
Except ional  serv ice in  the nat ional  in terest

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned 
subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

DEVOPS FOR CATALYST IN SITU 
VISUALIZATION AND ANALYSIS AT 
SANDIA NATIONAL LABORATORIES  

Jeff Mauldin and Thomas Otahal
NLIT Summit 2023, Milwaukee, WI

SAND2023-05390CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do
not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract
DE-NA0003525.





My managers 4+ years ago: “We think you should be the technical 
lead for in situ visualization at SNL”
Me: “You mean take the Kitware Catalyst product, based on the 
tens of thousands of lines of ParaView code, developed over 
decades, and integrate with an SNL simulation code, developed 
over decades, so they can do in situ visualization?”
Managers: “Close. We want you to integrate with several SNL 
simulation codes. Maybe all of them!”
Me: “Ah.”
Managers: “You won’t have to do it yourself. Kitware makes 
Catalyst. You can share the work at SNL with team members.”
Me: “Good. How much manpower will we have?”



Managers: “Plenty!  I think we can give you half your time and a 
quarter of somebody else’s! A whole 0.75 FTE!”





INTRODUCTION

• Goal: Provide in situ visualization and analysis capabilities in 
various simulation codes, on various HPC platforms, to 
Analysts at Sandia National Laboratories (SNL), and also to 
clients outside SNL who use those codes.

• This presentation focuses on the DevOps aspects of what we 
are doing to try to succeed in this goal.

• Most of the work has been done by Jeff Mauldin and Tom 
Otahal, Members of the technical staff at SNL (More 
acknowledgements at the end!)



IN SITU VISUALIZATION AND PARAVIEW CATALYST

In situ visualization computes images and data extracts by directly coupling to the simulation code.  This direct 
coupling gives the in situ software library access to simulation data structures and data fields as they are 
calculated. This confers several benefits over traditional post-processing workflows of simulation data:

• Reduced I/O costs since visualization images and data extracts are much smaller than full mesh output
• More frequent I/O is possible leading to higher frequency outputs
• Reduced disk space required to store output
• Potential reduction in end to end workflow length

ParaView Catalyst is an in situ library version of the ParaView visualization software (Kitware Inc.). Simulation 
codes can access the visualization and analysis capabilities of ParaView at run-time by linking to ParaView 
Catalyst.

Catalyst API version 1.0 legacy documentation 
https://www.paraview.org/files/catalyst/docs/ParaViewCatalystUsersGuide_v2.pdf

Catalyst API version 2.0 documentation
https://catalyst-in-situ.readthedocs.io/en/latest/introduction.html

https://catalyst-in-situ.readthedocs.io/en/latest/introduction.html


 

CATALYST INTEGRATION WITH SEACAS IOSS
• SEACAS (Sandia Engineering Analysis 

Code Access System) contains IOSS (I/O 
Subsystem), which is a parallel I/O 
framework used by Sandia codes to 
read and write Exodus, CGNS, and other 
file formats

• Created catalyst_cgns and 
catalyst_exodus IOSS databases to 
output CGNS and Exodus data to 
Catalyst

• Simulation codes can access Catalyst 
through existing code paths to write file 
data through IOSS

• Catalyst run-time plugin loaded with 
dlopen() allows separate build chains 
for simulation codes and Catalyst (with 
same MPI and compilers)

Simulation 
Code

IOSS databases  
catalyst_cgns and 
catalyst_exodus

Convert sim mesh data 
to ParaView/VTK types

Handles Catalyst API 
calls
• Initialize()
• AddPipeline()
• CoProcess()
• Finalize()

Catalyst 
run-time 

plugin dlopen
()



 

CATALYST TEST SUITE IN IOSS

• Catalyst test suite uses program ioss2catalyst, 
which can be used from a test fixture or from the 
command line

• The ioss2catalyst program uses the IOSS function 
copydatabase() to read CGNS and Exodus files in 
parallel and send them through the appropriate 
IOSS Catalyst database

• The test suite does not require linking to the Sierra 
or SPARC simulation codes, since the ioss2catalyst 
program acts a stand-in for these programs

• Catalyst test suite contains 42 tests that exercise 
code paths for CGNS and Exodus simulation data 
conversion to Catalyst, Catalyst control parameters, 
usage logging, and Phactori Sierra input deck 
processing

•  If the Catalyst test suite builds on runs on an HPC 
platform, users can have a high degree of 
confidence it will run from a calling simulation code

Input Exodus 
or CGNS files 

Catalyst run-
time plugin dlopen

()

ioss2catalyst
uses IOSS

copydatabase()



