmscon2023/basic/conf/e*/ # Exercise configuration files

/root/ldmscon2023/basic/data/ # LDMS data

/root/ldmscon2023/basic/env/ # Scripts to configure environment variables
/root/ldmscon2023/basic/scripts/e*/ # Helper scripts for deploying LDMS daemons |
/root/ldmscon2023/basic/logs/ # Place to write log files

.| Getting started: Set up and verify your
environment 3¢ oscl

Source your environment configuration file (Idms-env.sh):
S source /root/ldmscon2023/basic/env/ldms-env.sh

Contents of Idms-env.sh:

#!/bin/bash

TOP=/opt/ovis

export LD_LIBRARY_PATH=$TOP/lib64/:SLD_LIBRARY PATH

export LDMSD_PLUGIN_LIBPATH=STOP/lib/ovis-ldms

export ZAP_LIBPATH=STOP/lib/ovis-ldms

export PYTHONPATH=STOP/lib/python3.10/site-packages/:SPYTHONPATH
export PATH=STOP/sbin:STOP/bin:SPATH

*A live example of these commands can be found here:
Verify Environment Variables

Note: Container environments are already set so sourcing this file is optional.

https://snell1224.github.io/OVIS-Tutorial/FY21/tutorial_links/verify-environment-fy21.html

Exercise 1: Configuring
and Running Samplers

- | Start and Check Status of a LDMS Daemon

%OGC
Exercise Goals:

Basic LDMS daemon startup and flags/args
> Command line configuration

° Run-Time Configuration

Use of Idms_Is utility as a diagnostic tool

For more help and information please visit the man pages
° man ldmsd — displays Idmsd man pages

> man ldmsd_controller — displays “ldmsd_controller” man pages
°c man ldms_Is — displays ldms_Is man pages

_|Start a LDMS daemon

=< 0GC

 Start ldmsd with minimum configuration |

$ Tdmsd -x sock:10001 -1 ~/1ldmscon2023/basic/logs/samplerl.log

-x: transport : listening port

-I: Specify the log file path and name(this is not strictly necessary)

Commands should be written in the command prompt window. Copy and paste may introduce non-printing
characters and unexpected results

Terminal #1 I

» 1Check ldmsd Running Status

* Using ps %OGCI
$ps auxw | grep ldmsd | grep -v grep |
* Returns something like:
“ovis_pu+ 3582 0.0 0.1 401604 2204 ? Ss1 12:51 0:00 Tdmsd
-x sock:10001“ if running
* Returns: blank line if not running

Note: This is only a single method in checking the LDMS daemon process and is not an LDMS related command.

* Using ldms_Is
$1dms_1s -h localhost -x sock -p 10001 -v

* Returns: “Connection failed/rejected.” if [Idmsd specified does not exist or authentication fails

* Returns: blank line if the I[dmsd specified exists but has no metric sets configured

* Check the log file. This can be used to find clues when troubleshooting.
$ cat ~/1ldmscon2023/basic/Togs/samplerl.log

Note: The default values for transport (-x) and hostname (-h) are “sock” and “localhost”, respectively.

Terminal #1 I

zo‘Manually Configure a Sampler Plugin

=< 0GC

Exercise Goals:

Basic sampler plugin operation
* Manual configuration using the “ldmsd_controller” utility
* Static configuration using a configuration file
* Plugin_meminfo — Collect memory metrics from the memory usage report in /proc/meminfo
* Plugin_vmstat — Collect system metrics from the monitoring utility “vmstat”

Use of Idms_Is utility as a diagnostic tool

Man Pages
° man Plugin_meminfo — opens meminfo plugin man pages
o man Plugin_vmstat — opens vmstat plugin man pages
°c man ldms_Is —opens Idms_Is man pages

_|Configuring a LDMS Daemon Sampler
Plugin

Goals:
Load a sampler plugin

Configure loaded sampler plugin
* Give the set name (instance)

* Give the node name (producer)
* Give the component ID
* Plugin-specific arguments

Start sampler plugin with a particular sampling interval.

