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2 ‘ Objective

* Develop a computational model for that

* Includes realistic AM material features
* Helps to relate free-surface velocities in plate impact tests to these AM features.

 We are not explicitly modeling microstructural features like voids, dislocations, precipitates, inclusions

(although these are known to affect spall*).

*Sample of work on spall at the microstructural scale
*  Trumel et al., J. Mech. Phys. Solids (2009)

*  Wayne et al., Scripta Mater. (2010)

e Krishnan et al., Metall. Mat. Trans. A (2014)

* Lietal., Mater. Sci. Eng. A (2016)

* Wangetal, ). Applied Phys. (2017)

* Lietal., Acta Mech. Solida Sinica (2018)

* Lietal., Mater. Sci. Eng. A (2019)

*  Nguyen, Luscher, & Wilkerson, Acta Mat. (2019)
* Dongare, Mater. Sci. Eng. A (2019)

*  Chiu, in progress (2023)

Microstructural scale
Image: Krishnan et al. (2014)

Length scale for this study
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Image: Specht & Brown (2021)



3 | QOutline

* Modeling methods
* Peridynamics background.
* Crystal plasticity model.
e Spall kinetics model.
* Impact simulations and comparison with test data.
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4

Failure of metals under impact loading

* Plate impact experiments are used in various configurations to measure dynamic material properties.
* Equation of state data (Hugoniot and release).
* Dynamic strength under high-rate tensile loading (~ 10° 1/s)
» Spall stress >> quasi-static tensile strength (typically > 3GPa for steel).

e Basic test data is the free surface velocity.

Sapphire o
projectile (4% AM Steel
\ : / Spall surface
—
500m/s

Spall surfaces can be irregular*®

Synthetic microstructure

*Image: E. Svabenska et al., “Effect of shock wave on microstructure of silicon steel”, Surfaces & Interfaces (2020).




5 ‘ Wave reflections lead to strong tension
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6

Ildeal vs. observed AM spall response

Ideal:

* |Instantaneous, straight fracture
* No wave dispersion
Typically observed:

* Fracture at a finite rate, complex surface

* Dispersive shock and reflected waves
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Peridynamics: What it is

 Itis atheory of solid mechanics that allows for discontinuities within the basic equations.
It also allows for long-range forces.

Peridynamic simulation

@ Images: Hofmann et al, 2008



s I Peridynamics background

e Peridynamic momentum balance in 3D:

p(x)u(x,t) = / f(q,x,t) dq + b(x, ) VxeR, t>0.

X

e T is the pairwise bond force density of the bond from q to x.



o I Peridynamics allows fractures to appear spontaneously

* Integral equations: no need to try to differentiate on a singularity.
* Meshless discretization allows grains to be defined in any shape without a FE mesh.
* Bonds fail according to a damage criterion..

* which in this case is supplied by the Spall Kinetics Model (more later).

Example of macroscopic failure in a sample with defects
VIDEO




10 ‘ LENS process

* Large, elongated grains are typically formed
* Nonuniform thermal history

Typical AM microstructure

)

Laser
Lens
Powder
Inert gas

PN PE

CUIDE

Images:
. https://www.manufacturingguide.com/en/laser-engineered-net-shaping-lens-0
. D. Adams et al, SAND2019-7001 (2019)
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11 | Crystal plasticity implementation in peridynamics

* Need to capture:
* Preferential flow directions determined by the slip planes.
* Anisotropic elastic response.
* Previous work uses:
e Correspondence approach to material modeling in peridynamics
* Decomposition of the deformation gradient into sequential plastic and elastic parts:

F = F°F?

+ S. Sun & V. Sundararaghavan, International Journal of Solids and Structures (2014).
** J. Luo, A. Ramazani, & V. Sundararaghavan, International Journal of Solids and
Structures (2018).
s X. Gu, Z. Qing, & E. Madenci, Engineering Fracture Mechanics (2019).
s A. Lakshmanan et al., International Journal of Plasticity (2021).
* Present work uses a simpler but less general approach.



12 ‘ Crystal plasticity model*

* Analogous to the radial return method
* The slip systems limit the deviatoric stress to a polyhedron in the space of deviatoric tensors.
* Ateststressis found from the previous cycle stress and the current stress increment.
O.test — O.n—l 4+ CAEn_l/Z
where C is the anisotropic 4t order elasticity tensor.
* The new stress g™ is the point on the surface closest to the test stress.

