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Phononic Pseudocrystal Isolators2

• Circumferential direction: discrete symmetry

• Radial direction: self-similarity/linear channel shape/geometric growth by row

• Filling fraction: constant value of 0.4191 for isolator in current example

• Local dispersion: single underlying band structure scalable to all holes



The theory we started with…3



What happened? Can we patch the theory back into working 
order by appealing to angular-limitations?
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• At least one other thing is going on….



Limited angle propagation5



Boundary coupling/wavelength reduction6



Coupling with hole interior resonances
• Hole resonances suppress transmission

• Holes vary widely in scale

• Each hole supports many resonances

•  Large number of sharp narrow resonances

7

Shear wave excitation shown

3.526 MHz*4.6mm
=16.2 MHz x mm



Stranded propagation?

• Within a regular phononic crystal, mode conversion only happens 
at specific values k, f, where indicated in the band structure

• Apply the “adiabatic assumption” within the isolator

• Could open up substantial bandgaps (if correct):
• Any mode with local minimum trapped eventually
• Any band separations would become bandgaps under scaling
• Could also enlarge existing bandgaps

• But does it actually works?
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Channel extinction9



Example mode separation @ 8 MHz x mm10

dB
Ref
1
Pa

• Not all couple well
• All end with the same way with the +/x mode
• Preceded by I-mode, etc
• Partial reprieve from tunneling to a branch with 

appropriate symmetry properties 



Conclusions

A variety of effects appear to contribute to the extreme wideband attenuation in 
phononic pseudocrystals, including:

• Angle-limited propagation

• A multitude of hole interior resonances

• Wavelength shortening leading to evanescence at exit

• Stranded propagation

Next time:

• Experiments!
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ASA Meeting Applause! and Interrogation….

Lest I forget: I am (co-)/organizing two Phononics sessions for the Ottawa Acoustic 
Society of America Meeting:

• The phononic dispersion relations: Calculation, interpretation, and applications in 
phononics and metamaterials

• Developments and applications in phononic crystals

Contact me at shswift@sandia.gov if interested!

Questions?
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13 11.16, k=1592.8



Dispersion perspective on suppression

Numerous total bandgaps, numerous flat bands
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Next time: Experimental results! (Assuming it worked)

3D-printed metal
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Mode tracking

Mode tracking can be accomplished by stipulating the frequency at which it occurs, 
solving the dispersion for the exact values of k corresponding to that frequency as an 
easy root finding problem, and then expanding the excitation as a linear combination of 
the associated eigenmodes.
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Example 2

• 20.6851*1.02^(1:7) = 21.1, 21.5, 22.0, 22.4, 22.8, 23.3, 
23.7, we expect that the lowest frequencies probably 
tunnel through; after a certain point, suppression 
should begin, and the higher the frequency, the 
longer it should take to initiate

• 20.6851/1.02^5 = 18.7351

• 18-peak feature present in
all channels
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21.1
21.5
22.0
22.4
22.8
23.3
23.7

Symmetry alternates
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K = 3.1416, F = 20.685e6 K = 3141. 6, F = 20.741e6 K = 3141. 6, F = 21.913e6 K = 3.141.6, F = 21.913e6
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21.0988
21.5208
21.9512
22.3902
22.8380
23.2948
23.7607



Example mode separation @ 8 MHz x mm, continued20

  8.1971
  8.6297
  9.0852
  9.5647
10.0695
10.6010
11.1605
11.7495
12.3697



Numerical experimental verification of stranded propagation

• Several possible routes:
• Look for various features in the dispersion that would be expected to develop into 

bandgaps under variation of scale, then evaluate dispersion on whole article and see if 
they materialize

• Excite a wave at one end of a channel; at each pseudocell expand the excitation as a sum 
of modes with their associated k-values (solid mechanics or acoustics)

• Launch a wave down a channel and show that it is reflected/evanesces when expected
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Acoustic demonstration opportunities

Acoustics provides a less dense band structure (1-mm x 1-mm cell, with sound speed 
given by aluminum longitudinal wave speed)

• 8 MHz has two available modes that are separated from one 
another in wavenumber with the upper and lower bands having
 distinct min and max, respectively

• 24 MHz has two available modes as well as regions where both
 are the only mode available at their frequency

• 25.5 MHz has a pair of dispersion lines crossing each of which has
 an independent frequency range, allowing us to test whether crossover is allowed

• 29.96 MHz, 30.3, 33.25 MHz each provide
accessible mode pairs

• 32.7 intersection of isolated modes 
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