=< 0GC

» | Interactive Configuration Using The

ldmsd_controller < oc|
Using a separate terminal (terminal #2), connect to your [dmsd using the
“ldmsd_controller” utility
$1dmsd_controller -h localhost -x sock -p 10001 |
welcome to the LDMSD control processor]
sock:localhost:10001> help
Note 1: The prompt tells you <transport>:<hostname>:<port>. You can use “quit” or Ctrl-d to exit or
Ctrl-c to kill the ldmsd_controller |

*An example of running these commands can be found
here: LDMSD Controller Interface Video

Terminal #2

https://snell1224.github.io/OVIS-Tutorial/FY21/tutorial_links/ldmsd_controller-interface-fy21.html

Load and Configure the “meminfo”
" Sampler Using the ldmsd_controller

* Load the “meminfo” sampler plugin:

sock:Tocalhost:10001> load name=meminfo

* Configure the “meminfo” sampler plugin:

sock:Tocalhost:10001> config name=meminfo producer=${HOSTNAME }
instance=${HOSTNAME}/meminfo component_id=${COMP_ID}

name: plugin name

producer: By convention set to host name (can be any string). Source of the I[dms data.
Instance: By convention set to producer/<sampler name> (unique string). Uniquely identifies
the metric set (e.g. where and what type of data is being produced).

component_id: By convention some unique numeric identifier (any uint_64). Another unigue
identifier for faster comparison (e.g. number)

* Optionally copy & paste above contents from the following text file under # load and configure:

$ cat ~/ldmscon2023/basic/scripts/el/sampler_plugins.txt

Terminal #2

y ‘Query Current Sets Using “ldms_Is”

=< 0GC

* Interminal #1, use I[dms_Is to query the sets currently available on an LDMS daemon |

$1dms_Ts -h localhost -x sock -p 10001

${HOSTNAME} /meminfo

Terminal #1 I

. | Get The Set Meta-Data Before Starting The
“meminfo” Sampler Plugin Using -v Flag 34 oec|

$1dms_1s -h localhost -x sock -p 10001 -v ${HOSTNAME}/meminfo

Schema Instance _ Flags Msize Dsize UID GID Perm
Update Duration Info

meminfo ${HOSTNAME8/meminfo L 1952 416 506 742 -

FWX WX rwX 0.000000 0.000000 "updt_hint_us"="1000000:0"

Total Sets: 1, Meta Data (kB): 1.95, pata (kB) 0.42, Memory (kB): 2.37

]
Note 1: The “S{HOSTNAME}/meminfo” is optional. Leaving it off will display the meta-data for all metric sets I
resident on this LDMS daemon. ‘

Note 2: If you re-run this command multiple times and observe the timestamp, you will see the sampler is not
updating. This means it has not started collecting “meminfo” data yet.

Terminal #1

Query Current Metric Values Before Starting
*The “meminfo” Sampler Plugin using -l flag

$1dms_Ts -x sock -p 10001 -1 ${HOSTNAME}/meminfo

S{HOSTNAME}/meminfo: inconsistent, last update: Wed Dec 31 17:00:00 1969 -0700 [Ous]

M u64
D u6b4
D u64
D u64d
D u6b4
D u64d
D u6b4
D u64d
D u64d
D u6b4
D u6b4d
D u6b4d
D u6b4

component_id

job_id

app_id
MemTotal
MemkFree
MemAvailable
Buffers
Cached
SwapCached
Active

Inactive
Active(anon)
Inactive(anon)

1

O O OO OO0 O o o o o o

* Values (set to 0)
have not yet been
collected

Note 1: We did not have to specify the hostname with —h
because the default is “localhost”.

Note 2: The “S{HOSTNAME}/meminfo” is optional.
Leaving it off will display the data for all metric sets
resident on this LDMS daemon.

Note 3: The timestamp is the start of epoch time

Terminal #1

_|Start The “meminfo” Sampler Plugin
Using the ldmsd_controller

* |In terminal #2, start the “meminfo” sampler with a 1 second (1,000,000us) interval

sock:Tocalhost:10001> start name=meminfo interval=1000000

* This starts the sampler updating the metric values every 1,000,000 micro-seconds = 1 second

|”

Note 1: “interval” defines the number of micro-seconds between successive samples

* Optionally copy & paste above contents from the following text file under # start:

$ cat ~/ldmscon2023/basic/scripts/el/sampler_plugins.txt

Terminal #2

. |Query Current Metric Values After
Starting The “meminfo” Sampler Plugin

$ 1dms_Ts -x sock -p 10001 -1 ${HOSTNAME}/meminfo

S{HOSTNAME}/meminfo: consistent, last update: Tue Oct 08 17:52:45 2019 -0600 [2058us]

