

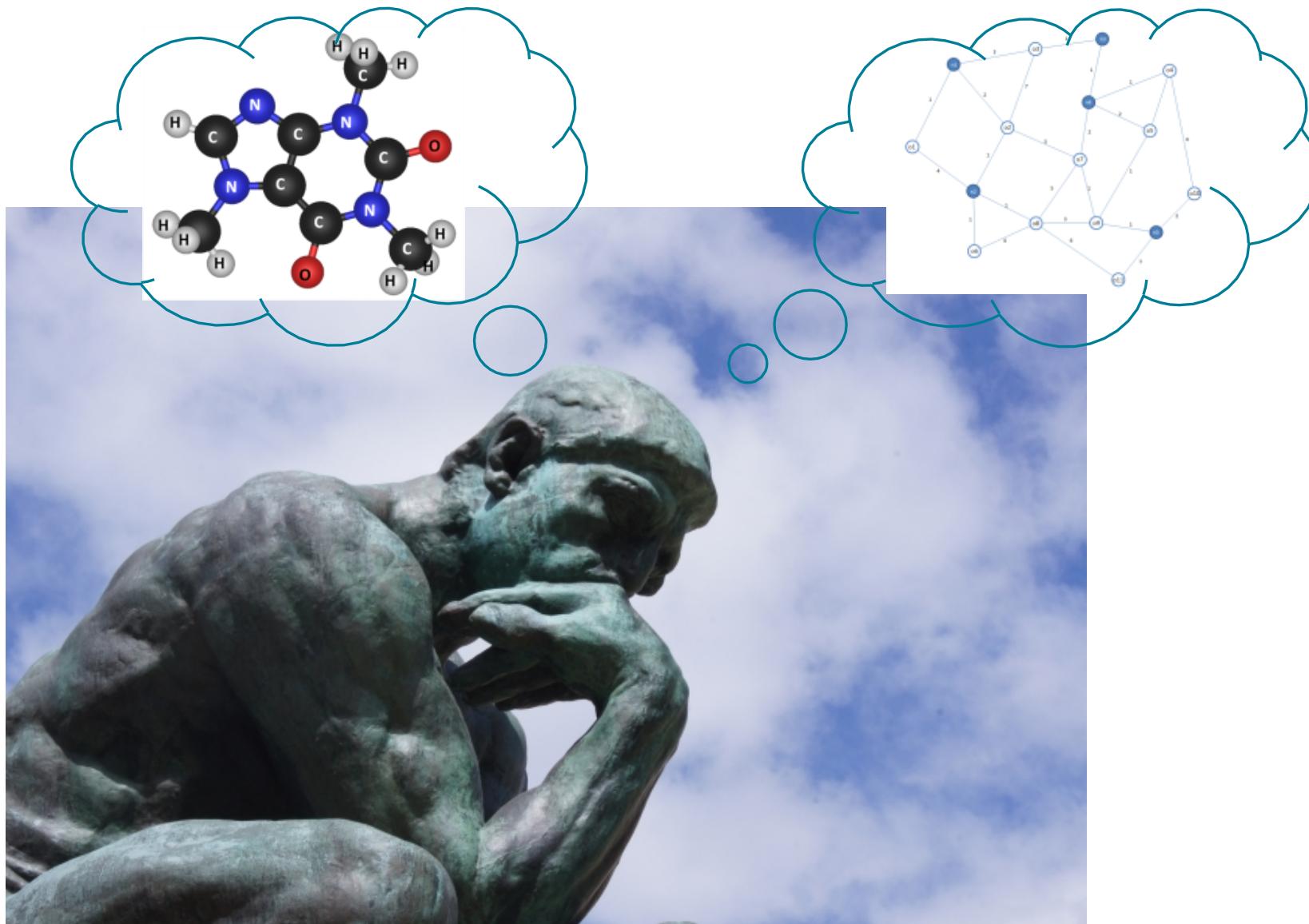
Learning a quantum computer's capability

Daniel Hothem, Tommie Catanach, Kevin Young,
and Timothy Proctor

5th Annual Workshop on Quantum Resource Estimation @ ISCA23

June 18, 2023

Scenario 1



Can I solve my problem on a quantum computer?

[This Photo](#) by Unknown Author is licensed under [CC BY-SA](#)

[This Photo](#) by Unknown Author is licensed under [CC BY-SA](#)
[This Photo](#) by Unknown Author is licensed under [CC BY-SA](#)

[This Photo](#) by Unknown Author is licensed under [CC BY](#)

Commonality?

What do our users have in common?



They both need to know how well *specific* circuits will run on a *physical* quantum computer!

Capability Functions

- How do we formalize “What is my quantum computer capable of running?”
- Capability functions:

*Let \mathbb{Q} be a quantum processing unit (QPU), \mathcal{C} a collection of circuits executable on \mathbb{Q} , and \mathcal{A} a collection of context variables. A **capability function** is a real valued function $s: \mathcal{C} \times \mathcal{A} \rightarrow \mathbb{R}$ defined by:*

$$s(c, a) = \epsilon[\gamma(c), \tilde{\gamma}(c, a)],$$

where $\gamma(c)$ is the ideal unitary implementing c , $\tilde{\gamma}(c, a)$ is the noisy quantum channel implementing c on \mathbb{Q} in context a , and ϵ is some success metric.

