This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do|

not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia
National
Laboratories

Response Limiting &
Optimizing Shaker Shocks

o

§ 3

Fr=Te

lerry Cap

Vit Babuska

Environments Engineering Department
Sandia National Laboratories

[ E e

June 26, 2023

R A T TN e R, L]

Aerospace Shock Test Working Group Meeting

El Segundo, CA

E] Sandia National Laboratories Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholl

v . owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract
@ ENERGY NS4 DE-NA0003525.

SAND2023-05167C

& U.S. DEPARTMENT OF o
(@ ENERGY NYSH
Sandia National Laboratories is a
multimission laboratory managed
and operated by National Technology
& Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of
Honeywell International Inc., for the
U.S. Department of Energy’s National
Nuclear Security Administration under
contract DE-NA0003525.

SAND2023-XXXXXX-C



> | Introduction

Introduction

Shaker Shock Basics
Sums of Decayed Sines

Response Optimization & Response Limiting
Theory
Algorithms

Results
Test Article

Pre-Test Analyses
Shaker Shock Test

Conclusions



3 | Introduction @

The primary goal of any laboratory test is to expose the unit-under-test (UUT) to
conservative, realistic representations of a field environment B o I mT

Random vibration, sine vibe, shock, thermal cycling, etc. =

Satisfying this objective is not always straightforward due to
laboratory test equipment constraints

Mechanical shakers have nearly infinite impedance

Over-testing and unrealistic failures can result when
controlling the unit base acceleration

Force limiting and response limiting are relatively standard
practices to reduce over-test risks in random vibration
laboratory testing

Limiting in shaker shocks is done for the same reasons
Force limiting can be done in shaker shock testing (in theory)

This presentation is about response limiting and optimizing
single axis shaker shocks

At SNL we do response-limited testing much more than force limited testing ’ el 6-DOF Shgker



4+ 1 Objectives of Response Limiting ®

When a measured acceleration on the UUT exceeds a threshold, the control is reduced so
that the response does not exceed the threshold (limit)

HNON
Response limiting can protect sensitive high-value subcomponents from over-test risk
Trade-off - Allow potential undertesting elsewhere
This is generally acceptable because test environments are conservative
Response limits minimize the distortion of the input specification
Response limits are enforced at specific frequency bands of concern
Near resonances where response may be unacceptably amplified

Response limits can be defined at multiple locations and in different axes simultaneously
SRS based - Acceleration based on Sum of Decayed Sines (SDS)

CONS
Critical locations may be inaccessible for instrumenting
Need pre-test response predictions/limits
Must be pre-planned - not a closed-loop process like RV response limiting



s 1 Objectives of Response Optimizing

Response optimizing seeks to define an input that minimizes the error between test
measured responses and specified environments

SIMO (Single Input Multi Output) least-squares SRS optimization

HNON
Better (best possible) match to known (field) environments at the defined response locations
Overall better test (more field-like environments)
Can be combined with response limiting

CONS
May heavily distort the input signal
Need “field” SRS at response locations
May over-test at some locations
Do not use with envelope response targets - use response limiting
Critical locations may be inaccessible for instrumenting
Open loop process - must be pre-planned



Shaker Shock Basics

Shaker shocks are run open loop
Shaker shocks are usually deterministic waveforms
Shakers are driven by acceleration time histories

The test engineer can specify the input acceleration directly
Waveform replication

. David Shyaliwy 2
The waveform can be created based on algorithms that create ® " |

an acceleration history whose SRS matches the specified SRS " &=
Sum of Decayed Sines waveforms Vi \/
Random shock waveforms e
Zero Residual Displacement (ZERD) waveforms
WAVSYN (half-sine modulated sinusoids)

The shaker shock synthesis tools used for this presentation are derived from David
Smallwood’s work

This presentation is about SDS based shaker shocks based on Smallwood’s SDS
algorithm [1-6]



7

Fundamental SDS waveform equation:
7t ) =Dorte i mpmAlluSibgin (2 f7C)

A; - Tonal amplitudes

Signs of A; alternate -i.e., 4; > 0, A;;1 < 0, etc.
Gives smoother SRS and reduced compensating
pulse

SRS(f1)
0)

Initial guess - 4; =

f; - Tonal frequencies

At least 5 tones/octave for 3% SRS damping
At least 3 tones/octave for >5% SRS damping
More tones/octave are better

Richer spectral content is probably more
realistic and tends to produce lower peak
acceleration

Avoid harmonics

Shaker Shock Basics — Sum of Decayed Sines

Duration (T) is the greater of two values:
Real world waveform
10 cycles of the lowest tonal frequency