M ub4
D u64
D u64
D ub4
D ub4
D ub4
D u64
D u64
D u64
D ub4d
D ub4d
D u64
D ub4

component_id

job_id
app_id
MemTotal
MemFree
MemAvailable
Buffers
Cached
SwapCached
Active
Inactive
Active(anon)

Inactive(anon)

1
0
0
131899768
129843340
129364708
20076
458024

0

184380
393140
125324
284684

* Values are being
collected

Note 1: We did not have to specify the hostname with —h because the
default is “localhost”.

Note 2: The “S{HOSTNAME}/meminfo” is optional. Leaving it off will
display the data for all metric sets resident on this LDMS daemon.

Note 3: The number in microseconds is when the sampling is scheduled
to start. We have it to set to zero (every second on the second) and is a
few milliseconds off due to the scheduler.

Terminal #1

%OGCI

» | Check Source (/proc/meminfo) For

Reference

« Validate that the LDMS daemon is collecting “meminfo” data

$cat /proc/meminfo

MemTotal:
MemFree:

MemAvailable:

Buffers:
Cached:
SwapCached:
Active:
Inactive:
Active(anon):

Inactive(anon):

Active(file):

131899768 kB
129828892 kB
129350280 kB
20076 kB
458076 kB

0 kB

184380 kB
393064 kB
125324 kB
284680 kB
59128 kB

%OGCI

$ 1dms_1s -x sock -p 10001 -1 ${HOSTNAME}/meminfo

S{HOSTNAME}/meminfo: consistent, last update: Tue Oct 08 17:52:45 2019 -0600 [2058us]

M u64
D u64
D u64
D u64
D u64
D u64
D u64
D u64
D u64
D u6b4d
D u6b4d
D u64
D u64

component_id
job_id

app_id
MemTotal
MemkFree
MemAvailable
Buffers
Cached
SwapCached
Active

Inactive
Active(anon)
Inactive(anon)

1
0
0
131899768
129843340
129364708
20076
458024
0
184384
393140
125324
284684

Terminal #1

.| Change The Sampling Interval

* Using Ildmsd_controller, stop the plugin:

sock:localhost:10001> stop name=meminfo

Note: Querying with Idms_Is —v will show that the sampler is not updating

I
Note: We are still using the same sampler daemon from earlier. It should not be killed yet.
* Restart the plugin with a different (5 sec) interval: ’
sock:localhost:10001> start name=meminfo interval=5000000
Note: Querying with ldms_Is -v multiple times will show that the metric set is now updating only every
five seconds.
o Exit out of the I[dmsd_controller with “quit” or Ctrl-d OR kill the Idmsd_controller with Ctrl-c
i
|

Terminal #2

. | Kill Currently Running Daemons

* Option 1: Kill all ldms daemons

$pkiTll Tdmsd

* Option 2: Kill a particular Idms daemon

$ps auxw | grep ldmsd | grep

-V grep

root 1577 0.0 0.0 763812 6088 ?
basic/logs/samplerl.log

root 1585 0.0 0.0 102660 20768 pts/1
host -x sock -p 10001

$kill 1577
$kiTl 1585

* Check to make sure they are dead

Ss1 18:14 0:00 Tdmsd -x sock:10001 -1 ~/1dmscon2023/1dms-

ST+ 18:15 0:00 python3 /opt/ovis/bin/ldmsd_controller -h Tocal

Note 1: You can alternatively stop the
ldmsd_controller process by exiting (“quit”
or Ctrl-d) or killing it (Ctrl-c) in terminal #2

$ps auxw | grep ldmsd | grep -v grep

Note 2: If you are having issues killing the daemon, you can always run “kill -9 <pid>"

Terminal #1 or #2

. | Start a ldmsd and Configure a Sampler
Plugin Using a Configuration File 34 oec|

* Syntax is identical to that used for manual configuration

* Examine the sample configuration file for the meminfo example:

$cat ~/ldmscon2023/basic/conf/el/simple_sampler.conf

* Alternatively create this file with the content shown below and filling in appropriate information:

lToad name=meminfo
config name=meminfo producer=${HOSTNAME} instance=${HOSTNAME}/meminfo component_id=${COMP_ID}

start name=meminfo interval=1000000

* Run an ldmsd using this configuration file (argument after the —c flag).
* Using configuration files because bash variables are supported (i.e. SHOSTNAME)