INTEGRATING USER CONTROL OF CATALYST INTO SIMULATION 
ENGINES

Code level integration is via the IOSS/Catalyst run time plugin using dlopen
()
Analyst level integration requires communication from the analyst to 
the Catalyst capability
• Analyst must have a way to create python for Catalyst to use
• Catalyst control syntax must be available to analyst in simulation 
input deck so that script and any other settings can be identified

This analyst level integration needs to be managed in the devops 
process



SIERRA ANALYST LEVEL INTEGRATION

• Works with Sierra SM (Solid Mechanics), Sierra heat transfer code, 
and Sierra fluid dynamics code

• Sierra input deck syntax is home grown and described with a set of 
xml files. Some newer Sierra codes are moving away from this 
syntax towards, e.g. YAML.

• Prior to any Catalyst integration Sierra input decks had a “results 
output” block which had the option of specifying an output 
database type of “exodusII” (for full multiblock volume mesh 
output)

• We added an output database type of “catalyst” which sends the 
mesh out to catalyst via the plugin rather than to the filesystem



CATALYST SCRIPT CREATION IN SIERRA

Initial method for creating Catalyst scripts was by using the ParaView gui and the 
python capture capability to create scripts (still available)
This Catalyst script creation capability from the ParaView GUI has become 
steadily more robust and easier to use in the ensuing years but still has some 
disadvantages
We integrated a Catalyst scripting language into the Sierra input deck
• Allows us to exhaustively test available capability (in contrast to python)
• Analyst do not have to do a script construction step involving ParaView
• Increased likelihood of adoption (simple behaviors are easy to create)

Scripting language named “Phactori” (backronym of “Paraview Higher level of 
AbstraCTiOn scRipting Interface”)



CATALYST IN SIERRA
 begin results output catalyst_example_output_results_block
        database type = catalyst
        At Step 0, Increment = 200
        element variables = von_mises as vonmises
        nodal Variables   = displacement as displ
        begin catalyst
          begin camera closeupCam
            look direction = -1 -1 -1
            look at relative distance = 0.5
          end camera closeupCam
          begin clip myClip
            relative point on plane = 0 0 0
            plane normal = -1 -1 -1
            side to keep = positive
          end clip myClip
          begin imageset myImageSet
            camera = closeupCam
            operation = myClip
            color by scalar = vonmises
            show edges = true
            image size = 1280 1024
            image basename = clipVM.
          end imageset myImageSet
        end
      end results output catalyst_example_output_results_block



CATALYST SCRIPT CREATION

Data From Simulation 
(likely low resolution) or 
Stand-in data

ParaView GUI Create Visualization 
And Data Export 
Scene

Export Python Script

Reference Python 
Script from Catalyst 
section in Simulation 
Input Deck

Catalyst Script Creation Using ParaView (SPARC and Sierra)

Catalyst Script Creation Using Phactori

Create Visualization and 
Data Export Scene using 
Phactori scripting

(Sierra) Put script directly 
into Simulation input deck

(SPARC) Create Phactori 
Script in .json format

Reference .json format file 
from Simulation Input Deck





CATALYST SCRIPT CREATION IN SPARC

As before, create Catalyst scripts using the ParaView GUI
Users may also create Catalyst scripts with Phactori. In Sierra Phactori is 
internally converted to JSON format. In SPARC users may write Phactori 
script directly in JSON in a file separate from the SPARC input deck
SPARC input deck syntax specified in YAML
SPARC had volume-post-processing and surface-post-processing output 
blocks; we added volume-runtime-processing and surface-runtime processing 
blocks
Additional blocks for sending multiple grids (e.g. volume and wall surface) to 
the same Catalyst script for simultaneous visualization and analysis



CATALYST IN SPARC

volume-runtime-processing:
[{
    datatype: cgns,
    step-start: 0,
    step-frequency: 10,
    variables:  [density, velocity, 
temperature, temperature_vib, pressure, Ma, 
total-enthalpy, nonlinear-residual, 
turbulent-viscosity],
    runtime-control: {
      catalyst: {
        control-script: {
          script-type: phactori-json,
                script: catscript1.json                                                 
        }
      }
    }
  },
],

{
"camera blocks":{
  "camz2":{"camera type":"camera",
           "look direction":[0,0,1]},
},  
"representation blocks":{
  "rep_Ma":{ "color by scalar":"Ma",
             "variable type":"element"},
},  
"imageset blocks":{
  "is_Ma_camz2":{
    "camera":"camz2",
    "representation":"rep_Ma",
    "image basedirectory":"CatalystOutput",
    "image basename":"Ma_camz2."
  },
},
"operation blocks":{},                                                                              
}

