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INTRODUCTION

Producing a complete and
accurate set of signal
detections is essential for
automatically building and
characterizing seismic
events of interest for

nuclear explosion
monitoring. We explore
training PhaseNet, a deep
learning model using three-
component sensor data
from the IMS.

International Monitoring System 3-component seismic signal
detection using the PhaseNet deep learning model
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METHODS/DATA

We constructed five IMS
training data sets by
varying the ratio of noise
windows to signal windows
and compared the IMS-

trained models to models
trained from 8 non-IMS
datasets available for

download with SeisBench.
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RESULTS

The IMS-trained models
and SeisBench models
were comparable on recall,
but the IMS-trained models
had 10x fewer false
positives. Two of
SeisBench models trained
on regional signals
performed well on
teleseismic signals.
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CONCLUSION

We found the primary
advantage of training with
IMS data over using the
SeisBench models, was the
suppression of the false
detections on noise
windows.
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IMS LEB Associated Phases Training Dataset
We trained the deep learning model, PhaseNet, for seismic o

detection on 3-component stations from the International - . 0

Monitoring System (IMS), and evaluated the results usingthe S . mllll | i = '

Unconstrained Global Event Bulletin (UGEB) [5]. Using 14 S - ==== .=. = = j ) .IIIII 0 .ll=.===.= O

years of associated signals from the Late Event Bulletin (LEB), w AINE.EEE=A B.NER_ NnENNEEE= 0 NRONNEEEER »

we auto-curated a training data set consisting of signal 80 160 -

windows containing associated arrivals, and noise windows % is

that contain no LEB associated signals. We constructed five I :;

training data sets by varying the ratio of noise windows to e ]

signal win.dows and found tlja?t increasing the num'ber of n(?ise % .

windows increases the precision from .15 to .4 while reducing £

the recall from .6 to .5. Using the SeisBench Toolbox [2], we g |

compared eight PhaseNet models trained on non-IMS dataon & =

the UGEB. The best SeisBench model achieved a .24 F1 score § 0

versus a .49 F1 score for our best IMS-models. However, we

found that the primary benefit of training with LEB data is not Assoc Phase

in detecting more signals, but rather the suppression of noise Floagsis

detections. a%%ég%@%?y
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* Are PhaseNet models trained on non-IMS data transportable to IMS? O

* Methods for building effective IMS training datasets:
* How many samples are needed?
* How does the ratio of noise windows to associated signal windows affect precision and recall?
* What SNR threshold should be used for P and S phases?

* Characterize the relationship between signal SNR and PhaseNet’s response.

* |dentify technical gaps between seismic deep learning research and operational monitoring systems
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Methods: Datasets and Experimental Setup

* |MS Dataset is auto-curated by thresholding waveforms by their —— > Evaluation Framework
estimated SNR using STA/LTA. |
* Late Event Bulletin (LEB) was used to identify associated waveforms We used PhaseNet as a replacement e
* Multiple bandpass filters were applied to associated and non- for the STA/LTA transform in a
associated waveform windows to identify good waveforms. processing pipeline similar to the IDC’s
« We removed associated windows below a minimum SNR of 4 signal detection software. Green R i T
« We removed unassociated waveforms above a maximum SNR of 3 boxes highlight our processing steps.
* Training Dataset Naming Convention: Gray boxes indicate additional

LEB K (ratio of unassociated waveforms to associated waveforms in %) | Processing steps in the traditional TR
signal detection pipeline. Parameters

