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Ramp experiments

« Shock vs. ramp loading
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Time Density

- Can we develop an analog to pulsed power or I

laser approaches that can be used for gas guns?



5 | Pulsed Power Platforms

« Lorentz force is used to drive a panel.

« Capable of tailorable pulse shaping to
control current flowing through the panel.

 This gradually increases force of panel, and
is known as the ‘drive’.

* i.e.isentropic or ramp loading

+ Relevance of wavespeed characteristics
« Determine thermo. & mech. properties.
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» 1 Gas gun approaches across the literature

General Experiment ~ Thin Film GD|
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Flavors of Graded Density Impactors: I/ — oy '
GDI VISAR
« Fused quartz: | |
- Chhabildas, Alexander, Renou - = % C
[1 Ssample 2 B t »N i
« Layered GDI: — e

 Chhabildas, Yep, Brown, Nguyen J. L Brown, PRE, 2015

- Bed of Nails (BON):
- Goff, Cotton, LaLone, Taylor

Bed of Nails

Sapphire

M. Cotton, DYMAT, 2015 B. Lalone, DOE/NV/25946—2588, 2020 Goff, SCCM, 2020




5 Bed Of NailS Sample 1

<
PDV/

- General design: EOI VISAR

- BON, buffer plate, multi sample

<

- Advantages:

« True ramp wave, manufacturing, tailorable / Sample 2

features, & modeling considerations Buffer

Design features:
- Materials, impact velocity, buffer plate, nail shape

A|  Conical B| Sawtooth C| Pyramid

Hypothesis:

« By fixing materials & dimensions of the buffer plate,
an optimization algorithm can be used to tailor the { y
imparted drive.
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- Experimental configuration:
«  BON: 3D printed Tough PLA

Target: LiF Buffer and Window |

. Buffer Window
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Design criteria:
« 1.0us ramp duration to 1 GPa
« 1.5us ramp duration to 1 GPa
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7 1 Design Process

Optimization process:

Discretization of the nail

BON

Buffer Window

Profile Discretization

w | »
= 15| 2
@ | o
= o) %
‘ y
X
hg hg hy



8 ‘ Design Process

« Optimization process:

Genetic algorithms
Code implementation

Many cheap 2D simulations of nail shapes to determine
optimal nail profile for prescribed drive condition at 2mm.
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9 ‘ Design Process

 Print & quality control check:

2D optimized solution, Idealized 3D
geometry, & Printed 3D geometry

Do they agree?
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Results - 1.0 us Ramp @!
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Algorithm was used to design a BON
with a 1.0 us ramp.

Ramp elastic limit in LiF

Velocity (m/s)

Decent agreement between
simulations and experiment.

Some heterogeneities in wave profile. I N3 i 2mm_Outside
Viscous effects at peak.

Oscillations in wave structure about
peak stress.
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Results - 1.5 us Ramp
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‘ Conclusions

An optimization algorithm was used to design BON
impactors for tailored ramp loading.

Algorithm is successful at designing the nail shape for , .
degsired loading of 1 GPa in LiF. ShockiThermodynamics Agplled

« Ramp durations of 1.0 & 1.5us.

o

Experiments demonstrate general wave structure desired. 25 g S
Further investigation is needed to understand 5|
heterogeneities of wave structure and influence of A
viscosity. oo P
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