
Sandia National Laboratories is a
multimission laboratory managed

and operated by National Technology
& Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of

Honeywell International Inc., for the
U.S. Department of Energy’s National
Nuclear Security Administration under

contract DE-NA0003525.

Process Tracking

Benjamin A. A l lan

LDMSCON 2023 lightning talk

June 13, 2023

Boston, MA

SAND2023-04881CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do
not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract
DE-NA0003525.

Outline

• What? Tracking process creation and performance

• Why? Better: understanding, provisioning, reporting, design

• How? Light-weight, Linux kernel-based method

• Where? In testing on large Sandia production clusters

• Analyses? Preliminary example

Lightning topic: What other analyses should there be that are enabled by this data?

2

Tracking process creation and performance (what)

Collect time-stamped, unaliased data about process or thread start & end events

• Fast, highly configurable PID exclusion filtering is key for administrators
• Many uninteresting PIDs exist, some sensitive PIDs or UIDs
• Exclude matching combinations of program duration, location, or UID

Collect the desired per-process metrics from /proc/$pid/* periodically

• Highly configurable metric data selection.

• Metrics available in part:
• Job identifiers
• Process state, CPU times, I/O volume, memory usages, page faults, context switches
• Name of blocking system call, UID, GID, oom score (files in use, argv, environment)

3

Understanding, provisioning, reporting, design (why)

What programs are our users actually running?

• Detect versions, configurations, associations with customers (WCIDs)

How should they be running the codes?

• Detect misconfiguration (allocated node under/over-usage)

What software (development) or allocation (management) changes are indicated?

• Detect wrong libraries in use; detect wrong cluster in use; detect misplaced programmatic loads.

What are the performance characteristics of the total workload?

• Detect needs to shift the mix of memory, CPU, network, storage, GPU in the next HW (re)build.

4

Light-weight, Linux kernel-based method
(how)

• ldms-notify (or slurmd) daemon
publishes interesting PIDs via
stream

• No application modifications
• Store & correlate start/end events
• No periodic /proc search

• linux_proc_sampler (LPS) plug-in
subscriber monitors only
‘interesting’ PIDS

• Hardened & extended version of
app_sampler (not fully compatible)

• Argv, env, syscall, shared libraries,
files used

5

Linux
kernel

ldms-
notify

netlink
socket

local
ldmsd

publish PID
stream

/proc/
$pid/*

agg.
ldmsd

push LPS metric sets

stream

/store/*DAT

*.csv

stream blob
store
plugin blob to csv

program

sosdb

sosdb
metric

set
store
plugin

compute storage

L
P
S

daemon
sampler
plugin

RAM/
storage

store
plugin OS

publish
env, argv, files

Testing on large production clusters (where)

• Two 1500 node clusters configured to publish both slurm and ldms-notify PID events
• both compute nodes and login nodes

• Filtering out:
• security sensitive processes such as anti-virus
• short duration processes with common paths (e.g /usr/bin)
• processes with UID < 1000 [all the system daemons]

• Not yet running LPS: still qualifying the ldms-notify infrastructure (message rate)

• Observing nightly build jobs:
• which compilers/pythons/file systems are in actual use
• high rates of short and medium life programs

• Observing applications
• LAMMPS demo on next slide

6

Preliminary results (analyses)

Data: two weeks of LAMMPS (molecular dynamics simulation tool) on one cluster

• 86 jobs identified by matching executable name regular expression

• 12 unique users
• 1 or more unique binaries per user

• 55,000 total node-hours (9.2% of that cluster)
• also broken down by user
• also broken down by size

7

0

5000

10000

15000

20000

25000

1 2 3 4 5 6 7 8 9 10 11 12

Node hours per anonymous LAMMPS user

Conclusions/Discussion

Discussion

• Correlating per-process start/end (rather than job start/end) with node performance:

What additional analyses should we be doing?

Conclusions from data:

• Collecting per-process information with LDMS is feasible with proper configuration
• Cost: 110 messages/sec (39 kbyte/s) averaged over a week (cluster with nightlies)
• Login node users can be very naughty (but you knew that)
• Some jobs are very complex (pre/run/post, nightly build, etc).
• Mpiexec vs srun looks very different PID-wise and both are in use.
• Slurm/spank identification of PIDs is incomplete compared to Linux kernel identification.

• Simulation packages driven by python tend to see only the bin/python PID from slurm.

8

extras9

linux task start message (ldms-notify published stream)

{

"msgno":29080, "schema":"linux_task_data", "event":"task_init_priv",
"timestamp":1683844505, "context":"*",

"data":{

"ProducerName":“nid393", "start":"1683844505.706770",

"start_tick":"183944289",

"job_id":“12345", "serial":3083652, "os_pid":146732,

"uid":95782, "gid":95782, "task_pid":146732, "task_global_id":-1,

"is_thread":0,

"exe":"/projects/a/bin/empire-pic.x“

}}

10

ldms-notify daemon

Manual page provided

Systemd wrapper provided

Derived from Canonical open-source forkstat utility

Start-up/restart of ldms-notify and ldmsd is designed to be fully asynchronous

Stream connections are renegotiated as needed (self and ldmsd fault-tolerant)

Small cache of ‘interesting’ PIDs for ldmsd restart handling is optional

11

Linux_proc_sampler new major features (since app_sampler)

• Manual page provided

• Can handle multiple PID sources and formats (currently ldms-notify, slurm)
• Takes ‘best-of-both’ data when two sources present

• Captures enough data to uniquely identify a process across entire center for all time
• Avoids comingling of data from distinct processes during analysis

• (option) Blocking system call names are captured

• (option) User/group names are captured

• (option) Publishes argv and environment as stream messages (pre-MPI_init)
• Filtering the environment by regular expressions is allowed

• (option) Publishes approximate file open/close/delete events (/proc/$pid/fd/* scan)
• Separately tunable scan interval
• Filtering by path regular expressions is allowed

12

Anticipated csv-free data flow13

Linux
kernel

netlink
socket

local
ldmsd

publish PID
streams

/proc/
$pid/*

agg.
ldmsd

push
metric sets

stream

sosdb
stream

store
plugin

sosdb
sosdb
metric

set
store
plugin

L
P
S

publish
env, argv, files

ldms-
notify

sosdb

slurmd

subscribe to
PID stream

daemon
sampler
plugin

RAM/
storage

store
plugin OS

	Process Tracking
	Outline
	Tracking process creation and performance (what)
	Understanding, provisioning, reporting, design (why)
	Light-weight, Linux kernel-based method�(how)
	Testing on large production clusters (where)
	Preliminary results (analyses)
	Conclusions/Discussion
	extras
	linux task start message (ldms-notify published stream)
	ldms-notify daemon
	Linux_proc_sampler new major features (since app_sampler)
	Anticipated csv-free data flow

