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> 1 Scenario 1
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Can | solve my problem on a
quantum computer? i i
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s | Scenario 2
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» 1 Commonality?

What do our users have in common?

They both need to know how well specific circuits will run on a physical quantum
computer!



s 1 Capability Functions

* How do we formalize “What is my quantum computer capable of running?”

« Capability functions:
Let Q be a quantum processing unit (QPU),C a collection of circuits executable on Q,
and A a collection of context variables. A capability function is a real valued

functions:C X A = Rdefined by:

s(c,a) = €ly(c),7(c,a)],
where y(c) is the ideal unitary implementing c,y¥(c, a) is the noisy quantum channel
implementing c on Q in context a, and € is some success metric.

Both of scientists need to learn a capability function.




s | Learning capability functions

* Incredibly challenging!
*  Quantum computers are highly error-prone

* Noise is unique and complex

« Left with learning an approximation or surrogate function



Approximating Capability Functions

« Current quantum computers are noisy and error prone

«  Phenomenological models'
* Built on benchmarking tools

* Rely on human extracted features
« Poor performance

«  Quantum process models?
* Informed by “tomography”

« Depend on circuit structure
* Specious assumptions
« Hardto scale

 Neural network models
« Extract their own features

* Few assumptions
« Potentially scalable

"Characterizing Quantum Gates via Randomized Benchmarking, Magesan et al,

Phys. Rev. A 85, 042311, 11 April 2012
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s | Background - Neural Networks

* Generic structure
« Sequential layers of “neurons”
«  “Neurons” perform different operations
* Previous layer feeds into the next layer

« Convolutional Neural Networks
*  Process images

Two components
Convolutional
Multi-layer Perceptron

« Convolutional component extracts features
* MLP processes features and makes predictions




o | The Big Picture

* The idea
 Run lots of circuits on a device

« Train neural networks to predict which circuits run
successfully

» Use the neural network as a proxy for the capability function!

*  What circuits?
*  Focus on random (and periodic) mirror Clifford circuits

* Whatis “success?”
* Focus on probability of successful trial

« Encoding the circuits?
* Image encoding

«  Which networks?
 Convolutional neural networks




0o I Circuit Encoding

We need a way to input a quantum circuit into a convolutional neural network.



1 I Circuit Encoding

We will encode a quantum circuit as a 3D tensor (i.e., a color image).



12 | Circuit Encoding

We will provide gate information...



13 | Circuit Encoding

...and error-sensitivity information.



. I Circuit encoding




s 1 Our research

Explore how dataset size and quality affects
predictions

« Multiple datasets with 100, 300, 500, 1000, 16600
circuits

« 11 different 100 circuit datasets
- 5 different datasets per circuit count for the rest

« Each dataset was simulated at four levels of precision
(shot count)

« Same Markovian error model

Predict under non-Markovian noise*
« Very difficult for other techniques

Experimental demonstration

Impact of coherent noise

Dataset Circuits Shots Take Trials
Random 1000 100 11 35
Random 1000 100 12 N/A
Random 1000 100 13 N/A
Random 1000 100 14 N/A
Random 1000 100 15 N/A




16 | Performance Scaling
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17 | Non-Markovian Noise

* 49-qubit wide circuits
« First-order approximate simulator
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Outperform sophisticated phenomenological models”.
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18 | Experimental results
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9 I Possible reasons
* Model-free approach is a boon and a bane

* Lack physics-intuition

* No notion of time
« Context-dependent errors

 Limited error model information

* Pernicious coherent errors




0 1 Coherent noise

Coherent Noise Model
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Coherent noise is the major cause of poor performance on
experimental data.



21 1 Conclusions and next steps

« A QPUs performance is captured by a capability function

* Neural networks are promising surrogates for a particular
capability function

- Coherent noise limits practical utility

- Modified approaches are needed
- Additional error sensitivity information
« New architectures (e.g., GNNSs)




