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Scenario 12
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Can I solve my problem on a 
quantum computer?

https://courses.lumenlearning.com/wm-microeconomics/chapter/rationality-and-self-interest/
https://creativecommons.org/licenses/by/3.0/
https://courses.lumenlearning.com/introchem/chapter/molecules/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
http://cs.stackexchange.com/questions/57860/travelling-salesman-problem-with-unknown-shortest-paths-between-nodes
https://creativecommons.org/licenses/by-sa/3.0/


Scenario 23

Image by DALLE-2



Commonality?4

They both need to know how well specific circuits will run on a physical quantum 
computer!

What do our users have in common?



Capability Functions5

Both of scientists need to learn a capability function.



Learning capability functions

• Incredibly challenging!

• Quantum computers are highly error-prone

• Noise is unique and complex

• Left with learning an approximation or surrogate function
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• Current quantum computers are noisy and error prone

• Phenomenological models1

• Built on benchmarking tools
• Rely on human extracted features
• Poor performance

• Quantum process models2

• Informed by “tomography”
• Depend on circuit structure
• Specious assumptions
• Hard to scale

• Neural network models
• Extract their own features
• Few assumptions
• Potentially scalable
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Multiple elements from a set
of (very large) matrices
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Look up performance 
on table

psuccess

Map to 1-2
 features

1Characterizing Quantum Gates via Randomized Benchmarking, Magesan et al, 
Phys. Rev. A 85, 042311, 11 April 2012

2Gate Set Tomography, Nielsen et al, Quantum 5, 2021

Approximating Capability Functions

psuccess

psuccess



Background – Neural Networks
• Generic structure

• Sequential layers of “neurons”
• “Neurons” perform different operations
• Previous layer feeds into the next layer

• Convolutional Neural Networks
• Process images
• Two components

• Convolutional
• Multi-layer Perceptron

• Convolutional component extracts features
• MLP processes features and makes predictions
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The Big Picture
• The idea

• Run lots of circuits on a device
• Train neural networks to predict which circuits run 

successfully
• Use the neural network as a proxy for the capability function!

• What circuits?
• Focus on random (and periodic) mirror Clifford circuits

• What is “success?”
• Focus on probability of successful trial

• Encoding the circuits?
• Image encoding

• Which networks?
• Convolutional neural networks
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Circuit Encoding10

We need a way to input a quantum circuit into a convolutional neural network.



Circuit Encoding11

We will encode a quantum circuit as a 3D tensor (i.e., a color image).



Circuit Encoding12

We will provide gate information…



Circuit Encoding13

…and error-sensitivity information.



Circuit encoding14



Our research
• Explore how dataset size and quality affects 

predictions
• Multiple datasets with 100, 300, 500, 1000, 16600 

circuits
• 11 different 100 circuit datasets
• 5 different datasets per circuit count for the rest

• Each dataset was simulated at four levels of precision 
(shot count)

• Same Markovian error model

• Predict under non-Markovian noise*
• Very difficult for other techniques

• Experimental demonstration

• Impact of coherent noise
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Dataset Circuits Shots Take Trials
Random 1000 100 11 35
Random 1000 100 12 N/A
Random 1000 100 13 N/A
Random 1000 100 14 N/A
Random 1000 100 15 N/A



Performance Scaling16

More circuits/Better data = 
More useful features = 

Tractable problem



Non-Markovian Noise
• 49-qubit wide circuits

• First-order approximate simulator
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Outperform sophisticated phenomenological models¹.

¹D. Hothem, J. Hines, K. Nataraj, R. Blume-Kohout, T. Proctor, Predictive models from quantum computer 
benchmarks (2023). arXiv:2305.08796v1

https://arxiv.org/abs/2305.08796v1


Experimental results18

Decreased performance on experimental data. Why?



Possible reasons
• Model-free approach is a boon and a bane

• Lack physics-intuition

• No notion of time
• Context-dependent errors

• Limited error model information

• Pernicious coherent errors
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Coherent noise20

Coherent noise is the major cause of poor performance on 
experimental data.



Conclusions and next steps
• A QPUs performance is captured by a capability function

• Neural networks are promising surrogates for a particular 
capability function

• Coherent noise limits practical utility

• Modified approaches are needed
• Additional error sensitivity information
• New architectures (e.g., GNNs)
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