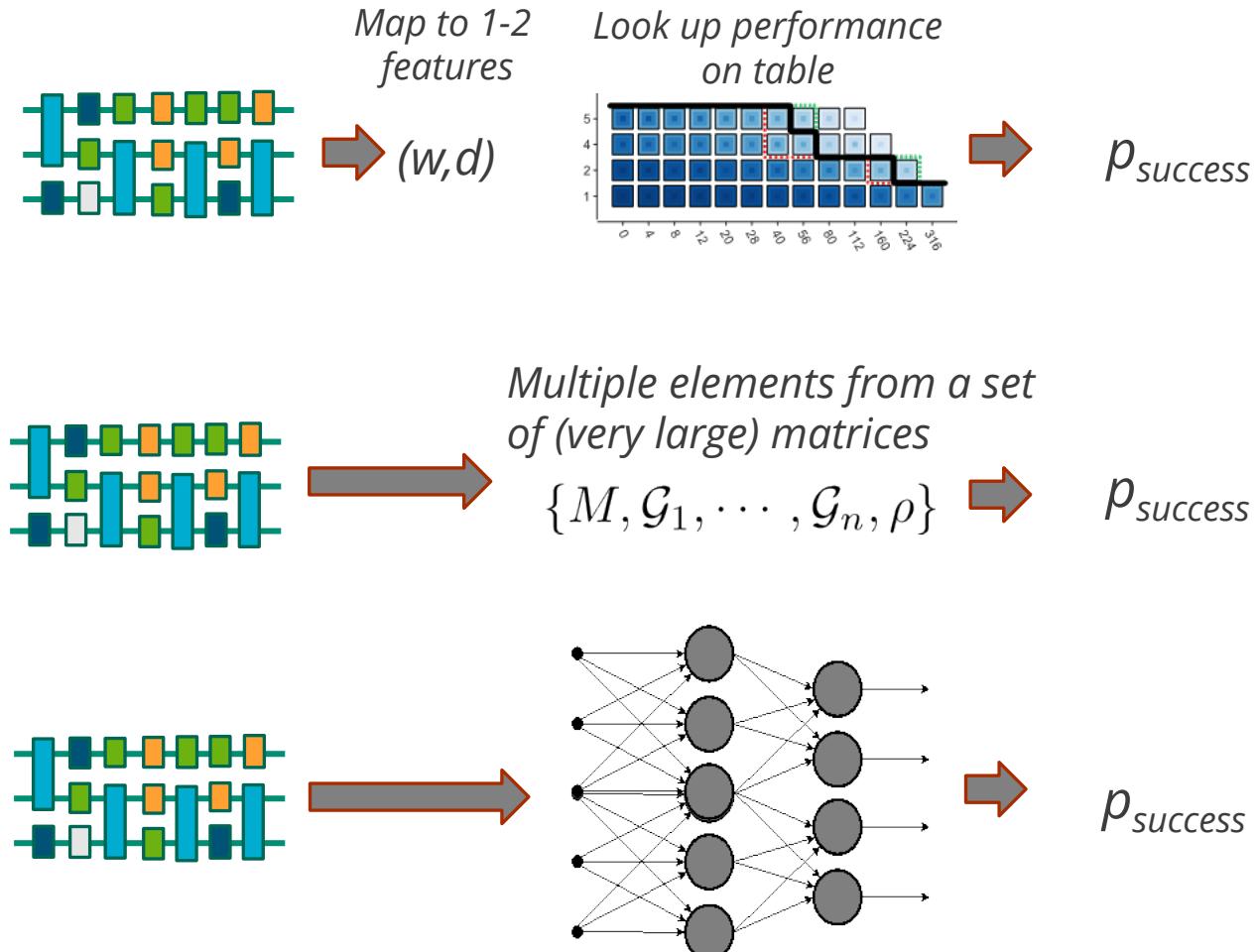
Both of scientists need to learn a **capability function**.

Learning capability functions

- Incredibly challenging!
- Quantum computers are highly error-prone
- Noise is unique and complex
- Left with learning an approximation or surrogate function

Approximating Capability Functions

- Current quantum computers are noisy and error prone
- Phenomenological models¹
 - Built on benchmarking tools
 - Rely on human extracted features
 - Poor performance
- Quantum process models²
 - Informed by “tomography”
 - Depend on circuit structure
 - Specious assumptions
 - Hard to scale
- Neural network models
 - Extract their own features
 - Few assumptions
 - Potentially scalable

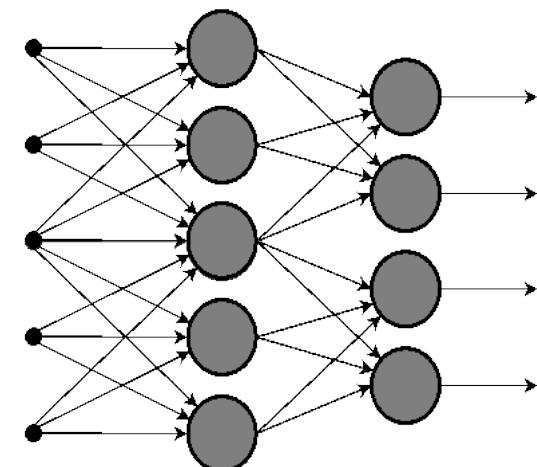


¹Characterizing Quantum Gates via Randomized Benchmarking, Magesan et al, Phys. Rev. A **85**, 042311, 11 April 2012

