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- What? Tracking process creation and performance

- Why? Better: understanding, provisioning, reporting, design
« How? Light-weight, Linux kernel-based method

* Where? In testing on large Sandia production clusters

* Analyses? Preliminary example

Lightning topic: What other analyses should there be that are enabled by this data?
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; | Tracking process creation and performance (what)

Collect time-stamped, unaliased data about process or thread start & end events

 Fast, highly configurable PID exclusion filtering is key for administrators
- Many uninteresting PIDs exist, some sensitive PIDs or UIDs

« Exclude matching combinations of program duration, location, or UID

Collect the desired per-process metrics from /proc/$pid/*
« Highly configurable metric data selection.

« Metrics available in part:
- Job identifiers

« Process state, CPU times, I/0 volume, memory usages, page faults, context switches
- Name of blocking system call, UID, GID, oom score (files in use, argv, environment)



What programs are our users actually running?

- Detect versions, configurations, associations with customers (WCIDs)

How should they be running the codes?

« Detect misconfiguration (allocated node under/over-usage)

What software (development) or allocation (management) changes are indicated?

- Detect wrong libraries in use; detect wrong cluster in use; detect misplaced programmatic loads.

What are the performance characteristics of the total workload?

|
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« Detect needs to shift the mix of memory, CPU, network, storage, GPU in the next HW (re)build.



Light-weight, Linux kernel-based method @
(how) i oo\ \

I|dms-notify (or slurmd) daemon netlink [ 1dms- | T
publishes interesting PIDs via socket | notify

stream Linux
- No application modifications kernel publish|PID

- Store & correlate start/end events stream
» No periodic /proc search |

stream blob
store

plugin

blob to csv
program

local strep

linux_proc_sampler (LPS) plug-in ldmsd
subscriber monitors only
‘interesting’ PIDS

« Hardened & extended version of

app_sampler (not fully compatible)

- Argyv, env, syscall, shared libraries,
files used

g

publish
env, argy, files

push LPS metric sets



Two 1500 node clusters configured to publish both slurm and [dms-notify PID events
*  both compute nodes and login nodes

- Filtering out:
* security sensitive processes such as anti-virus
« short duration processes with common paths (e.g /usr/bin)
e processes with UID <1000 [all the system daemons]

« Not yet running LPS: still qualifying the Idms-notify infrastructure (message rate)

*  Observing nightly build jobs:
« which compilers/pythons/file systems are in actual use
« high rates of short and medium life programs

« Observing applications
«  LAMMPS demo on next slide
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; 1 Preliminary results (analyses)

Data: two weeks of LAMMPS (molecular dynamics simulation tool) on one cluster
- 86 jobs identified by matching executable name regular expression

« 12 unique users
- 1 ormore unique binaries per user

« 55,000 total node-hours (9.2% of that cluster)

+ also broken down by user Node count histogram '
- also broken down by size :
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s | Conclusions/Discussion

Discussion

- Correlating per-process start/end (rather than job start/end) with node performance:

What additional analyses should we be doing?

Conclusions from data:

« Collecting per-process information with LDMS is feasible with proper configuration

Cost: 110 messages/sec (39 kbyte/s) averaged over a week (cluster with nightlies)
Login node users can be very naughty (but you knew that)

Some jobs are very complex (pre/run/post, nightly build, etc).

Mpiexec vs srun looks very different PID-wise and both are in use.

Slurm/spank identification of PIDs is incomplete compared to Linux kernel identification.

Simulation packages driven by python tend to see only the bin/python PID from slurm.
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o I linux task start message (Idms-notify published stream)

{

"msgno":29080, "schema":"linux_task_data", "event":"task_init_priv",
"timestamp":1683844505, "context":"*",

"data":{
"ProducerName":"nid393", "start":"1683844505.706770",
"start_tick":"183944289",
"job_id""12345", "serial":3083652, "os_pid":146732,
"uid":95782, "gid":95782, "task_pid":146732, "task _global id":-1,
"is_thread":0,

"exe":"/projects/a/bin/empire-pic.x" I
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Manual page provided

Systemd wrapper provided

Derived from Canonical open-source forkstat utility

Start-up/restart of Idms-notify and ldmsd is designed to be fully asynchronous
Stream connections are renegotiated as needed (self and [dmsd fault-tolerant

Small cache of ‘interesting’ PIDs for Idmsd restart handling is optional
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» | Linux_proc_sampler new major features (since app_sampler)

Manual page provided

Can handle multiple PID sources and formats (currently I[dms-notify, slurm)
- Takes 'best-of-both’ data when two sources present

Captures enough data to uniquely identify a process across entire center for all time
« Avoids comingling of data from distinct processes during analysis

(option) Blocking system call names are captured
(option) User/group names are captured

(option) Publishes argv and environment as stream messages (pre-MPL_init)
 Filtering the environment by regular expressions is allowed

(option) Publishes approximate file open/close/delete events (/proc/$pid/fd/* scan)
« Separately tunable scan interval
 Filtering by path regular expressions is allowed




13 ‘Anticipated csv-free data flow /\m ;
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