Catalyst Settings in SPARC Input Deck Phactori Script (JSON) Referred (catscript1.json)





NEW SPARC COMPOSITE-RUNTIME-PROCESSING OUTPUT 
BLOCKS



Towards In-Situ Analysis: Surface cross flow and surface tangential 
flow on body surface in constant non-symmetric incoming airflow. 
Sample points are positioned perpendicular to surface with 
nonlinear sample spacing.  (Greg Weirs develop the ideas for this 
analysis/visualization with interactive ParaView, here you see results 
created with SPARC in-situ.)



Crossflow only, arrows scaled to be visible from overview, 
samples from slices at 30-degree angles to avoid screen 
clutter



Interesting tail view of cross 
flow



Cross flow 
at nose, 
tubes 
instead of 
arrows



Cross flow at 
nose, 
different view





INTEGRATING WITH SIERRA AND SPARC DEVOPS

Part of our DevOps process has been integrated into the SPARC and Sierra 
DevOps processes
SPARC test suite has regression/integration tests which test the syntax of the 
Catalyst-related input deck syntax and test the integration with Catalyst by 
producing images
SIERRA has similar but less complete tests. Historically we only did a “smoke 
test” inside of SIERRA and did all the other testing outside their DevOps 
process. We are currently working on fully testing all the Sierra Catalyst input 
deck syntax inside of the Sierra test suite
Coordination with SPARC and Sierra DevOps teams is required and ongoing
Note: we can expand this a lot, should we?



DEVOPS NEED FOR CATALYST IN SPARC AND SIERRA

Deployment environment at SNL for Catalyst is complex:
Multiple HPC platforms with different architectures:

• TLCC2 and CTS-1: traditional multicore nodes on 
• ATS-1: Intel Many Core Architecture with, e.g. 80 cores per chip (Trinity at LANL)
• ATS-2: Nodes with Nvidia GPUs (Sierra at LLNL)
• Vanguard ARM CPUs
• CEE: Common Engineering environment, non-HPC high performance workstations

SPARC and Sierra typically use different MPI versions and different compiler versions on 
each HPC and use different MPI versions from each other on each machine
SPARC and Sierra typically use different versions and builds of many TPLs
Catalyst must be configured, built, tested, and deployed for each HPC for each simulation 
code



THE DARK AGES





THE DARK AGES

• Used ParaView superbuild to build ParaView/Catalyst on each HPC
• Hand tweaking of all CMake options, many machinations necessary on 

each HPC to get successful builds compatible with corresponding version 
of Sierra and Catalyst

• Knowledge of build details on each platform contained in various build 
scripts and engineer’s heads

• Testing done by Catalyst build engineer on Each machine by hand via 
running simulation codes with Catalyst Scripts

• We at least had a set of automated test via CMake that would run Sierra 
repeatedly with different autogenerated test Sierra input decks. Very 
useful but difficult to maintain and run.



THE DARK AGES (PARAVIEW SUPERBUILD ONLY)

Log in to
Particular 
HPC

Load modules, set 
environment variables, 
create aliases, other build 
environment setup

Clone ParaView superbuild

Examining old build scripts and prior 
successful makes on the given HPC, 
determine all the proper CMake options for 
ParaView superbuild and execute CMake. 
Repeat until successful cmake.

Switch to correct ParaView superbuild branch

Determine build and install 
locations, create build 
directory

Build with make. When it 
fails do the previous two 
steps again until you have 
successful make

Configure, build, 
install Ioss Catalyst 
plugin using this 
catalyst build

Build Simulation 
code (Sierra or 
SPARC or maybe 
Nalu) with proper 
linking to this plugin.

Run Sim code with 
catalyst script, likely 
waiting in queue

When it core dumps, 
figure out why, go back 
several steps fix it, and try 
again

Success!