²Gate Set Tomography, Nielsen et al, Quantum **5**, 2021

Background – Neural Networks

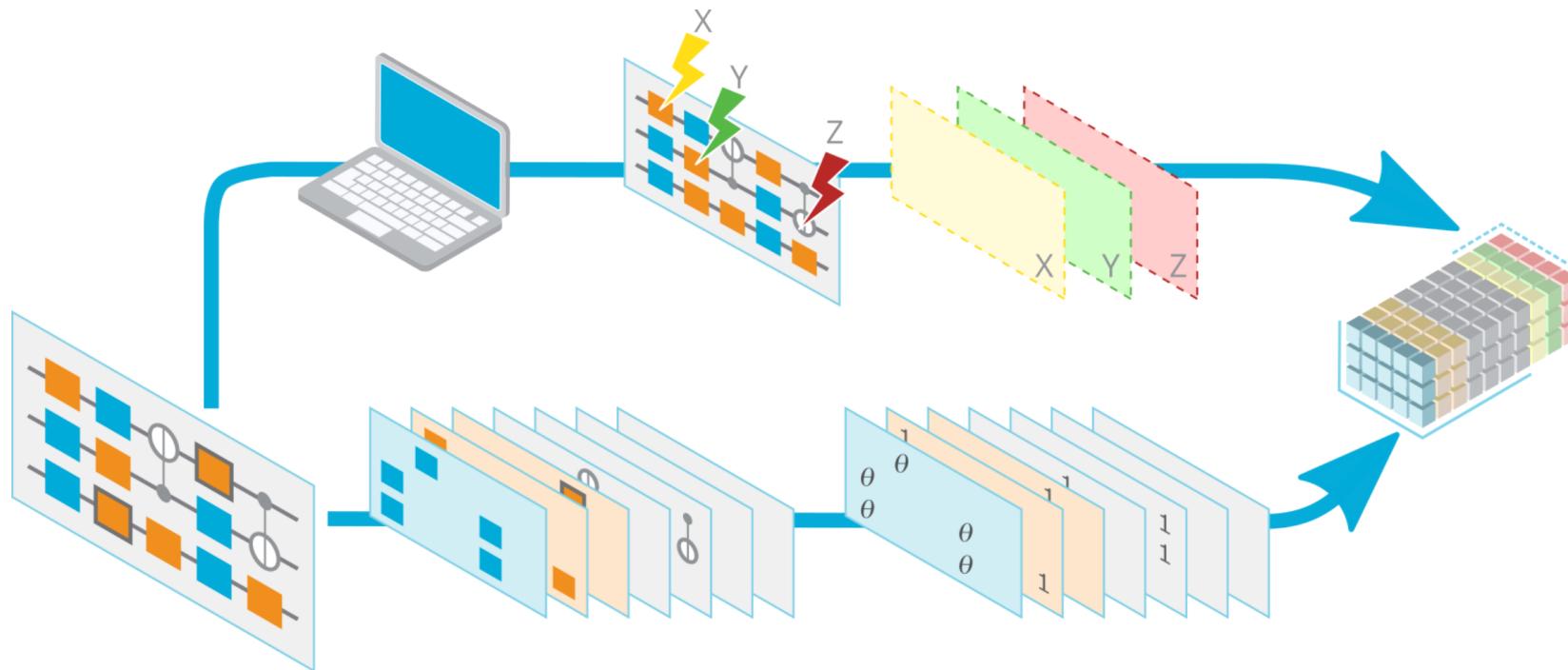
- Generic structure
 - Sequential layers of “neurons”
 - “Neurons” perform different operations
 - Previous layer feeds into the next layer
- Convolutional Neural Networks
 - Process images
 - Two components
 - Convolutional
 - Multi-layer Perceptron
 - Convolutional component extracts features
 - MLP processes features and makes predictions



The Big Picture

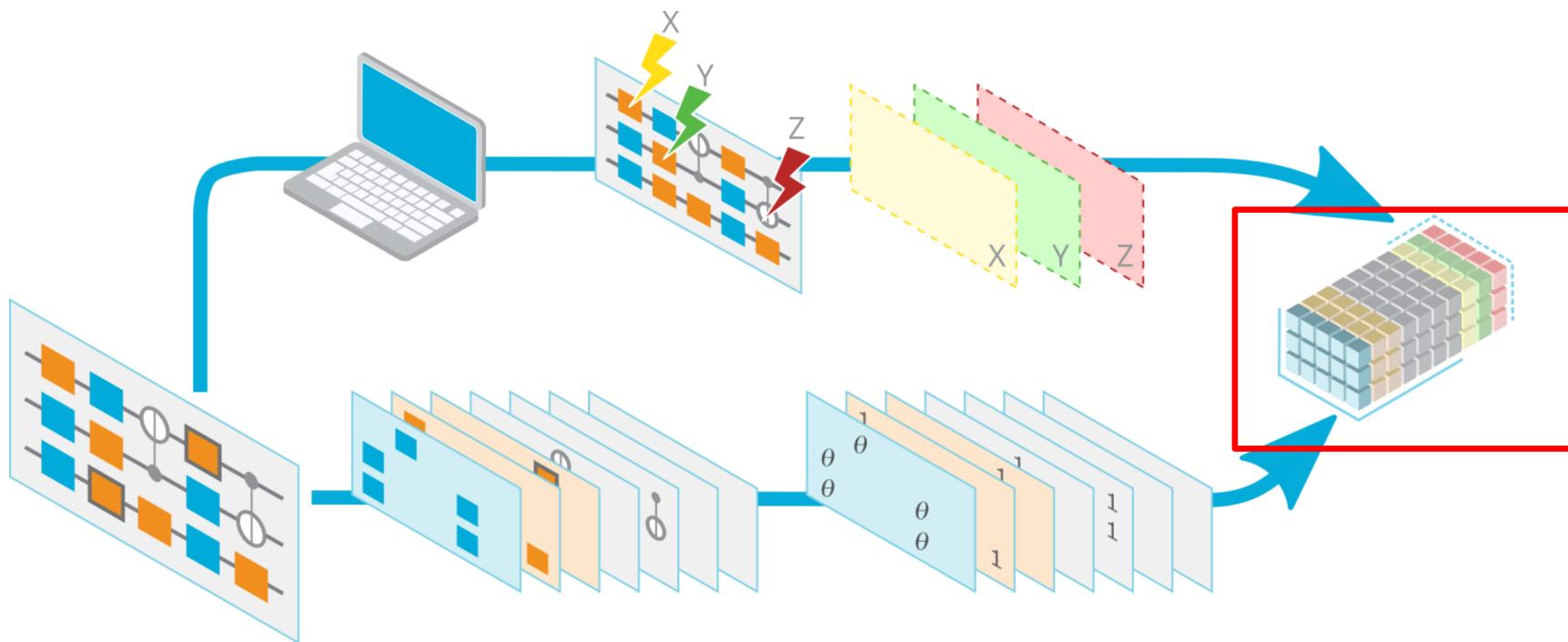
- The idea
 - Run lots of circuits on a device
 - Train neural networks to predict which circuits run successfully
 - Use the neural network as a proxy for the capability function!
- What circuits?
 - Focus on random (and periodic) mirror Clifford circuits
- What is “success?”
 - Focus on probability of successful trial
- Encoding the circuits?
 - Image encoding
- Which networks?
 - Convolutional neural networks