$1dmsd -x sock:10001 -1 ~/../logs/samplerl.log -c ~/../conf/el/simple_sampler.conf

Terminal #1

‘Query The Metric Values: The “meminfo”
”Sampler Is Configured And Running

S Idms_Is -x sock -p 10001 - S{HOSTNAME}/meminfo

S{HOSTNAME}/meminfo: consistent, last update: Tue Oct 08 17:52:45 2019 -0600 [2058us]

M u64
D ub4
D ub4
D u64d
D u64d
D u64
D ub4
D ub4
D ub4
D u64
D u64
D u64
D ub4

component_id
job_id

app_id
MemTotal
MemFree
MemAvailable
Buffers
Cached
SwapCached
Active

Inactive
Active(anon)

Inactive(anon)

62
0
0
131899768
129843340
129364708
20076
458024

0

184380
393140
125324
284684

* Values are being
collected

Note 1: We did not have to specify the hostname with —h
because the default is “localhost”.

Note 2: The “S{HOSTNAME}/meminfo” is optional.
Leaving it off will display the data for all metric sets
resident on this LDMS daemon.

Terminal #1 I

.| Multiple Sampler Plugins Running on a Single |
lded %OGCI

* Copy and paste the contents located in ~/.../scripts/el/sampler_plugins.txt in the ldmsd_controller interface.

* Alternatively modify the “simple_sampler.conf” file to include the above contents at the end of the file and then restart
your Idmsd using -c

config name=vmstat producer=${HOSTNAME} instance=${HOSTNAME}/vmstat
component_id=${COMP_ID}

start name=vmstat interval=1000000

Toad hame=vmstat ‘

* Optionally copy & paste above contents from the following text file under # vmstat plugin:

$cat ~/1dmscon2023/basic/scripts/el/sampler_plugins.txt

* Query the ldmsd using Idms_Is:

$1dms_1s -h localhost -x sock -p 10001

${HOSTNAME} /vmstat
${HOSTNAME} /meminfo

* Do not kill this LDMS daemon as we will be using it for the next exercise(s).

Terminal #1

» | Configuration Methods Summary

=< 0GC

* Dynamic configuration using Idmsd_controller

* Idmsd_controller is a Python script that can connect to a I[dmsd via a configured network socket (supports
command completion)

* Startup configuration via configuration file
* Configuration file — loaded at I[dmsd runtime
* All commands from this tutorial can be automated

* Example: “echo config.file | [Idmsd_controller —x sock —p 10001”

36

Exercise 2: Configure LDMS Aggregators

» | Configure a LDMS Daemon (ldmsd) to
Aggregate Metric Set(s) < osc

Goals:
* Add list of connections to a I[dmsd (connections to sampler Idmsd(s))

e Start the connections

* Create an “update policy”
o Define an “update policy” update period and offset

o Define which sets an update policy refers to (or all)

 Start the “update policy”

.| Start a ldmsd That Will Be Used For |

Aggregation 3¢ osc |
* Configure a second ldmsd sampler that listens on a different host with a different component id by first

logging into another node and setting the SCOMP_ID variable to 2:
$ ssh node-2 i
 Start this Idms sampler with the configuration file and have it listen on port 10001 with log file “sampler2.log” ‘
$1dmsd -x sock:10001 -1 ~/1ldmscon2023/basic/logs/sampler2.log -c

~/../conf/el/simple_sampler.conf

e Start a new aggregator I[dmsd with minimum configuration:

$1dmsd -x sock:20001 -1 ~/1dmscon2023/basic/logs/aggd. log
-x: Transport : listening port

-I: Specify the log file path and name (optional)
-c: Specify the configuration file path and name

]
Note 1: We are using 10001 for our samplers and port 20001 for our aggregator.
Note 2: The sampler would need to listen on a different port if it was started on I
the same node (i.e. 10001).
Note 3: The sampler listening on the second node (i.e. node-2) will only sample
meminfo. If you wish for to sample vmstat, then please repeat the instructions in
the previous exercise for this node OR uncomment the section vmstat for second
sampler in ~/simple_sampler.conf and start it using this file. I

Terminal #1

‘ Interactive Aggregator Configuration
Using the ldmsd_controller 3¢ oc

$1dmsd_controller -h localhost -x sock -p 20001

wWelcome to the LDMSD control processor

* Set up “ldmsd_controller” connection to the aggregator over socket |
i
sock:Tocalhost:20001> ‘

Note: We need set the port to 20001 to connect to our aggregator.

