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Producing a complete and 
accurate set of signal 

detections is essential for 
automatically building and 

characterizing seismic 
events of interest for 

nuclear explosion 
monitoring. We explore 

training PhaseNet, a deep 
learning model using three-

component sensor data 
from the IMS.

P3.5-365

We constructed five IMS 
training data sets by 

varying the ratio of noise 
windows to signal windows 

and compared the IMS-
trained models to models 
trained from 8 non-IMS 
datasets available for 

download with SeisBench.

The IMS-trained models 
and SeisBench models 

were comparable on recall, 
but the IMS-trained models 

had 10x fewer false 
positives.  Two of 

SeisBench models trained 
on regional signals 
performed well on 

teleseismic signals.

We found the primary 
advantage of training with 
IMS data over using the 

SeisBench models, was the 
suppression of the false 

detections on noise 
windows.
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Introduction
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We trained the deep learning model, PhaseNet, for seismic 
detection on 3-component stations from the International 
Monitoring System (IMS), and evaluated the results using the 
Unconstrained Global Event Bulletin (UGEB) [5].  Using 14 
years of associated signals from the Late Event Bulletin (LEB), 
we auto-curated a training data set consisting of signal 
windows containing associated arrivals, and noise windows 
that contain no LEB associated signals. We constructed five 
training data sets by varying the ratio of noise windows to 
signal windows and found that increasing the number of noise 
windows increases the precision from .15 to .4 while reducing 
the recall from .6 to .5.  Using the SeisBench Toolbox [2], we 
compared eight PhaseNet models trained on non-IMS data on 
the UGEB.  The best SeisBench model achieved a .24 F1 score 
versus a .49 F1 score for our best IMS-models.  However, we 
found that the primary benefit of training with LEB data is not 
in detecting more signals, but rather the suppression of noise 
detections. 

IMS LEB Associated Phases Training Dataset
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Objectives
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• Are PhaseNet models trained on non-IMS data transportable to IMS? 

• Methods for building effective IMS training datasets:
• How many samples are needed?
• How does the ratio of noise windows to associated signal windows affect precision and recall?
• What SNR threshold should be used for P and S phases?

• Characterize the relationship between signal SNR and PhaseNet’s response.

• Identify technical gaps between seismic deep learning research and operational monitoring systems 
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Methods: Datasets and Experimental Setup
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• IMS Dataset is auto-curated by thresholding waveforms by their 
estimated SNR using STA/LTA.

• Late Event Bulletin (LEB) was used to identify associated waveforms
• Multiple bandpass filters were applied to associated and non-

associated waveform windows to identify good waveforms.  
• We removed associated windows below a minimum SNR of 4  
• We removed unassociated waveforms above a maximum SNR of 3
• Training Dataset Naming Convention: 
LEB K (ratio of unassociated waveforms to associated waveforms in %) 

IMS Training and Evaluation Datasets

“SeisBench” PhaseNet Baseline models [2]
Evaluation Dataset (see next slide)

We used PhaseNet as a replacement 
for the STA/LTA transform in a 
processing pipeline similar to the IDC’s 
signal detection software.  Green 
boxes highlight our processing steps.  
Gray boxes indicate additional 
processing steps in the traditional 
signal detection pipeline.  Parameters 
used in this study:

Evaluation Framework

We tested the “SeisBench” and LEB PhaseNet 
models on IMS associated signals from the UGEB
using the our Evaluation Framework
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Methods: Evaluation Dataset 
Unconstrained Global Event Bulletin (UGEB) [3]
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The UGEB spans May 15th 2010 – May 29th 2010 and consists of approximately 11,000 human-analyst-
built events.  The UGEB was constructed by first starting with LEB’s 1650 events from the same time-
period.  Note that our LEB training datasets excluded waveforms from this two-week time period. 
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Results: Precision and Recall
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Unanticipated Result: 
ETHZ and STEAD SeisBench models did well on 
teleseismic signals with respect to the LEB 
Models.