Circuit Encoding



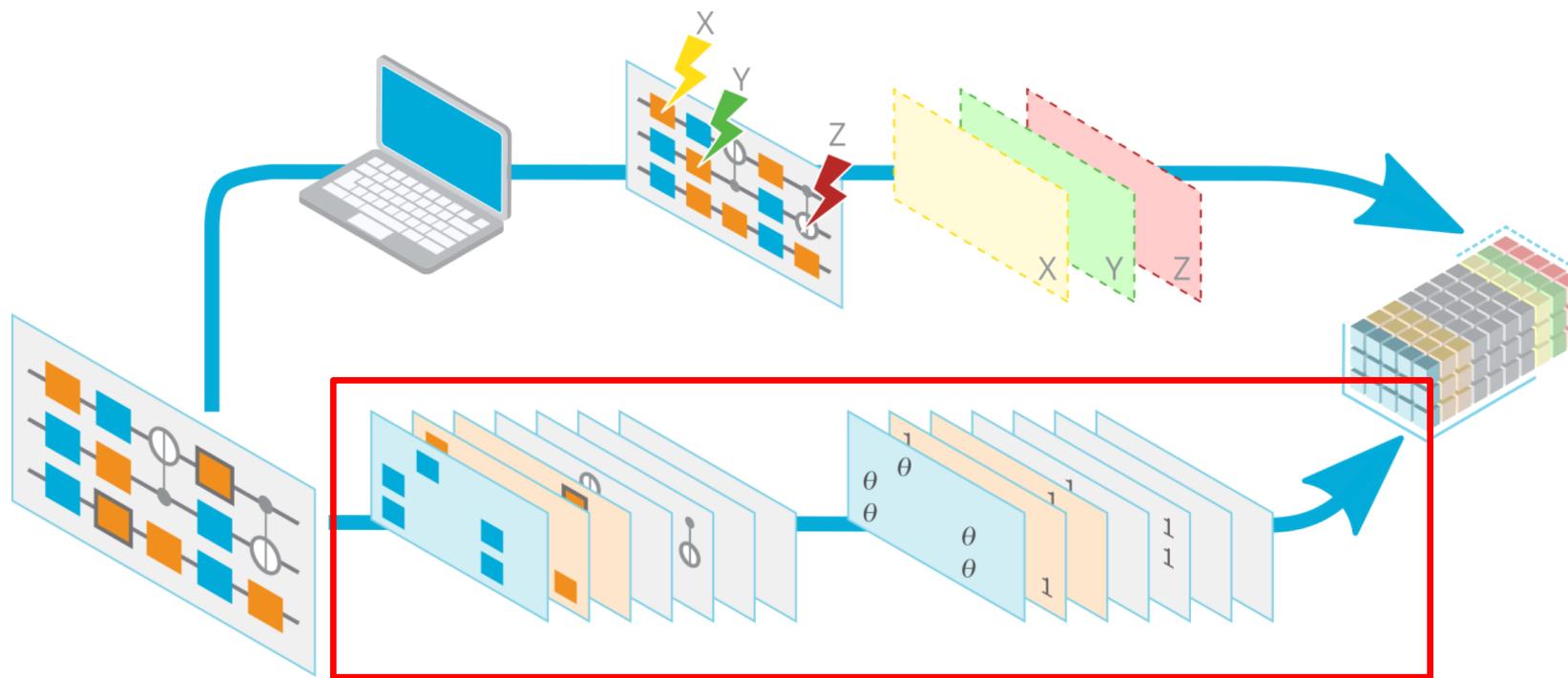
We need a way to input a quantum circuit into a convolutional neural network.

Circuit Encoding



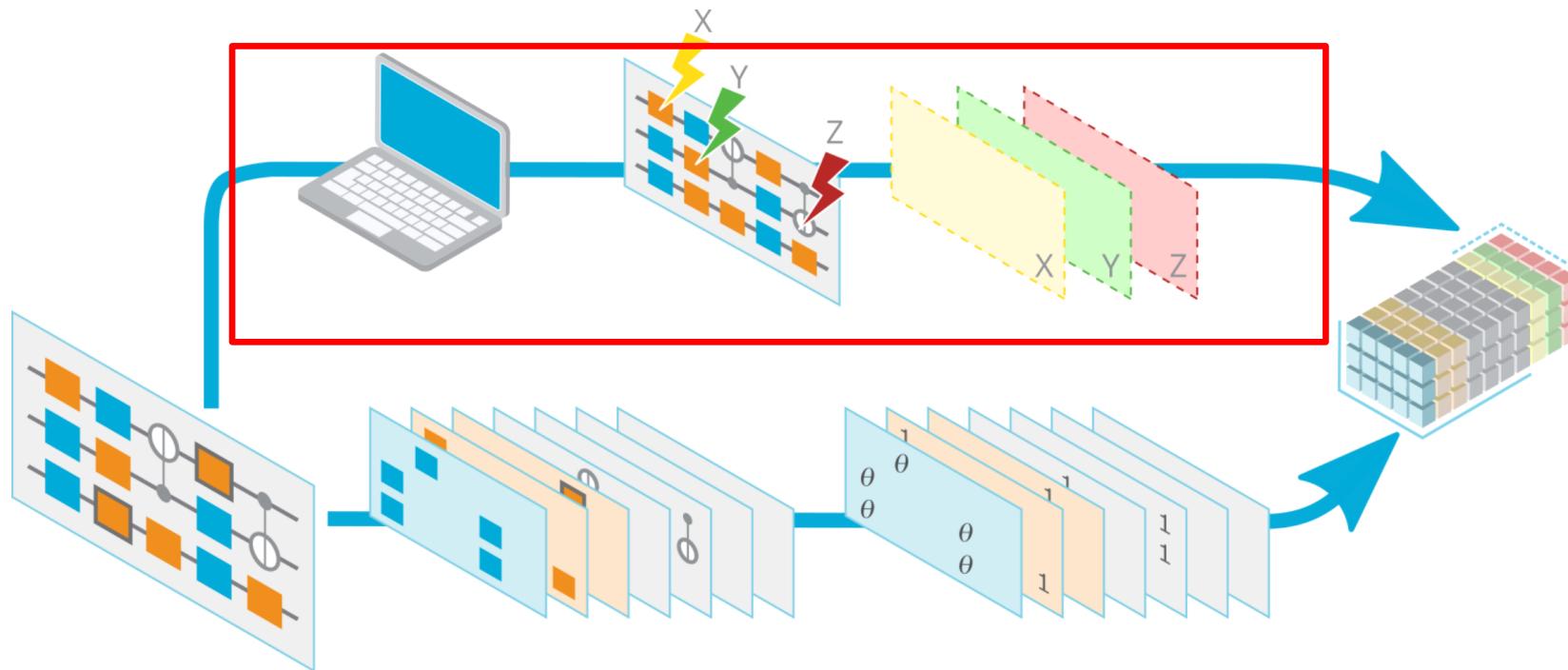
We will encode a quantum circuit as a 3D tensor (i.e., a color image).