{; - Tonal damping ratio

{; = L. risthe exponential time constant
2ntf

; T
Usually 7 is a constant - t < =

Ensures adequate ringdown
Higher frequency tones ring for more cycles

Sample rate

SR = 10faxi 5fmax May be OK for flat &
declining SRS



Sum of Decayed Sines

Creating an acceleration history whose SRS matches a specified SRS is an iterative process
The SRS is a nonlinear transformation

The Smallwood SDS algorithm [1] estimates the tonal amplitudes starting with the lowest
frequency and proceeds to higher frequencies

The amplitude at the i frequency, 4;, is adjusted to minimize the SRS error at that frequency:

SRSc(fi)—SRSyer(fi)

SRS (f;) is based on the current tone and all other tones computed to that point

Many shaker controllers (Spectral Dynamics, Data Physics, etc.) can make the input signals
from SDS tables

The SDS software in some controllers is based on the Smallwood algorithm

Differences in how they minimize residual velocity and displacement
Compensating pulse or high-pass filter

NASA GSFC (Dan Kaufman) has recently developed a different SDS approach - conceptually similar



9

Sum of Decayed Sines — Basic Algorithm Flowchart

Three loops

Inner loop - Adjust amplitude 4; to minimize error
Composite acceleration time history - z;(t)

SRS of composite acceleration - SRS,
Intermediate loop - all tones from left to right

Number of Tones - Ny

Outer loop - Repeat intermediate loop N times (corrects for coupling of tones)
Number of iterations - N;

\ 4

Next
Iteration

Initial
Parameters

\ 4

For j=1to NN,

—

>N,

YES

Done

—  For i=1 to Ny

—

A

YES

>Ny

—

Select 4; -

Next Tone

SRS¢(fi) — SRScrri(f)
SRScrr(fi)

Err(f)) =

Control
SRS

|
AR

A




10 ' Sum of Decayed Sines - Example

This example shows a 3 tone SDS generated shock

Decayed Sine (fn=20 Hz) ‘ Composite Decayed Sine

0.4 . . - . 0.4
Time (sec) Time (sec)

-
o
-
o

- - = - Ensemble
Composite

B (fn=20 Hz)| |
- - - = (fn=35 Hz)
— (fn=50 Hz)

ow frequency tones contribute
| | | , to SRS at higher frequencies

o4 : : 10" 102 10" 102 103
Time (sec) Natural Frequency (Hz) Natural Frequency (Hz)

5% Damped MMAA SRS (G)

S
5% Damped MMAA SRS (G)

-
o
¥
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2 | Response-Optimized Shaker Shocks (SIMO Optimization)

Objective

Define an input that minimizes the SRS error between N test-measured responses and specified
environments in a least-squares sense

The control channel can be included in the response optimization set
The result is not a global minimum - it depends on the SDS equation parameters
Primarily the tonal frequencies

SIMO optimization algorithm has the same three loops as the basic SDS algorithm
Need Transmissibility Response Functions (TRFs) from control to response locations
One TRF per response location
If the control channel is included, TRF = 1 at all frequencies
Different error function for the inner loop:

sVR tr(SRSc(fi)—SRSr(f))
r=1 SRSr(f})
ErrW(f.l) = NR —

Z‘r‘:l MT

Inner loop error function is the weighted sum of errors for each response location

@



E IResponse-Optimized Shaker Shocks (SIMO Optimization) ®

Algorithm Flowchart

“ SRS, = SRSyes U SRScrRL ZNR HA(SRSS(D) = SRSA(n)
= If the control channel is included, its TRF = 1 at all frequencies Erry (f,) = ¥ SRSy (fi) E
Ui NR
Next | Z1‘=1 Hr
lteration
\ 4 YES
-
p Jnlie] » Forj=1toN, —» >N, —» Fori=1toNy —>»< >Ny —>» Select 4; ‘
arameters
A
Done <«

- E
<t—
Next Tone 4—‘ = <+ < B I

Response/
Control SRS

Response

SRS Control TRFs

HI‘CTRL I'=1...NR




12 | Monte Carlo Response-Optimized Shaker Shocks

The SIMO optimized control acceleration is sensitive to the distribution of the tonal
frequencies in the SDS equation

The SIMO optimization problem is solved multiple times with different sets of tonal frequencies

Monte Carlo Algorithm Flowchart

Tones/ SDS
Octave Parameters

SIMO Response
Optimization

Done <

For k=1 to Ny —» k>Ny —» Randomize Tones —»

T Next Tone
<
Set




s | Monte Carlo Response-Optimized Shaker Shocks ®

A Monte Carlo algorithm is used to generate the control SRS with various combinations of
tonal frequencies

Octal spacing of nominal tonal frequencies (e.g., 3 tones/octave)
Tonal frequencies are defined from a uniform distribution around each nominal tone