Signal Enhancement

4 v k J
Signal Onset Detection

| Peak Finding

Y

IMS Training and Evaluation Datasets used in this study: vl P+ METHODS/DATA

| Name | P | S | Noise | Total P | Total S | Total P+S | Total Noise | Signamnslemmsl RESULTS
LEB 100 | 216611 | 23866 | 286942 | 673350 | 80584 | 753934 753934 Parameter Value SNRs PhaseNet
LEB 80 | 216611 | 23866 | 275368 | 673350 | 80584 | 753934 603147 Bandpass Filter 1 [1Hz, 2.5Hz] e Detections CONCLUSION
LEB 20 | 216611 | 23866 | 123926 | 673350 | 80584 | 753934 150787 Bandpass Filter 2 [1.5Hz. 3Hz) Clustering
LEBO | 216611 | 23866 | 0 | 673350 [ 80584 | 753934 0 -
Bandpass Filter 3 [2Hz, 5Hz] < e
[UGEB | 3682 |498 [131747 [ 14728 | 1992 [16720 | 526988 | Bandpass Filier 4 [3Hz, 6Hz] Pr——
Evaluation Dataset (see next slide) Peak Finding Width 4 sec S
“SeisBench” PhaseNet Baseline models [2] Min Peak Thresholds 1,.2,.4, 6,8
" - - Onset Time Cluster Threshold 4 sec Eheetliene
Name Region Source-Receiver Dist Clustering
STEAD global < 350 km
ETHZ Swuzcrlalnd . <10° Signal Measurments
SCEDC Southern California | < 200 km = S
] . B ease do
NEIC global =10 We tested the “SeisBench” and LEB PhaseNet aumuth, | [ Fhese | |Ameltude, not use this
GEOFON global =10 . . ouness e e Spgce, ?}I%R
lquique Chile <10° models on IMS associated signals from the UGEB . . o
LenDB global < 120 km using the our Evaluation Framework IDC Signal Detections overigves
INSTANCE Italy < 600 km
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The UGEB spans May 15t 2010 — May 29t 2010 and consists of approximately 11,000 human-analyst-
built events. The UGEB was constructed by first starting with LEB’s 1650 events from the same time-
period. Note that our LEB training datasets excluded waveforms from this two-week time period.
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Associated Phase Each heat-map bin is normalized by the max element
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Results: Precision and Recall

