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Outline

• What? Tracking process creation and performance

• Why? Better: understanding, provisioning, reporting, design

• How? Light-weight, Linux kernel-based method

• Where? In testing on large Sandia production clusters

• Analyses? Preliminary example

Lightning topic: What other analyses should there be that are enabled by this data?

2



Tracking process creation and performance (what)

Collect time-stamped, unaliased data about process or thread start & end events

• Fast, highly configurable PID exclusion filtering is key for administrators
• Many uninteresting PIDs exist, some sensitive PIDs or UIDs
• Exclude matching combinations of program duration, location, or UID

Collect the desired per-process metrics from /proc/$pid/* periodically

• Highly configurable metric data selection. 

• Metrics available in part:
• Job identifiers
• Process state, CPU times, I/O volume, memory usages, page faults, context switches
• Name of blocking system call, UID, GID, oom score (files in use, argv, environment) 
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Understanding, provisioning, reporting, design (why)

What programs are our users actually running?

• Detect versions, configurations, associations with customers (WCIDs)

How should they be running the codes?

• Detect misconfiguration (allocated node under/over-usage)

What software (development) or allocation (management) changes are indicated?

• Detect wrong libraries in use; detect wrong cluster in use; detect misplaced programmatic loads.

What are the performance characteristics of the total workload?

• Detect needs to shift the mix of memory, CPU, network, storage, GPU in the next HW (re)build.
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Light-weight, Linux kernel-based method
(how)

• ldms-notify (or slurmd) daemon 
publishes interesting PIDs via 
stream

• No application modifications
• Store & correlate start/end events
• No periodic /proc search

• linux_proc_sampler (LPS) plug-in 
subscriber monitors only 
‘interesting’ PIDS

• Hardened & extended version of 
app_sampler (not fully compatible)

• Argv, env, syscall, shared libraries, 
files used
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Testing on large production clusters (where)

• Two 1500 node clusters configured to publish both slurm and ldms-notify PID events
• both compute nodes and login nodes

• Filtering out:
• security sensitive processes such as anti-virus
• short duration processes with common paths (e.g /usr/bin)
• processes with UID < 1000 [all the system daemons]

• Not yet running LPS: still qualifying the ldms-notify infrastructure (message rate)

• Observing nightly build jobs:
• which compilers/pythons/file systems are in actual use
• high rates of short and medium life programs

• Observing applications
• LAMMPS demo on next slide
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Preliminary results (analyses)

Data: two weeks of LAMMPS (molecular dynamics simulation tool) on one cluster

• 86 jobs identified by matching executable name regular expression

• 12 unique users
• 1 or more unique binaries per user

• 55,000 total node-hours (9.2% of that cluster)
• also broken down by user
• also broken down by size
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Conclusions/Discussion

Discussion

• Correlating per-process start/end (rather than job start/end) with node performance:

What additional analyses should we be doing?

Conclusions from data:

• Collecting per-process information with LDMS is feasible with proper configuration
• Cost: 110 messages/sec (39 kbyte/s) averaged over a week (cluster with nightlies)
• Login node users can be very naughty (but you knew that)
• Some jobs are very complex (pre/run/post, nightly build, etc).
• Mpiexec vs srun looks very different PID-wise and both are in use.
• Slurm/spank identification of PIDs is incomplete compared to Linux kernel identification.

• Simulation packages driven by python tend to see only the bin/python PID from slurm.
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linux task start message (ldms-notify published stream)

{

"msgno":29080, "schema":"linux_task_data", "event":"task_init_priv", 
"timestamp":1683844505, "context":"*", 

"data":{ 

"ProducerName":“nid393", "start":"1683844505.706770", 

"start_tick":"183944289",

"job_id":“12345", "serial":3083652, "os_pid":146732,

"uid":95782, "gid":95782, "task_pid":146732, "task_global_id":-1, 

"is_thread":0, 

"exe":"/projects/a/bin/empire-pic.x“

}}
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ldms-notify daemon

Manual page provided

Systemd wrapper provided

Derived from Canonical open-source forkstat utility

Start-up/restart of ldms-notify and ldmsd is designed to be fully asynchronous

Stream connections are renegotiated as needed (self and ldmsd fault-tolerant)

Small cache of ‘interesting’ PIDs for ldmsd restart handling is optional
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Linux_proc_sampler new major features (since app_sampler)

• Manual page provided

• Can handle multiple PID sources and formats (currently ldms-notify, slurm)
• Takes ‘best-of-both’ data when two sources present

• Captures enough data to uniquely identify a process across entire center for all time
• Avoids comingling of data from distinct processes during analysis

• (option) Blocking system call names are captured

• (option) User/group names are captured

• (option) Publishes argv and environment as stream messages (pre-MPI_init)
• Filtering the environment by regular expressions is allowed

• (option) Publishes approximate file open/close/delete events (/proc/$pid/fd/* scan)
• Separately tunable scan interval
• Filtering by path regular expressions is allowed
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Anticipated csv-free data flow13
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