Guard bands are imposed at the boundaries between adjacent tones to prevent a non-monotonic vector of
frequencies

18.5 19 19.5 20
Frequency (Hz)




16 - Monte Carlo Response-Optimized Shaker Shocks

The “optimal” control acceleration history is chosen based on 2 or more scalar metrics
Peak acceleration, Peak Vel, Peak Displacement, RMS dB Error, Energy

“Optimal” is user selected from a scatter plot

8 tones/octave

10 tones/octave

12 tones/octave
User Selected Best
Minimum Vel & Disp

[
R =
- [14]
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< &
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S ©
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8 tones/octave

10 tones/octave

12 tones/octave
User Selected Best
Minimum Vel & Disp

Peak Velocity

i (20r10g( 0 ar )

fB

g e Ng
Ermspp = (N_R) Yr=1




Optimized Response & Limited Shaker Shocks

Response optimization generates a control SRS so that the SRS at response locations are a
“best fit" in a least-squares sense

No guarantee that SRS will not exceed target SRS at response locations
Response optimization produces a “better fit” outside the limiting frequency bands

Response limiting creates a control shaker shock such that responses do not exceed target
SRS in specified frequency bands

Must include the “control” channel in the response set
This SRS will be matched if the limits do not engage

Flowchart is the same as the response optimization flowchart
Different error equation

Convergence is not guaranteed

Optimal Response Limiting combines SIMO optimization with response limiting
Can use Monte Carlo Optimization loop

IT—ETTE



8 | Optimized Response & Limited Shaker Shocks ®
|

Algorithm Flowchart

Channels can be in the limit set and the optimization set s Mr(5R5c3§}];ig Ef%RSr(fi))
The outer Monte Carlo loop can be added Erry(fy) = X J :
r=1rTr

(SRSc(fi) — SRSy (fi)

v YEs Err (f;) = max

_— NO | [ NO | r=1..Np SRS, (f;)
For j=1toN, —» >N, —>» Fori=1toN;y —»< >Ny »—>» Select 4;
Parameters
)
Done <

F =" =
<$ H .ﬁ-_x*lﬁ

Next Tone

Response/Control &
Limit Limit/Control TRFs
Channels Control SRS H.crp r=1...Ng+N,
SRS
Response
Channels

SRS



19

Optimized Response-Limited Shaker Shocks

The response-limiting algorithm uses the SIMO base algorithm with a set of
conditional if statements

if (ERR; > 0&&ERRy, >0)|(ERR; < 0&& ERRy,; < 0) then
ERRLW — maX[ERRL, ERRw]

elseif ERRL > (0 && ERRW < 0 then Compute
ERRLW — ERRL o EH‘L(E)
elseif ERR, < 0 && ERRy, > 0 then S o

ERR;y = ERRy, Errw (1)

end

If the limits do not engage, the algorithm reverts to the basic SDS algorithm
or the SIMO algorithm

We also use the slope of the correction (not shown here) when updating 4;
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» | Test Article — BARBECUE @
Box And Removable Bridge with External Components Under Evaluation

BOBML configuration
Bridge On Box Medium mass & Large mass

Graflab DB Created 04/21/23VB

HC_xx_1B_BOBML
— = = HC_xx_2B_BOBML
—_—— HC_xx_3B_BOBML
HC_xx_4B_BOBML
HC_xx_58_BOBML

TRF Magnitude (G/G)

z-facing
C-channel

Frequency (Hz)

BOBML TRF Base to All Output Locations
Output Dir: y Input Dir: y
ANSYS Model: BARC_Box&Bridge_RobertFlores
Graflab DB Created 04/21/23VB
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» | BARBECUE Test @

BOBML TRF Base to Output Locations 1-3

TeStIng WaS CondUCted In the Z aXIS ANSYS(l?/Ing;It:%K;éigfxgigr;ge_RobertFIores
The tests were controlled at the base Graflab DB Created 05/01/23VB

Location 6

TRF Magnitude (G/G)

- 10°
: BOBML Test TRF Base to Output Locations 1-3 Frequency (Hz)
> Output Dir: z Input Dir: z
N Test: BARC Box&Bridge FlatRandom 2p8GRMS
Graflab DB Created 05/05/23VB
N Test Date: 05/04/2023; Test Engineer: Dan Rohe

|

TRF Magnitude (G/G)

HC zz 16_BOBML_Test_2p8GRMS
— HC_zz_26_BOBML_Test_2p8GRMS
HC_zz 36 _BOBML_Test 2p8GRMS

102
Frequency (Hz)




23 | BARBECUE Response Optimization & Limiting

Two resonances are used in this study
Fundamental resonance at 71 Hz

Resonance at 370 Hz

Field environment
Measured responses at locations 1,2,3 and 6

Represents what would have been measured on the BARBECUE in service

Test environment
A straight-line laboratory test spec that represents the field environment
SRS at the base made using the best practice of “filling-in" dips in the field SRS
Straight-line response limits at locations 2 & 3