Precision, Recall, F1
False Count, True

True Positives by Phase

@ Sandia N

Cell format
True Count, Recall
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model |PNR>0.1 | PNR>02 |PNR>04 | PNR>0.6 |PNR>08 |
0.39 0.51 0.44 | 0.550.430.49 | 0.750.320.45 | 0.86 0.200.32 | 0.96 0.05 0.10
LEB 100 32892136 1468 1810 148 1346 130 825 9200 model P 1807 Pg 861 Pn508  Sn289 S209 PKP141 PKPbc97 PcP45
LEB 100 SD 0.300.510.38 | 0.500.46 0.48 || 0. . ¥ 0.890.250.39 | 0960.120.22 LEB 100 99055% 45453% 31161% 10436% 87 42% 61 43% 50 52% 18 40%
5054 2151 1910 1910 248 1317 133 1047 19 506 LEB 80 107459% 52361% 32764% 13948% 11656% 6546% 5759% 2147%
. . . ' . . - - ) . . - . - .. - g
LEggo | 0-260:570.36 1 0.450.49 047 [[0.730.370.49 | 0.870.250.39 | 0.950.120.21 LEB20 106259% 52761% 32865% 15554% 12459% 6244%  5759%  2147%
. gg?;;gi 5 ij?fg“gi . 280 1535 . 8'653 :1!250539 5 9428 ‘]4?40 - LEBO 111161% 53963% 33165% 15554% 12359% 6748%  5658% 27 60%
LEB 20 U9 T i WO el O O eI S ETHZ 115064% 57066% 32063% 15253% 11756% [7452%| 6264% [3067%
9601 2413 2613 2051 558 1526 172 1051 33478 y ; ;i ) i k Jo o
0.150.60 0.24 | 0.40 0.49 0.44 | 0.73 0.35 0.48 | 0.86 0.26 0.40 | 0.93 0.13 0.23 GEOFON  94752% 33339% 21542% 5619% 5721% 46445% S860% 2351%
LEB 0 138132494 | 3063 2039 551 1482 172 1072 41558 INSTANCE 1020 56% 485 56% 28256% 11239% 10048% | 5338%  5254%  2249%
0.010.620.02 | 0.010.56 0.03 | 0.030.45 0.05 | 0.060.33 0.11 | 031 0.170.22 Iquique  91551%  51760% 29358% 13554% 11455% [ 4935% 4344%  1340%
ETHZ St 20 00 Y 9 LA U D22 1 RO LenDB 51128% 26931% 17935% 5118% 4923% | 3223%  2526% 1022%
2848752586 | 1702642325 | 69196 1883 | 20261 1398 1592 700 _ _ :
0.01 0.44 0.02 | 0.020.30 0.03 | 0.07 0.17 0.10 | 0.28 0.09 0.14 | 0.50 0.01 0.02 NEIC 116164% 56165% 30760% 17761% 13263%  6949% 6062% 26 58%
GEOFON | |20 ieia | 67997 1242 9393 718 969 374 4747 SCEDC 1048 58% 51660% 29257% 17561% 13062% 7150% 5355% 27 60%
- 2% 57066% 30760% 18664% 13062% 6848% w[6668% 2147%
INSTANCE | 002053 0.04 [ 0.040420.08 | 0.150.28 0.19 [0.410.17 0.24 | 0.770.07 0.12 STEAD 1127 62% o X B
1133162212 | 38908 1755 6962 1182 1053 730 80275 . /
Iquique 0.010.520.03 [0.020450.04 [0.050350.09 | 0.120.250.16 | 0.390.120.18 Unal‘ltIClpatEd Result:
1577332172 | 82038 1898 | 26966 1466 | 7476 1037 786 495 ETHZ and STEAD SeisBench models did well on
LenDB | 0-020.280.04 [ 0.040.18 007 | 0.1T0.090.10 | 0.190.03 0.05 | 0.340.01 0.02 S )
60600 1167 | 18023 762 3061 374 566 129 73 38 teleseismic signals with respect to the LEB
0.01 0.62 0.02 | 0.01 0.43 0.03 | 0.03 0.12 0.05 | 0.06 0.00 0.01
NEIC 2861932596 | 124767 1786 | 15733513 231 16 N/A Models.
SCEDC | 001058001 [ 0.01046 0.02 [ 0.010.270.03 | 0.03 0.120.04 | 0.160.03 0.05
372568 2416 | 2231391917 | 80255 1120 19652 516 741 138
STEAD | 0:010.620.02 [0.02053 0.03 [ 0.040390.07 | 0.090.20 0.13 [ 0.40 0.05 0.09
2615652585 | 1365692231 | 40764 1618 8159 853 294 200

Notice the number of true positives remains high
relative to other SeisBench models. See the next
slide for a visualization.
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PhaseNet Response to signal SNR for True Positives Detections

Each heat-map bin is normalized by the max element

LEB PhaseNet Models

True Detection PNR vs STA/LTA
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PhaseNet Response trends higher and the response spread decreases as the
STA/LTA response increases. Stated in another way, as the signals become
easier to detect, the PhaseNet response tends to have less spread,
indicating the model is more consistent with respect to higher SNR signals.
Notice the lower PhaseNet response for STA/LTA<=4. Our training dataset
signal STA/LTA threshold was 4.

SeisBench Models

True Detection PNR vs STA/LTA
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Seisbench models ETHZ, GEOFON, Iquique, SCEDC, and STEAD had response curves
similar to that of the LEB models, however there are notable differences. We note
that these SeisBench models have higher PNR values for lower STA/LTA response
signals (compare the STA/LTA bins 2 to 3 for ETHZ with any of the LEB models). We
qualitatively rank the ETHZ model as having the best PhaseNet response due to its
higher PNR mass and less spread for STA/LTA bins >= 4, and its higher PNR mass for
STA/LTA <= 4 relative to the other models.
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False Positive Rates per input window
* We separated the false positive detections into two
types: false positives created from signal windows,