Tweak ParaView source code if necessary



Per-HPC Environment

CMake

make Ninja

Gnu Intel

Clang

MPIPython

configure

Meson

SPARC modules Sierra modules

ParaView Superbuild

STAMPS

Ansible

Ansible Tower

ParaView 
CMake

ParaView Third Party 
Packages (CMake, 
configure, Meson)

ARM

CompilersConfigure and Build Tools

Big Picture of 
Current Catalyst for 
Sierra and SPARC 

DevOps

libstdc++ libtools

sbatch, bsub, mpiexecLLVM

OSmes
a

Hdf5

NetCD
F



STAMPS: THE HERALD OF THE NEW AGE



STAMPS: THE HERALD OF THE NEW AGE

• We built the Sandia Targeted Automatic Make ParaView System (STAMPS)
• Python script wrappers for ParaView Superbuild, which wraps ParaView 

CMake and its third party dependencies
• For each platform for each simulation code, platform specific CMake 

settings and any necessary third party package related alterations are 
contained in a python script specific to that platform and simulation code

• Top level build command to specify platform and locations of build and 
install directories (useful for both testing and deployment)

• Also builds IOSS catalyst plugin (for SPARC or Sierra as specified)
• Git repo to maintain system
• Likely we will continue to use STAMPS for a long time but we may 

eventually replace ParaView Superbuild with SPACK



STAMPS

Formerly building on each HPC using ParaView Superbuild required a 
lot of command line operations
• Lots of opportunity for error
• Time consuming
• Disorganized

After STAMPS you could simply log on to the HPC, clone STAMPS, 
run the build command for the platform/code of interest, and walk 
away
• No user error
• Organized
• No monitoring of build process needed



STAMPS

python3 /vscratch1/jamauld//stamps/stamps_paraview_build.py \

  --build_format ats2_pv_5_11_0_sparc \

  --build_directory /vscratch1/jamauld/build_dirs/build_1003_ats2_pv_5_11_0_sparc \

  --install_directory /vscratch1/jamauld/install_dirs/install_1003_ats2_pv_5_11_0_sparc \

  --build_ioss_catalyst_plugin \

  --build_ioss2catalyst_application \

  --number_of_build_processes 64



STAMPS WORKFLOW SIMULATION CODE

Log in to 
particular HPC

Clone 
STAMPS

Construct STAMPS build 
command (build dir, install 

dir, etc.)

Run STAMPS, results in 
Catalyst install

Build and Test 
Simulation Code

(Takes a long time)



 

CATALYST TEST SUITE IN IOSS

• Catalyst test suite uses program ioss2catalyst, 
which can be used from a test fixture or from the 
command line

• The ioss2catalyst program uses the IOSS function 
copydatabase() to read CGNS and Exodus files in 
parallel and send them through the appropriate 
IOSS Catalyst database

• The test suite does not require linking to the Sierra 
or SPARC simulation codes, since the ioss2catalyst 
program acts a stand-in for these programs

• Catalyst test suite contains 42 tests that exercise 
code paths for CGNS and Exodus simulation data 
conversion to Catalyst, Catalyst control parameters, 
usage logging, and Phactori Sierra input deck 
processing

•  If the Catalyst test suite builds on runs on an HPC 
platform, users can have a high degree of 
confidence it will run from a calling simulation code

Input Exodus 
or CGNS files 

Catalyst run-
time plugin dlopen

()

ioss2catalyst
uses IOSS

copydatabase()



STAMPS RUNS SEACAS CATALYST TESTS

• As described, the SEACAS Catalyst test suite is absolutely vital 
to maintaining code reliability

• We added to STAMPS the options and other groundwork to 
allow us to turn on the test suite for the IOSS catalyst plugin.
• SEACAS package required to run ioss catalyst plugin tests
• Method of running CTest varies on each platform

• After quite a bit of work, on each HPC platform after the 
STAMPS build script is run we can go into the 
ioss_catalyst_plugin build directory and run ctest to test the 
result (or submit a job via sbatch or bsub to run ctest)

• Now the build engineer can run the build script and then run 
ctest to verify the build



STAMPS RUNS SEACAS CATALYST TESTS



STAMPS WORKFLOW WITH CATALYST TEST SUITE

Log in to 
particular HPC

Clone 
STAMPS

Construct STAMPS build 
command (build dir, install 

dir, etc.)

Run STAMPS, results in 
Catalyst install

Run Catalyst Test 
Suite with CTest



ANSIBLE FOR CATALYST CONFIGURE, BUILD, TEST, INSTALL

• While STAMPS is a vast improvement, we still have to log on to 
each HPC, check out STAMPS, run the build script, and then 
run CTest

• Could maintain a script on each HPC to do this automatically
• Ansible playbooks are more maintainable and consistent than 

shell scripts and have access to libraries for dealing with things 
like git and file creation (it’s easier to pass along understanding 
of an Ansible playbook than an ad-hoc shell script)



ANSIBLE FOR CATALYST CONFIGURE, BUILD, TEST, INSTALL

• The hardest piece turned out to be the testing
• Very inconsistent how testing must be done on the various platforms
• Some you just run CTest where you build