Circuit Encoding

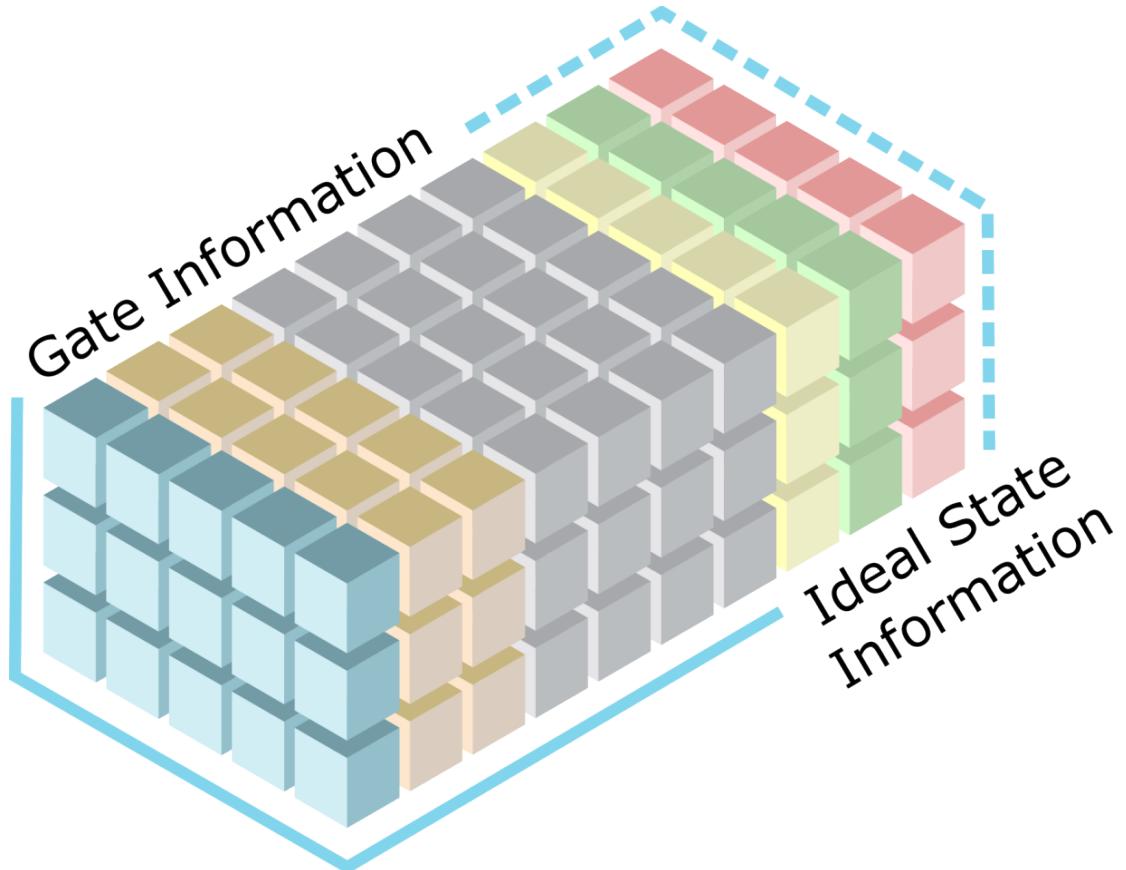


We will provide gate information...

Circuit Encoding



...and error-sensitivity information.

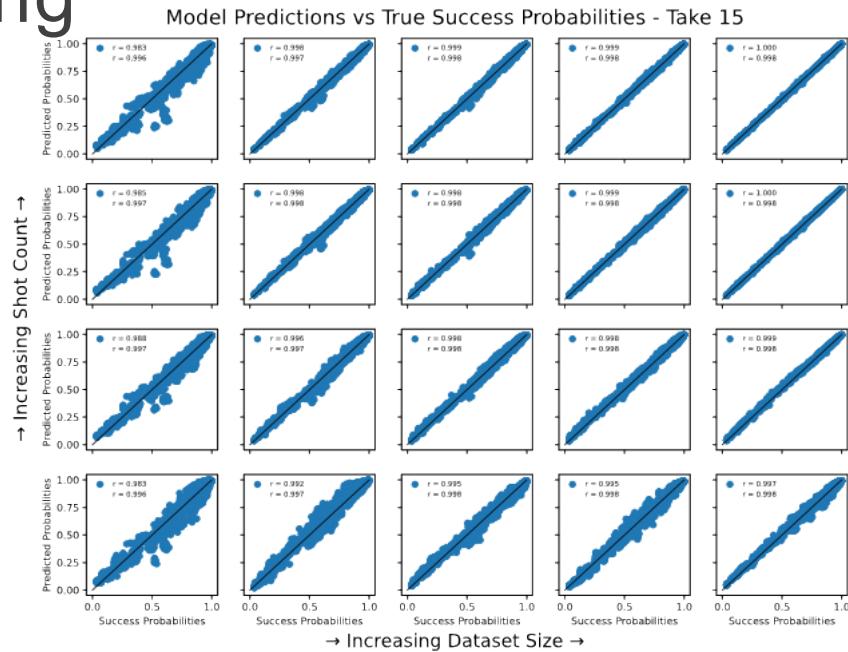
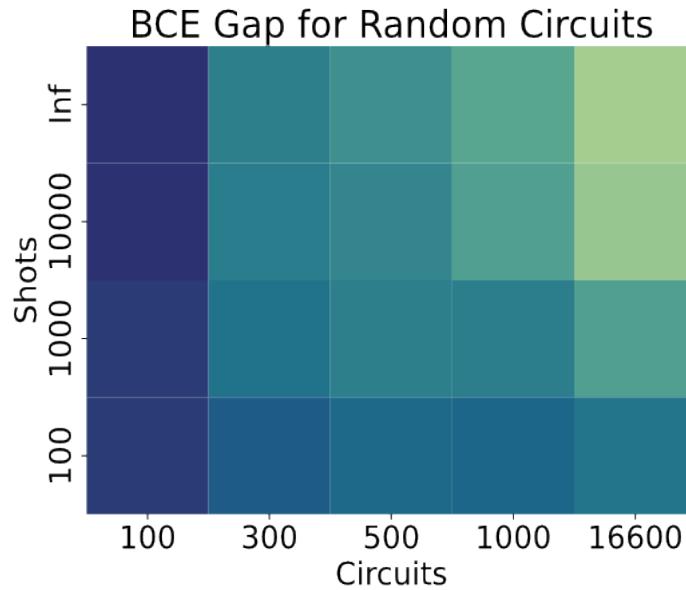