True Positives by Phase

Precision and Recall versus Detection Threshold Cell format
Precision, Recall, F1
False Count, True 
Count

Cell format
True Count, Recall
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Notice the number of true positives remains high 
relative to other SeisBench models.  See the next 
slide for a visualization.
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Results: PhaseNet Response versus Signal SNR for True Positives
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LEB PhaseNet Models SeisBench Models
Each heat-map bin is normalized by the max element
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Seisbench models ETHZ, GEOFON, Iquique, SCEDC, and STEAD had response curves 
similar to that of the LEB models, however there are notable differences. We note 
that these SeisBench models have higher PNR values for lower STA/LTA response 
signals (compare the STA/LTA bins 2 to 3 for ETHZ with any of the LEB models). We 
qualitatively rank the ETHZ model as having the best PhaseNet response due to its 
higher PNR mass and less spread for STA/LTA bins >= 4, and its higher PNR mass for 
STA/LTA <= 4 relative to the other models. 

PhaseNet Response trends higher and the response spread decreases as the 
STA/LTA response increases. Stated in another way, as the signals become 
easier to detect, the PhaseNet response tends to have less spread, 
indicating the model is more consistent with respect to higher SNR signals.  
Notice the lower PhaseNet response for STA/LTA<=4.  Our training dataset 
signal STA/LTA threshold was 4.

PhaseNet Response to signal SNR for True Positives Detections
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Results: False Positives
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False Positive Rates per input window
• We separated the false positive detections into two 

types: false positives created from signal windows, 
and false positive detections created from noise 
windows.  The table to the right lists the false 
detections produced from noise windows, signal 
windows, and their detection rates. 

• Given the previous slides on recall performance and 
the PhaseNet response to true detections, this table 
shows the LEB models' primary advantage over the 
SeisBench models: generating fewer false detections 
from noise windows.

Column Descriptions
Noise: false detections within windows without signals
Sig: false detections within windows with signals
Noise/Sig: Ratio between noise window false detections and signal window false detections
UGEB Noise Win: number of unique noise windows in UGEB
Noise Rate: ratio between Noise to UGEB Noise Win columns The final two columns show 
analogous definitions for signal window false detections. 
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Conclusion
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• We found the primary advantage of training with IMS data over using the SeisBench models, was the 
suppression of the false detections on noise windows.

• Unanticipated Result: Relative to the IMS-trained models, ETHZ and STEAD SeisBench models did well on 
teleseismic signals.

• Lowering the SNR threshold for the LEB dataset signals will likely lead to better performance on lower SNR 
UGEB evaluation.  But, this will also likely lead to more false positives. 

Model-centric deep learning research has proven the viability of data-driven methods for seismic 
monitoring.  With the assumption that monitoring organizations will need to retrain models 
frequently, the challenge is in developing the data interrogation tools/“rules-of-thumb” to build 
effective training datasets.  To address the dataset challenge, we will be focusing on applying Data-
centric AI approaches [4, 5].

Concluding Remarks

Thoughts towards building LEB training datasets for the operational monitoring mission:
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• Using 14 years of associated signals from the Late Event 
Bulletin (LEB), we auto-curated a training data set consisting 
of signal windows containing associated arrivals, and noise 
windows that contain no LEB associated signals. 

• We construct five training data sets by varying the ratio of 
noise windows to signal windows.  At the lowest detection 
thresholds, increasing the number of noise windows increases 
the precision from .15 to .4 while reducing the recall from .6 
to .5.

LEB PhaseNet Models

SeisBench Models

• We found the primary advantage of training with IMS 
data over using the SeisBench models, was the 
suppression of the false detections on noise windows.

• Unanticipated Result: Relative to the IMS-trained models, 
ETHZ and STEAD SeisBench models did well on teleseismic 
signals.

False Positives versus True Positives

Detection Thresholds
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