Name Noise Sig Noise/Sig UGEB Noise Win Noise Rate UGEB Sig Win  Sig Rate

and false positive detections created from noise LEEBH;E }13};; }’535 ;1: lilgj; Eg; jlgg ggf’;
windows. The table to the right lists the false : 2151 1 131 : : 1
q . d df g ind . | LEB 20 7191 2410 2.08 131747 0.055 4180 0.577 O
etections produced from noise windows, signa LEBO 11902 1911  6.23 131747 0.090 4180 0.457 ST
windows, and their detection rates. ETHZ 278193 6682 41.63 131747 2.112 4180 1.599
GEOFON 209870 4470 46.95 131747 1.593 4180 1.069
* Given the previous slides on recall performance and INSTANCE 109511 3805 28.78 131747 0.831 4180 0.910
the PhaseNet response to true detections, this table lquique 151820 5913 25.68 131747 1152 4180 L415
h the LEB dels' ori d t ’ th LenDB 57655 2945 19.58 131747 0.438 4180 0.705
Shows the LEB Models primary advantage overthe NEIC 279976 6217  45.03 131747 2.125 4180 1.487
SeisBench models: generating fewer false detections SCEDC 364402 8166  44.62 131747 2766 4180 1.954
from noise windows. STEAD 254494 7071 35.99 131747 1.932 4180 1.692
o
Column Descriptions
Noise: false detections within windows without signals
Sig: false detections within windows with signals
Noise/Sig: Ratio between noise window false detections and signal window false detections
UGEB Noise Win: number of unique noise windows in UGEB
Noise Rate: ratio between Noise to UGEB Noise Win columns The final two columns show Please do
not use tnis
analogous definitions for signal window false detections. space, S
automatically
overlayed
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Concluding Remarks

*  We found the primary advantage of training with IMS data over using the SeisBench models, was the

suppression of the false detections on noise windows. O
(CINTRoDUCTION )
* Unanticipated Result: Relative to the IMS-trained models, ETHZ and STEAD SeisBench models did well on
teleseismic signals.
* Lowering the SNR threshold for the LEB dataset signals will likely lead to better performance on lower SNR
UGEB evaluation. But, this will also likely lead to more false positives.
Thoughts towards building LEB training datasets for the operational monitoring mission:
Model-centric deep learning research has proven the viability of data-driven methods for seismic
monitoring. With the assumption that monitoring organizations will need to retrain models
frequently, the challenge is in developing the data interrogation tools/“rules-of-thumb” to build Please do
not use this
effective training datasets. To address the dataset challenge, we will be focusing on applying Data- space, 3 QR
centric Al approaches [4, 5]. g
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For additional information on the results presented in this poster:

Heck, et. al 2022 International Monitoring System 3-Component Seismic Signal Detection Using the
PhaseNet Deep Learning Model, Sandia Technical Report, SAND2023-10785
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False Positives versus True Positives
* Using 14 years of associated signals from the Late Event

Bulletin (LEB), we auto-curated a training data set consisting
of signal windows containing associated arrivals, and noise
windows that contain no LEB associated signals. 4000 -

LEB PhaseNet Models
* We construct five training data sets by varying the ratio of

noise windows to signal windows. At the lowest detection Detection Thresholds _
thresholds, increasing the number of noise windows increases " 3000 - ¢ SeisBench Models
the precision from .15 to .4 while reducing the recall from .6 = /9181 @1
to .5. 3 9.2
Y 2000 - L2
. . - = ¢ LEB 100
* We found the primary advantage of training with IMS > 9 LEBO
data over using the SeisBench models, was the o ETHZ
suppression of the false detections on noise windows. 1000 - 4 INSTANCE
{» LenDB
* Unanticipated Result: Relative to the IMS-trained models, <» SCEDCSD
ETHZ and STEAD SeisBench models did well on teleseismic A >TEAD

signals. 0 50000 100000 150000 200000 250000 300000 350000
False Positives