Our research

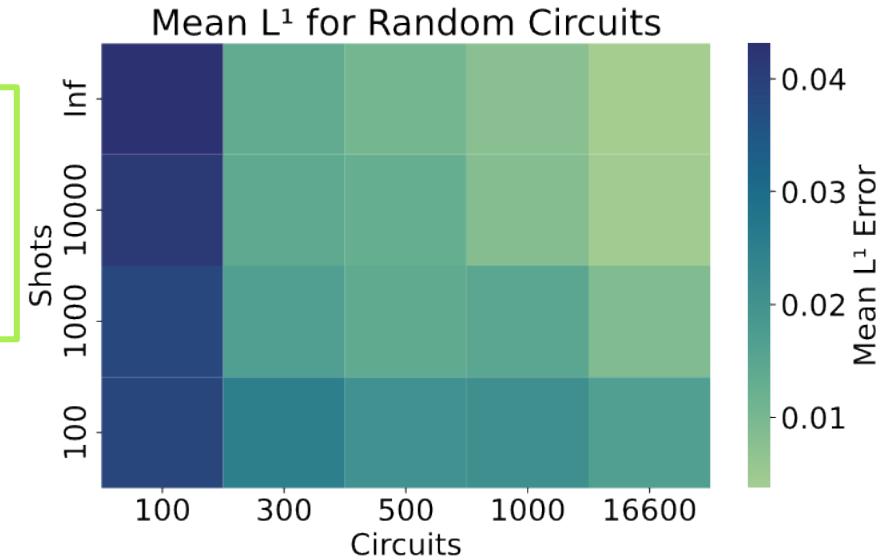
- Explore how dataset size and quality affects predictions
 - Multiple datasets with 100, 300, 500, 1000, 16600 circuits
 - 11 different 100 circuit datasets
 - 5 different datasets per circuit count for the rest
 - Each dataset was simulated at four levels of precision (shot count)
 - Same Markovian error model
- Predict under non-Markovian noise*
 - Very difficult for other techniques
- Experimental demonstration
- Impact of coherent noise

Dataset	Circuits	Shots	Take	Trials
Random	1000	100	11	35
Random	1000	100	12	N/A
Random	1000	100	13	N/A
Random	1000	100	14	N/A
Random	1000	100	15	N/A