Terminal #2

- 1S1Imple Aggregator Producer Configuration

e prdcr_add: defines the name of the producer (i.e. daemon collecting the data) to aggregate from
* prdcr_start: Initiates connection with a producer. It does NOT start a producer (which the name implies)

sock:localhost:20001> prdcr_add name=prdcrl host=${HOSTNAME1} port=10001 xprt=sock
type=active interval=20000000

sock:localhost:20001> prdcr_start name=prdcrl

sock:localhost:20001> prdcr_add name=prdcr2 host=${HOSTNAME2} port=10001 xprt=sock
type=active interval=20000000

sock:localhost:20001> prdcr_start name=prdcr2

* Configure the aggregator to aggregate from your sampler daemons (listening on port 10001/10001) |
‘

. Note 1: The sequence of commands can
name: pOlICV tag (thIS IS JUSt d Strmg) be changed (i.e. the prdcr_add’s can be

host: hostname of the sampler daemon that the aggregator is connecting to nPutted before the prdcr_start’s)
port: Port the sampler daemon listens on

xprt: Transport the sampler daemon listens on]
type: Choose “active” (aggregator will initiate the connection with the sampler) |
interval: Re-connect interval (set to 20 seconds) (This is NOT the sampler interval) ‘

* Optionally copy & paste contents located in the text file under # producers:
$ cat ~/ldmscon2023/basic/scripts/e2/agg_samplers.txt Terminal #2

Check Aggregator Status

(after producer (prdcr) is started but before the updater (updtr) is started)

sock:Tocalhost:20001> status

Name Type Interval Offset Libpath

node-1 10001 sock CONNECTED
node-1/meminfo meminfo START
node-1/vmstat vmstat START

rdcr2 node-2 10001 sock CONNECTED
=2/ meminfo meminfo START

%OGCI

Terminal #2

‘ Query Current Metric Values On The
Aggregator

$1dms_1s -h Tlocalhost -x sock -p 20001 -1

Note: While status (previous slide) shows that the aggregator knows what sets the producer has,

the ldms_|Is query returns nothing because there is no update policy associated with the connected

prdcr and the sets have not yet been created and populated with data at the aggregator.

Terminal #1

., | Configure and Start Aggregator Updater
POllcy %OGCI

* Configure the aggregator to update all schemas (i.e. meminfo and vmstat).

sock:Tocalhost:20001> updtr_add name=update_all interval=1000000 auto_interval=true
sock:Tocalhost:20001> updtr_prdcr_add name=update_all regex=.*
sock:Tocalhost:20001> updtr_start name=update_all

name: policy tag (string)
interval: update (pull) interval (in usec)

° Example: interval=1000000 means it will pull data from associated prdcr every 1 second
auto_interval: Automatically aggregate according to update hint (default false)

> Example: This daemon will aggregate every <interval> seconds set in the sampler (i.e. the “updt_hint_us” from Idms_lIs -v)
° If false, then it will default to the interval specified on the aggregator.
regex: regular expression to match the target producers tag(s)

o prdcrl in this case (see slide 50)

* Optionally copy & paste contents located in the text file under # updater:

$ cat ~/ldmscon2023/basic/scripts/e2/agg_samplers.txt

Terminal #2

« 1 Check Aggregator Status

(after starting both producer (prdcr) and updater (updtr) policies)

sock:Tocalhost:20001> status

Name Type Interval Offset Libpath
Name Host Port Transport State
prdcr1 node-1 10001 sock CONNECTED
node-1/meminfo meminfo READY
node-1/vmstat vmstat READY
prdcr2 node-2 10001 sock CONNECTED
node-2/meminfo meminfo READY
Name Interval:Offset Auto Mode State Skipped counter Oversampled counter

r1 1.0s:0.0ms true Pull RUNNING 0
prdcr1 node-1 10001 sock CONNECTED
r2 node-2 10001 sock CONNECTED