O.test

CAEn_l/Z

Yield surface

Stretching of a bar with one slip system
Colors show equivalent plastic strain

* P. Maudlin and S. Schiferl, Computer Methods in Applied Mechanics and Engineering (1996)



13 | Fit to quasi-static stress-strain data for AM 304L stainless steel

» Sample was additively manufactured with the Laser Engineered Net Shaping (LENS) process.
* The model also contains temperature and strain rate dependence.
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0 0 0.04 0.08
Strain

*D. P. Adams et al., Sandia tech report SAND2019-7001 (2019)



14 | Assignment of lattice orientations

* @Grains are imported into the model from electron backscatter diffraction (EBSD) images.

e Lattice orientations are assigned randomly using Euler angles.

* These are combined with published anisotropic crystal elasticity data* for 304L SS to compute C for each grain.
C11 = 209GPa Ci, = 133GPa Csqa = 121GPa

6.5 mm

*H. Ledbetter, Physica B+C (1985)
**Image: T. Ruggles



15 | Equation of state

* Add a pressure term to the deviatoric stress found from the crystal plasticity model.
* Mie-Gruneisen EOS:
* Input: Internal energy density, mass density
e OQutput: Pressure, temperature
* Shock velocity is a linear function of particle velocity behind the shock.
 Same EOS for all grains

Shock \/
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— U

Pl Us

Hugoniot —

(thermodynamic state
behind a shock wave)

Pressure

Shock velocity U
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»

Mass density
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16 I Correspondence material models

* The above material models are implemented using the correspondence framework.

* This adapts a local material model to the peridynamic framework.
* The deformation of a family is mapped to an approximate deformation gradient tensor F.
e Astress tensor o is found from a stress-strain relation.
* The stress tensor is mapped onto the bonds to provide the bond forces f(q, x).

.-b. ~®~G(F)~ .



17 I Modeling shock waves in peridynamics

* Von Neumann artificial viscosity is needed.
* Energy balance is treated using a nonlocal version of the first law of thermodynamics.
* For very large deformations, an Eulerian material model formulation is needed.

* Not used in the present application.

Shock wave in a polycrystal
Aluminum impact at 3km/s Colors show strain rate
Colors show pressure

T Us=7140m/s

Impact surface

Us=7140m/s

* SS et al, Modeling shockwaves and impact phenomena with Eulerian peridynamics, Intl J Impact Engin (2017)



18 ‘ Spall kinetics model

Failure occurs over a finite period of time.

The rate of failure depends on the peak tensile stress and strain rate.

Tensile stress waves converge

Strong tension
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19 I Spall kinetics model: softening and variability

 The EOS is modified to include softening as the critical stress for failure is approached.
e Each grain (from EBSD) is randomly assigned a value of spall stress.

Softening and failure during expansion Grain-to-grain variability in spall stress
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20 I Impact on AM steel at 247m/s: Videos

* Total time simulated is 1.8us.

Pressure X-Velocity X-Displacement
Red > 4GPa Red > 250m/s Red > 0.27mm
Purple < -4GPa Purple<0 Purple<0




21 | Results: Free surface velocity

e Figure compares model results with test data.

Red = model, black = test data*

Impact at 500m/s
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*J. L. Wise et al., AIP Conference Proceedings (2017)
P. E. Specht et al., Sandia tech report SAND2019-12275 (2019)




2 | Spall surface condition

V =317m/s

Projectile Sample

N
Vv

2 mm

Model
(Colors show damage)

Experiment*

* D. P. Adams et al., Sandia tech report SAND2019-7001 (2019)



23 ‘ Effect of microstructure

What is the effect of extracting different samples from within the EBSD image?
Makes some difference at intermediate impact velocities.

Velocity (m/s)
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Free surface velocity for the 6 samples, all X-cut

V=3
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24 | Discussion

 The large and distorted grain shapes with AM materials affect the dynamic failure properties.
* A number of new capabilities have been implemented in peridynamics:

* Crystal plasticity

* |mporting microstructures

e Spall kinetics model

* Material variability
* The resulting model reproduces the main features of the test data over a range of impact

velocities.

This work: S. Silling, D. Adams, and B. Branch, “Mesoscale Model for Spall in Additively Manufactured 304L Stainless Steel”,
International Journal for Multiscale Computational Engineering (2023)



