This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do
not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2023-04881C
Sandia

National

Laboratories

Process Tracking

Benjamin A. Allan

.S. DEPARTMENT OF

ENERGY NASH

National Nuclear Security Administrat

LDMSCON 2023 lightning talk

Sandia National Laboratories is a
multimission laboratory managed
and operated by National Technology
& Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of
Honeywell International Inc., for the
U.S. Department of Energy’s National

Nuclear Security Administration under
& Engineering Solutions of Sandia, LLC, a wholl contract DE-NAQ003525.
curity Administration under contract

June 13, 2023

Boston, MA

@ Sandia National Laboratories Sandia National Laboratories is a multimission laboratory managed and operated by National Technology
— owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Se
@ENERSY NOISA DE-NA0003525.

- What? Tracking process creation and performance

- Why? Better: understanding, provisioning, reporting, design
« How? Light-weight, Linux kernel-based method

* Where? In testing on large Sandia production clusters

* Analyses? Preliminary example

Lightning topic: What other analyses should there be that are enabled by this data?

I
, 1 Outline m
I

; | Tracking process creation and performance (what)

Collect time-stamped, unaliased data about process or thread start & end events

 Fast, highly configurable PID exclusion filtering is key for administrators
- Many uninteresting PIDs exist, some sensitive PIDs or UIDs

« Exclude matching combinations of program duration, location, or UID

Collect the desired per-process metrics from /proc/$pid/*
« Highly configurable metric data selection.

« Metrics available in part:
- Job identifiers

« Process state, CPU times, I/0 volume, memory usages, page faults, context switches
- Name of blocking system call, UID, GID, oom score (files in use, argv, environment)

What programs are our users actually running?

- Detect versions, configurations, associations with customers (WCIDs)

How should they be running the codes?

« Detect misconfiguration (allocated node under/over-usage)

What software (development) or allocation (management) changes are indicated?

- Detect wrong libraries in use; detect wrong cluster in use; detect misplaced programmatic loads.

What are the performance characteristics of the total workload?

|
» I'Understanding, provisioning, reporting, design (why) m
|

« Detect needs to shift the mix of memory, CPU, network, storage, GPU in the next HW (re)build.

Light-weight, Linux kernel-based method @
(how) i oo\ \

I|dms-notify (or slurmd) daemon netlink [1dms- | T
publishes interesting PIDs via socket | notify

stream Linux
- No application modifications kernel publish|PID

- Store & correlate start/end events stream
» No periodic /proc search |

stream blob
store

plugin

blob to csv
program

local strep

linux_proc_sampler (LPS) plug-in ldmsd
subscriber monitors only
‘interesting’ PIDS

« Hardened & extended version of

app_sampler (not fully compatible)

- Argyv, env, syscall, shared libraries,
files used

g

publish
env, argy, files

push LPS metric sets

Two 1500 node clusters configured to publish both slurm and [dms-notify PID events
* both compute nodes and login nodes

- Filtering out:
* security sensitive processes such as anti-virus
« short duration processes with common paths (e.g /usr/bin)
e processes with UID <1000 [all the system daemons]

« Not yet running LPS: still qualifying the Idms-notify infrastructure (message rate)

* Observing nightly build jobs:
« which compilers/pythons/file systems are in actual use
« high rates of short and medium life programs

« Observing applications
« LAMMPS demo on next slide

I
s | Testing on large production clusters (where) m
I

; 1 Preliminary results (analyses)

Data: two weeks of LAMMPS (molecular dynamics simulation tool) on one cluster
- 86 jobs identified by matching executable name regular expression

« 12 unique users
- 1 ormore unique binaries per user

« 55,000 total node-hours (9.2% of that cluster)

+ also broken down by user Node count histogram '
- also broken down by size :
Node hours per anonymous LAMMPS user 30
25000 25
20000 20

15

15000
10
10000
5‘-
5000 0 i » a I .
I [| NS OO N T OO NTONONTONONTONONTONONT OO N
O L] L] — —_— A AT T AT ANANANANANOOO NN TTTITTNINNDINNINOOOOONNN
1 2 3 4 5

e — R NN AT NN TN TN ATNINND = MW N O — o
6 7 8 9 10 11 12 A Ao ANNANNNNONOONTETITIINININININOOOOONN

Bl S i s s

s | Conclusions/Discussion

Discussion

- Correlating per-process start/end (rather than job start/end) with node performance:

What additional analyses should we be doing?

Conclusions from data:

« Collecting per-process information with LDMS is feasible with proper configuration

Cost: 110 messages/sec (39 kbyte/s) averaged over a week (cluster with nightlies)
Login node users can be very naughty (but you knew that)

Some jobs are very complex (pre/run/post, nightly build, etc).

Mpiexec vs srun looks very different PID-wise and both are in use.

Slurm/spank identification of PIDs is incomplete compared to Linux kernel identification.

Simulation packages driven by python tend to see only the bin/python PID from slurm.

o
!

Vg
g
-
<+
X
(D)
o

o I linux task start message (Idms-notify published stream)

{

"msgno":29080, "schema":"linux_task_data", "event":"task_init_priv",
"timestamp":1683844505, "context":"*",

"data":{
"ProducerName":"nid393", "start":"1683844505.706770",
"start_tick":"183944289",
"job_id""12345", "serial":3083652, "os_pid":146732,
"uid":95782, "gid":95782, "task_pid":146732, "task _global id":-1,
"is_thread":0,

"exe":"/projects/a/bin/empire-pic.x" I

1

Manual page provided

Systemd wrapper provided

Derived from Canonical open-source forkstat utility

Start-up/restart of Idms-notify and ldmsd is designed to be fully asynchronous
Stream connections are renegotiated as needed (self and [dmsd fault-tolerant

Small cache of ‘interesting’ PIDs for Idmsd restart handling is optional

I

v I ldms-notify daemon m
) |

|

» | Linux_proc_sampler new major features (since app_sampler)

Manual page provided

Can handle multiple PID sources and formats (currently I[dms-notify, slurm)
- Takes 'best-of-both’ data when two sources present

Captures enough data to uniquely identify a process across entire center for all time
« Avoids comingling of data from distinct processes during analysis

(option) Blocking system call names are captured
(option) User/group names are captured

(option) Publishes argv and environment as stream messages (pre-MPL_init)
 Filtering the environment by regular expressions is allowed

(option) Publishes approximate file open/close/delete events (/proc/$pid/fd/* scan)
« Separately tunable scan interval
 Filtering by path regular expressions is allowed

13 ‘Anticipated csv-free data flow /\m ;
AWIE\CHEIE

Linux N .
kernel oublish PID

streams
local

sosdb
stream

subscribe to i
PID. stream metric
set
/proc/ 4 pusth' .
$pid/* /jme ric sets
S
publish

env, argy, files I

	Process Tracking
	Outline
	Tracking process creation and performance (what)
	Understanding, provisioning, reporting, design (why)
	Light-weight, Linux kernel-based method�(how)
	Testing on large production clusters (where)
	Preliminary results (analyses)
	Conclusions/Discussion
	extras
	linux task start message (ldms-notify published stream)
	ldms-notify daemon
	Linux_proc_sampler new major features (since app_sampler)
	Anticipated csv-free data flow