Name container Sehema- Ptugin tlush(sec) State

Terminal #2

. | Query Current Metric Values On The

Aggregator

$1dms_1s -h localhost -x sock -p 20001 -1 ${HOSTNAME}/meminfo

S{HOSTNAME}/meminfo: consistent, last update: Wed Oct 09 18:30:49 2023 -0600 [2093us]

M u64d
D ub4d
D ub4d
D ub4
D ub4
D ub4d
D ub4
D ub4
D ub4d
D ub4
D u64d
D ub4d

component_id

job_id

app_id
MemTotal
MemFree
MemAvailable
Buffers
Cached
SwapCached
Active

Inactive

Active(anon)

62

0
0
131899768
129834752
129356628
20228
458892

0

196708
393768
137336

Note: You can query the other sampler with the set
instance name: S{HOSTNAME}/meminfo
Or all of them with —I only.

Terminal #1

%OGCI

* A ldmsd for performing aggregation can also be started using a configuration file in the same manner as a

y Start Aggregator ldmsd Using a Configuration File

l[dmsd for sampling (see slide 40)
* Configuration file syntax is identical to that used for manual configuration

* Check out your sample configuration file: I

$cat ~/ldmscon2023/basic/conf/e2/simple_agg.conf

Alternatively create a conf file in this directory and populate it with the contents below:

prdcr_add name=prdcrl host=${HOSTNAME1l} port=10001 xprt=sock type=active interval=20000000
prdcr_start name=prdcrl
prdcr_add name=prdcr2 host=${HOSTNAME2} port=10001 xprt=sock type=active interval=20000000
prdcr_start name=prdcr2

updtr_add name=update_all interval=1000000 auto_interval=true

updtr_prdcr_add name=update_all regex=.*

updtr_start name=update_all

Terminal #1

« 1 Start Aggregator ldmsd Using a Configuration File

* Exit out of the l[dmsd_controller with “quit” or Ctrl-d OR kill the Idmsd_controller with Ctrl-c

* Kill ONLY your aggregator Ildmsd (i.e. port 2001).

$ps auxw | grep ldmsd | grep -v grep

ovis_pu+ 3582 0.0 0.1 401604 2204 7 Ss1 12:51 0:00
ldmsd -x sock:20001 -S samplerd.sock
$kiT1 3582

* Restart your aggregator using the “simple_agg.conf” configuration file

$1dmsd -x sock:20001 -1 ~/Tdmscon2023/basic/logs/aggd.log -c
~/1ldmscon2023/basic/conf/e2/simple_agg.conf

Note: If you kill all LDMS daemons (samplers and aggregator) you can easily restart the samplers using a
configuration file (exercise 1).

Terminal #1

. |Query Current Metric Values On The
Aggregator

$1dms_Ts -x sock -p 20001 -1 ${HOSTNAME}/meminfo

S{HOSTNAME}/meminfo: consistent, last update: Wed Oct 09 18:30:49 2019 -0600 [2093us]

M u64 component_id 62

D ub4d job_id 0

D ub4d app_id 0

D ub4d MemTotal 131899768

D u64d MemFree 129834752

D ued MemAvailable 129356628

D uea Buffers 50228 Note: You can query the other sampler with the set
u u instance name: S{HOSTNAME}/meminfo

D u64 Cached 458892 Or all of them with -l

D ub4d SwapCached 0

D u6b4 Active 196708

D u64d Inactive 393768

Terminal #1

Exercise 3: Storing Data
In CSV Format

. ‘ Storing Data: CSV Store Plugin

* Configure an aggregator [dmsd with a CSV store plugin using a configuration file
* Minimal store options (don’t buffer data)

Goals:
* Configure an aggregator [dmsd with a CSV store plugin using ldmsd_controller

i
* Note: The scripts/el - e3 directories contain scripts to start [Idmsd using associated configuration files ‘

Example output from the “meminfo” sampler:

HTime,Time usec,ProducerName,component_id,#'ob_id,MemTotaI,MemFree,MemAvaiIabIe,Buffers,Cached,SwapCached,Active,Inactive,
Active(anon),Inactive(anon),Active(file),Inactive(file),Unevictable,Mlocked,SwapTotal,SwapFree,Dirty,Writeback,AnonPages,Mapped,Sh
mem,Slab,SReclaimable,SUnreclaim,KernelStack,PageTables,NFS_Unstable,Bounce,WritebackTmp,CommitLimit,Committed_AS,VmallocT
otal,VmallocUsed,VmallocChunk,HardwareCorrupted,AnonHugePages,HugePages Total,HugePages Free,HugePages Rsvd,HugePages S
urp,Hugepagesize,DirectMap4k,DirectMap2M