Performance Scaling

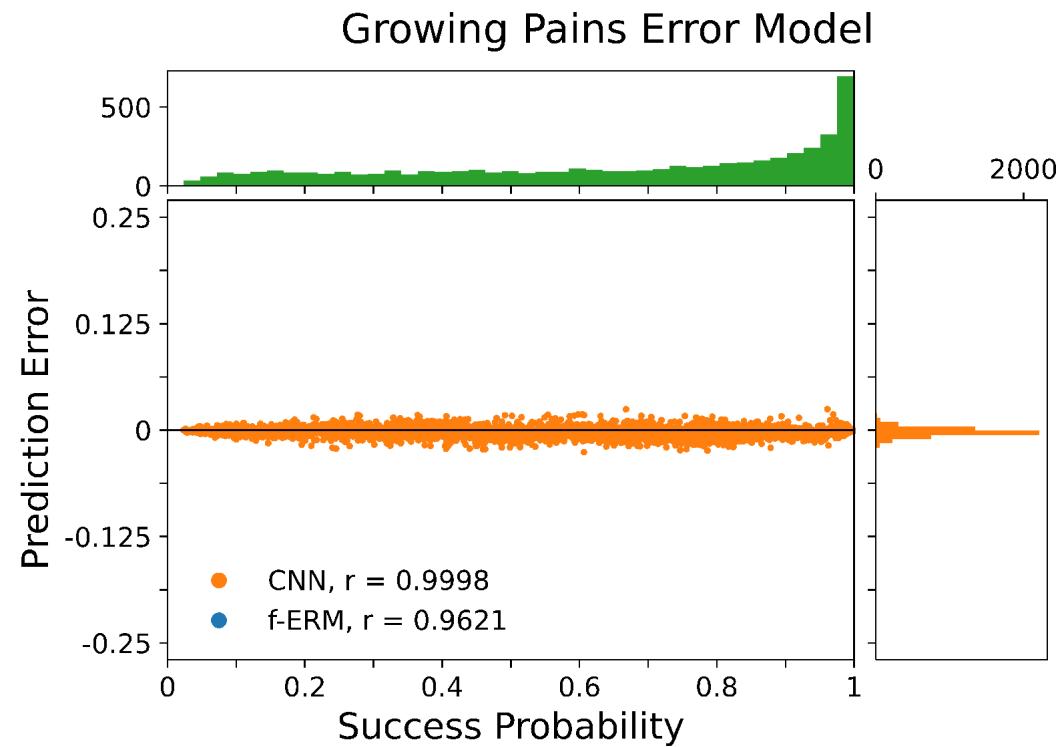
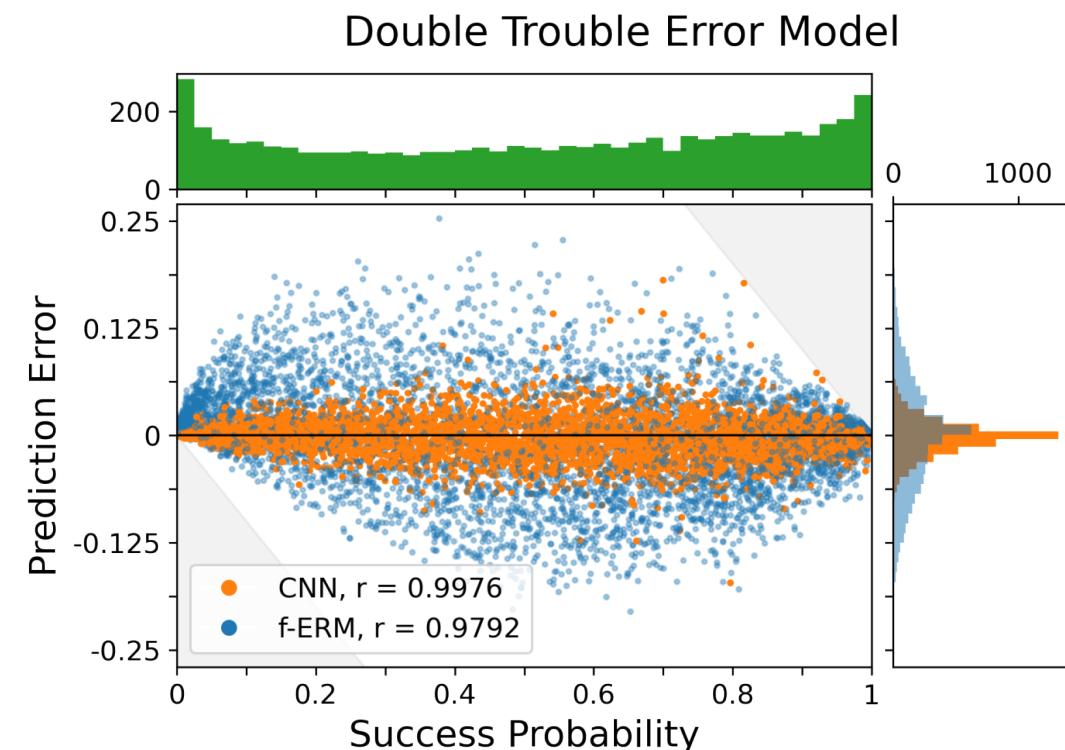


More circuits/Better data =
More useful features =
Tractable problem



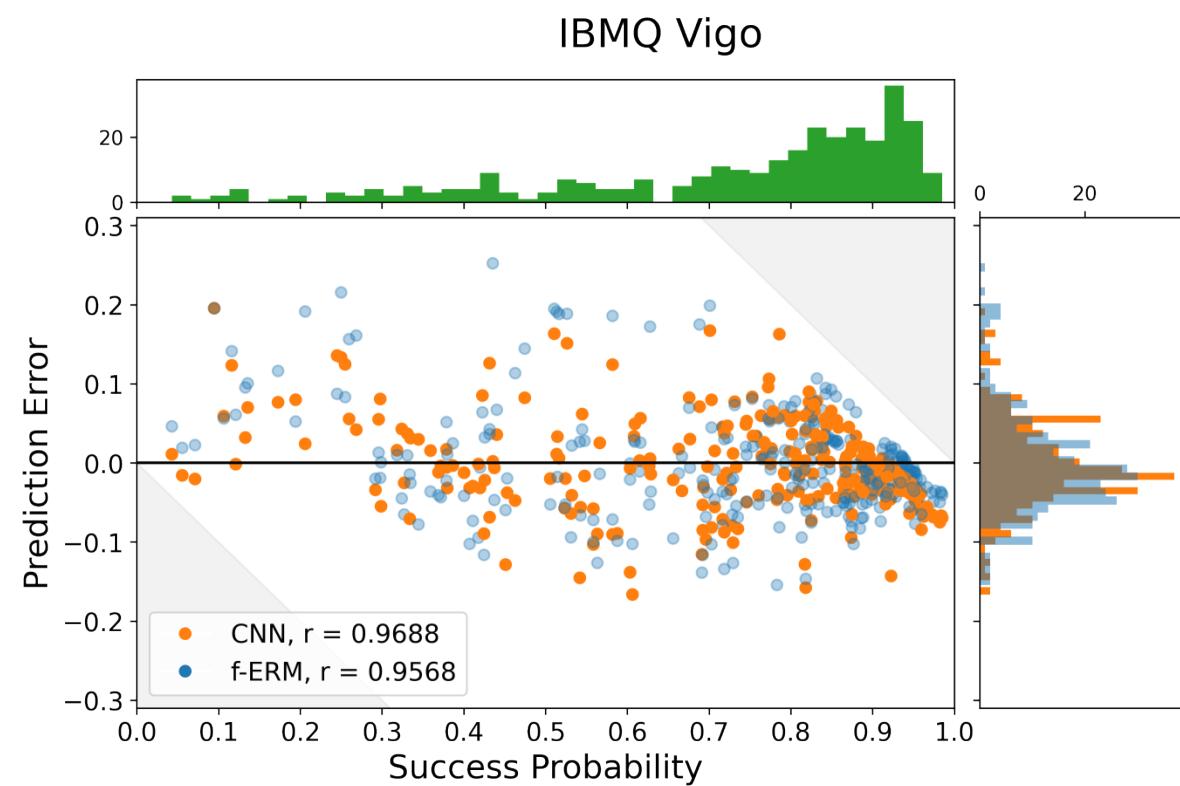
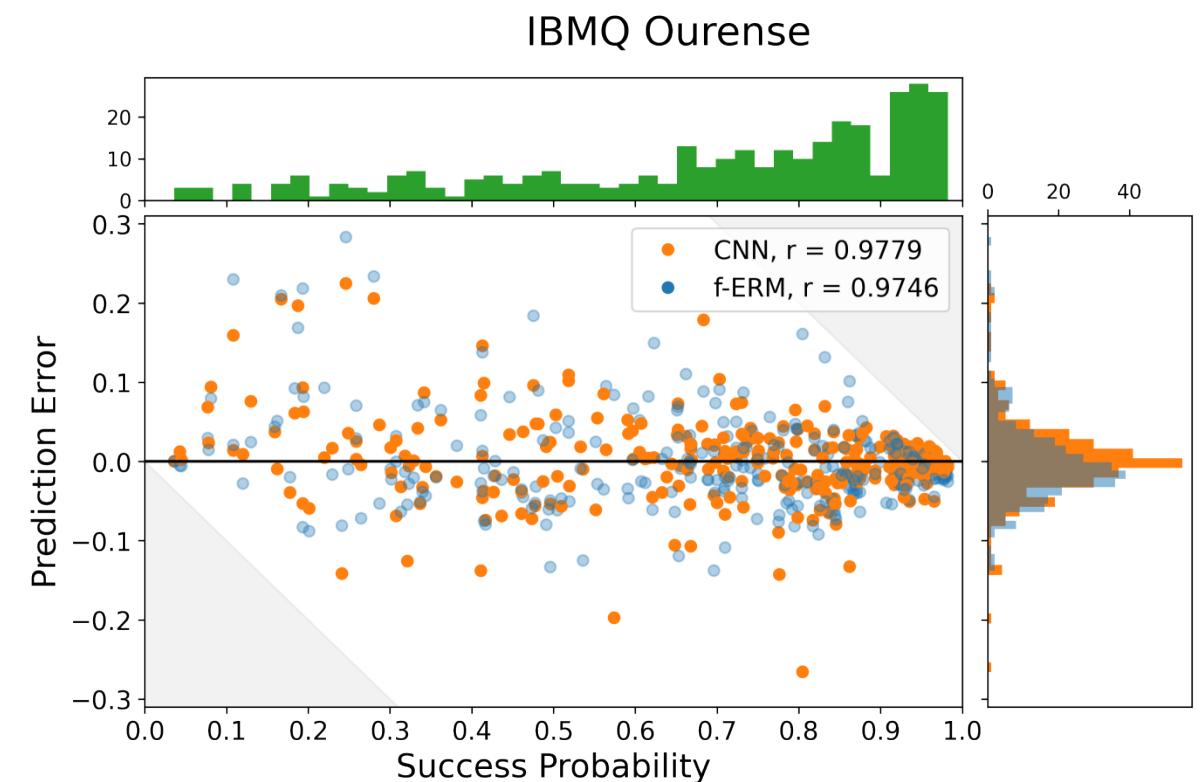
Non-Markovian Noise