Measured TRFs and test spec are used to pre-compute the test base input for different
objectives

Experimental validation
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Field Environments

“Field measured” acceleration at the BARBECUE base

“Field measurements” at locations 1 - 3
Accelerations and SRS at locations 1 - 3 were simulated using frequency domain convolution with
TRFs and the base acceleration
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Field Environments — Response Locations
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6 | Test Environment

Laboratory test specification
Straight-line SRS at base

Straight-line SRS response limits at locations 1 & 2

Assumptions
Field-measured SRS at response locations are known

Field-measured input at the base is unknown or not available

Test spec filled in dips
in field environment ¥
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CTRL Field Limit at Large Mass (Loc 2)
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27 | Baseline — No Response Optimization or Limiting

Computed a SDS acceleration history at the base

Propagated that through the TRFs to the response channels
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Baseline — No Response Optimization or Limiting

Test Response at Bridge Center (Acc 3)
Test Response at Medium Mass Tower (Acc 1) Field Response at Bridge Center (Acc 3)
Field Response at Medium Mass Tower (Acc 1) Limit at Bridge Cener (Acc 3)
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29 | BARBECUE Response Optimization & Limiting Objectives ®

Case 1 - SISO Response limiting (One control location)
Modify base excitation so that responses at locations 2 & 3 do not exceed response limits
If response limits are not active, Case 1 reduces to the basic SDS problem

Response at location 1 uncontrolled

Case 2 - SIMO Response optimization & limiting (Multiple response locations)
Modify base excitation so that responses at locations 2 & 3 do not exceed response limits AND
Minimize the SRS error at locations 1,2, & 3

Case 3 - Monte Carlo SIMO response optimization
Minimize the SRS error at locations 1,2, & 3 AND

“Optimize” scalar metrics



Case 1 — SISO Response-Limiting
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Case 2 — SIMO Response Optimization & Limitin
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Case 2 - Response Optimization & Limiting
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Case 2 - Response Optimization & Limiting
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34 | Case 3 — Monte Carlo SIMO Response Optimization ®

60 Monte Carlo simulations were run m——
tones/octave
20 each for 8, 10, and 12 tones per octave 10 tones/octave

12 tones/octave
User Selected Best
Minimum Vel & Disp

User-selected realization based on RMS dB error and
peak acceleration

c
e,
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o
o2

@

Q

o
<
4

©

)
o

Peak displacement vs peak velocity scatter plot
shows the “best” (user selected) realization in terms
of those parameters

Useful if shaker capability limits must be considered

O 8 tones/octave
O 10 tones/octave
12 tones/octave
&  User Selected Best =
¢  Minimum Vel & Disp

Peak Displacement

10
Peak Velocity




Case 3 — Monte Carlo Response Optimization
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Comparison of Control SRS for Cases 1- 3

Baseline SRS
matches the test
spec
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Comparison to the Field Environment

The field input realization was made from a notched straight-line SRS
Test spec was the straight-line SRS without notches

Response-limited CTRL approximated the field environment reasonably well

Optimization warped the input SRS
May be an issue at unmeasured response locations

SDS shaker shocks
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39 | Experimental Checks

The predicted inputs were implemented on the shaker

The inputs were replicated accurately
The field SRS was replicated well
The predicted responses to the field input were not as good
The difference may be an artifact of the field input being a transient random environment

The responses were not as accurate as expected
The predicted responses to the field input were not as good
The error may be an artifact of the field input being a transient random environment

More so for the field test, which may be an artifact of this being a transient random environment
Perhaps the BARBECUE is not totally linear



Experimental Validation — Field Environments
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Response optimization and limiting are based on our baseline Sums of Decayed sines
algorithm for generating an acceleration realization from a SRS

Unlike random vibration, shaker shock response limiting & optimization is pre-planned
Requires transmissibilities from the control to the response locations

Response limiting did properly restrict the resonant responses

Response limiting by itself did not match the broadband field SRS at all 3 response
locations as well as the other methods

Least distortion of the control SRS

The Monte Carlo response optimization matched the field SRS at response locations1 - 3
the best

We hope to extend these algorithms to MIMO environments
6-DOF shaker
NEWT Method
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Response Optimized Shaker Shocks (SIMO Optimization)

In addition to optimizing a set of desired SRS, one can optimize on other scalar parameters
of interest

Synthesize multiple “inputs”
Obtain TRFs between input acceleraton and parameter of interest

Use convolution to synthesize waveforms
Compile scalar parameter
Choose opimal value

The method has been successfully used to minimize amplifier voltage and current

[6]
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