1487105964.002482,2482,node-3,3,

0,1884188,571028,1688632,0,1212004,6108,104536,1122496,8276,8580,96260,1113916,0,0,839676,793956,420,0,10552,24812,1796
,52124,40104,12020,1792,3280,0,0,0,1781768,387984,34359738367,7216,34359728128,0,2048,0,0,0,0,2048,47040,2050048

1487105963.002583,2583,5{HOSTNAME}O0,10,

0,1884188,1665280,1671132,948,107512,0,71540,80920,44128,8308,27412,72612,0,0,839676,839676,0,0,44000,22264,8436,35680,2
4304,11376,1600,2940,0,0,0,1781768,296444,34359738367,7216,34359728128,0,6144,0,0,0,0,2048,34752,2062336

1487105963.001964,1964,5{HOSTNAME}2,12,

0,1884188,1623168,1644996,948,129700,0,89312,101956,60788,8332,28524,93624,0,0

,0,839676,839676,0,0,60620,23912,8500,36456,
24608,11848,1872,4364,0,0,0,1781768,403252,34359738367,7216,34359728128,0,1638

839676,
4,0,0,0,0,2048,44992,2052096

51 ‘ CSV Store: Manual Aggregator Configuration

DO NOT kill the LDMS daemons (i.e. samplers and aggregator)

* Configure the aggregator to store the “meminfo” set to a CSV file using Idmsd_controller
e Create a directory for the CSV data, load the store_csv plugin and configure the plugin

$1dmsd_controller -h localhost -x sock -p 20001

sock:Tocalhost:20001> load name=store_csv

sock:localhost:20001> config name=store_csv path=/root/ldmscon2023/basic/data/ buffer=0

name: plugin name

path: Path to the base directory for the csv file container. This directory must exist prior to loading this configuration or daemon will
throw an error and terminate.

buffer: ‘0’ to disable buffering. This will flush each row to the csv file and allow us to see live updates of the stored data.

man page:

Sman Plugin_store_csv # opens store_csv plugin man pages

» Optionally copy & paste contents located in the text file under # load:
$ cat ~/ldmscon2023/basic/scripts/e3/store_csv.txt

Terminal #2

52‘ CSV Store: Cont.

* Check status

sock:localhost:20001> status
Name Type Interval Offset Libpath

=< 0GC

Csv store 1000000 0 /opt/ovis/lib/ovis-ldms/libstore_csv.so
Name Host Port Transport State
prdcrl node-1 10001 sock CONNECTED
node-1/meminfo meminfo READY
node-1/vmstat vmstat READY
prdcr2 node-2 10001 sock CONNECTED
node-2/meminfo meminfo READY
Name Interval:Offset Auto Mode State Skipped counter Oversampled counter
updtrl 1.0s:0.0ms true Pull RUNNING 0 0

node-2 10001 sock CONNECTED
Container Schema Plugin flush(sec)

i
nhode-1 10001 sack FONNECTED I
Terminal #2 I

.| CSV Store: Cont.

* Configure the aggregator to store the “meminfo” set to a csv file.

sock:Tocalhost:20001> strgp_add name=meminfo-store_csv plugin=store_csv
container=memory_metrics schema=meminfo

name: storage policy tag
plugin: store plugin used for storing metric set data

container: the storage backend container name. For csy, this is the directory where the output file will

go. This will be created in “path”.
schema: metric set schema to be stored

Note: The default for schema is sampler plugin name but can be modified but it is for a more
advanced tutorial.

* Optionally copy & paste contents located in the text file under # config:

$ cat ~/ldmscon2023/basic/scripts/e3/store_csv.txt

Terminal #2

‘ CSV Store: Cont.