- 49-qubit wide circuits
 - First-order approximate simulator



Outperform sophisticated phenomenological models¹.

Experimental results

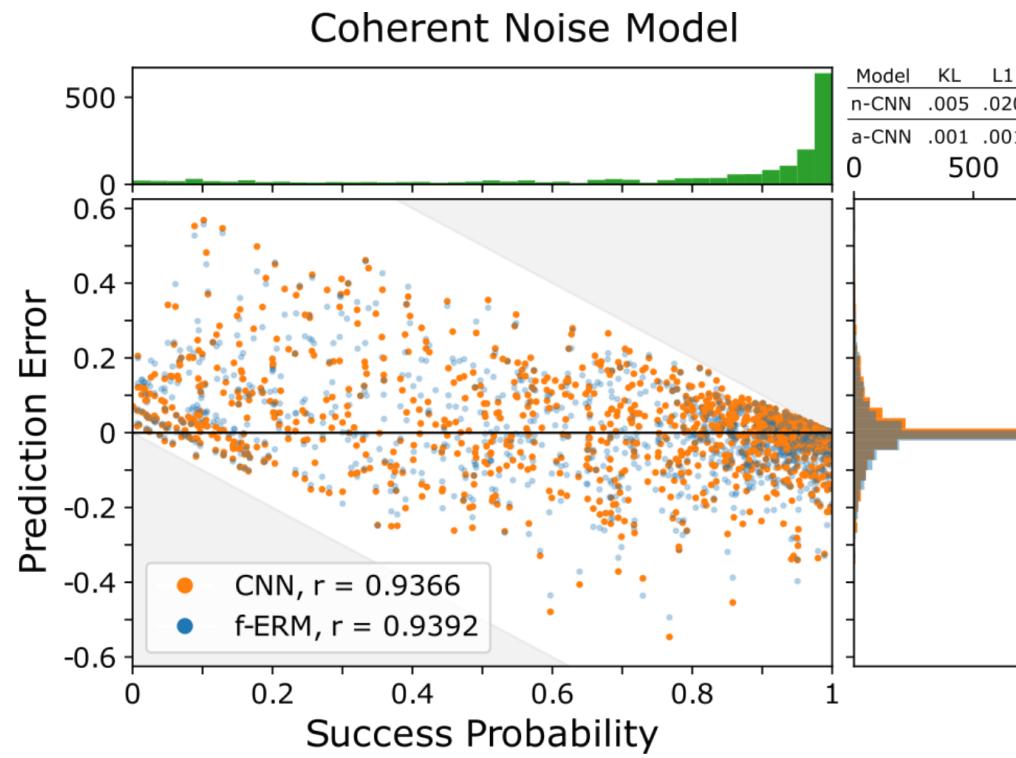


Decreased performance on experimental data. Why?

Possible reasons

- Model-free approach is a boon and a bane
 - Lack physics-intuition
- No notion of time
 - Context-dependent errors
- Limited error model information
- Pernicious coherent errors

Coherent noise



Coherent noise is the *major* cause of poor performance on experimental data.

Conclusions and next steps

- A QPUs performance is captured by a capability function
- Neural networks are promising surrogates for a particular capability function
- Coherent noise limits practical utility
- Modified approaches are needed
 - Additional error sensitivity information
 - New architectures (e.g., GNNs)