* Check status
sock:localhost:20001> status

Name Type Interval Offset Libpath

csv store 1000000 0 /opt/ovis/lib/ovis-ldms/libstore_csv.so
Name Host Port Transport State
prdcrl node-1 10001 sock CONNECTED
node-1/meminfo meminfo READY
node-1/vmstat vmstat READY
prdcr2 node-2 10001 sock CONNECTED
node-2/meminfo meminfo READY
Name Interval:Offset Auto Mode State Skipped counter Oversampled counter
updtrl 5.05s:0.0ms true Pull RUNNING 0 0
prdcrl node-1 10001 sock CONNECTED
prdcr2 node-2 10001 sock CONNECTED
Name Container Schema e Pliigin flushisec) __ State

meminfo-store_csv memory_metrics meminfo store_csv 0.000000 STOPPED
roducers:

=< 0GC

Terminal #2

.| CSV Store: Continued

 Start meminfo-store_csv policy

sock: Tocalhost:20001> strgp_start name=meminfo-store_csv

name: storage policy tag

* Optionally copy & paste contents located in the text file under # start:

$ cat ~/ldmscon2023/basic/scripts/e3/store_csv.txt

Terminal #2

‘ CSV Store: Cont.

* Check status
sock:localhost:20001> status

Name Type Interval Offset Libpath

csv store 1000000 0 /opt/ovis/lib/ovis-ldms/libstore_csv.so
Name Host Port Transport State
prdcrl node-1 10001 sock CONNECTED
node-1/meminfo meminfo READY
node-1/vmstat vmstat READY
prdcr2 node-2 10001 sock CONNECTED
node-2/meminfo meminfo READY
Name Interval:Offset Auto Mode State Skipped counter Oversampled counter
updtrl 5.0s:0.0ms true Pull RUNNING 0 0
prdcrl node-1 10001 sock CONNECTED
prdcr2 node-2 10001 sock CONNECTED
Name Container Schema Plugin flush(sec) State

0-store_csv memory_metrics meminfo store_csv 0.000000 RUNNING
producers:

active(file) Unevictable Mlocked SwapTotal SwapFree Dirty.....

metrlcs component_id job_id app_id MemTotal MemFree MemAvailable Buffers Cached SwapCached Active Inactive Active(anon) Inactive(ano

=< 0GC

Terminal #2

- | Examining The CSV File

* Check the CSV file

$head ~/1dmscon2023/basic/data/memory_metrics/meminfo
$tail -f ~/Tdmscon2023/basic/data/memory_metrics/meminfo

$1s -Ttr ~/1dmscon2023/basic/data/memory_metrics/

* Note: You do not have to do tail and head. This is only to show that we can see the data is continuously

being populated.

Terminal #1

CSV Store: Start and Configure Aggregator

* "Using a Configuration File 3¢ ooc

* View store relevant part of configuration file at: ~/ldmscon2023/basic/conf/e3/agg store_csv.conf

load name=store_csv
config name=store_csv path=/root/ldmscon2023/basic/data buffer=0

strgp_add name=meminfo-store_csv plugin=store_csv container=memory_metrics
schema=meminfo

strgp_start name=meminfo-store_csv

strgp_add name=vmstat-store_csv plugin=store_csv container=memory_metrics
schema=vmstat

strgp_start name=vmstat-store_csv

* Note 1: This configuration file also stores the vmstat metric set in memory_metric
* Note 2: Can also have different containers for meminfo and vmstat

Terminal #1

‘ CSV Store: Start and Configure Aggregator Using a
Configuration File

* Exit out of the l[dmsd_controller with “quit” or Ctrl-d OR kill the Idmsd_controller with Ctrl-c

* Kill ONLY your aggregator Ildmsd (i.e. port 2001).

$ps auxw | grep ldmsd | grep -v grep

ovis_pu+ 3582 0.0 0.1 401604 2204 7 Ss1 12:51 0:00 T1dmsd -x

sock:20001 -s samplerd.sock

$kill 3582

* Restart your aggregator using the “agg_store_csv.conf” configuration file

$1dmsd -x sock:20001 -1 ~/Tdmscon2023/basic/logs/agg_store.log -c
~/1dmscon2023/basic/conf/e3/agg_store_csv.conf

* Check the CSV file

$head ~/1dmscon2023/basic/data/memory_metrics/meminfo
$tail -f ~/lTdmscon2023/basic/data/memory_metrics/meminfo
$1s -1tr ~/Tdmscon2023/basic/data/memory_metrics/

Terminal #1

60

Basics End