• Some you run CTest from a batch file
• sbatch
• Bsub

• Sometimes you need to use mpiexec to run CTest on the allocated node, sometimes mpiexec isn’t 
available and you have to use srun

• Other considerations I’ve probably forgotten but which are stored in the HPC-corresponding Ansible 
playbook (or playbook section)



ANSIBLE FOR CATALYST CONFIGURE, BUILD, TEST, INSTALL

• Now build engineer can, from a single location, run Ansible 
playbooks which configure, build, install, and test the Catalyst and 
IOSS catalyst plugin

• Engineer can run a single playbook or launch many of them 
simultaneously (I do this often). Compute burden on host system is 
low. I usually background the jobs and redirect their output to 
different files for each playbook run.

• Our Ansible playbooks can copy test results back to the launching 
system, but we usually turn off this step and let reporting go to 
cdash (see later).



ANSIBLE FOR CATALYST CONFIGURE, BUILD, TEST, INSTALL

Ansible Control Node
User runs ansible 
playbook(s)

Configure, Build, Test, Install Catalyst and IOSS Catalyst plugin for Sierra on 
TLCC2 Host

…for Sierra on CTS-1 Host

…for Sierra on CEE Host

…for Sierra on ATS-1 Host

Configure, Build, Test, Install Catalyst and IOSS Catalyst plugin for SPARC on 
TLCC2 Host

…for SPARC on CTS-1 Host

…for SPARC on CEE Host

…for SPARC on ATS-1 Host

…for SPARC on ATS-2 Host

…for SPARC on Vanguard Host



CDASH REPORTING

Initially Ansible playbooks would copy the test results back to the host system, and we could view 
the results from each HPC back on the host system
We were heading towards scheduled automatic launching of ansible playbooks and we didn’t want 
to have to look at test report files by hand
We added to the IOSS Catalyst plugin CTest the capability to report to CDash
After, again, a fair amount of work, we got each HPC  to successfully report the CTest results to a 
CDash dashboard



CDASH REPORTING



SCHEDULED AUTOMATED BUILDING WITH
ANSIBLE TOWER

• Now we had automated configure, build, install, test, and test 
report to CDash on each HPC via Ansible playbooks

• Rather than launching these jobs by hand via the “ansible-
playbook” command, we wanted these jobs to launch automatically 
from a DevOps system

• We wanted to schedule nightly builds/tests on each HPC platform 
for each simulation Code



SCHEDULED AUTOMATED BUILDING WITH
ANSIBLE TOWER

• We created an Ansible Tower environment (projects, templates, hosts, 
schedules, etc.)

• Nightly Scheduled jobs for configure, build and test, (and install test)
• IOSS catalyst plugin for Sierra

• Cee with sierra module
• Cee with sierra-devel module
• Cee with sparc module
• TLCC2 and CTS-1 with sierra-devel module and sparc module
• ATS-1 with sierra-devel module and sparc module
• ATS-2 and Vanguard with sparc module

• Currently moving to ParaView 5.11 and still standing up automated testing for 
various platforms







RECENT PRACTICAL SUCCESS

Week of June 5-9 2023, all automated builds started failing
Dashboard was suddenly empty of successful results
Investigation revealed that there was a new system requirement for “git-lfs”, a large file 
system module for git
Altered ansible playbooks so that the git clone activity had the needed access to a git-lfs 
install
No users affected, discovery of problem was all automatic
Proximity in time and singularity of problem made fixing it much easier
If problem had been undiscovered until a new ParaView release it would have been much 
harder to find and fix



A FEW THINGS IN THE FUTURE



STAMPS

Ansible

Ansible TowerReplacing ParaView 
Superbuild with Spack

Spack

Per-HPC Environment

CMake

make ninja

Gnu Intel

Clang

MP
I

Python

configure

Meson

SPARC modules Sierra modules

AR
M

CompilersConfigure and Build Tools

libstdc++ libtools

Per-HPC Environment
SPARC modules Sierra modules

sbatch, bsub, mpiexec

LLVMOSMes
a

Hdf5

NetCDF



CATALYST API 2 IN IOSS

55

Simulation 
Code

IOSS

Iocatalyst_DatabaseIO in 
write mode

catalyst_initialize()

Create Conduit Node

catalyst_execute()

Iocatalyst_DatabaseIO in 
read mode

1. Initialize with Conduit 
Node from simulation 
write

2. ParaView IOSS reader 
reads data 

ParaView Catalyst API 2 

• New Catalyst IOSS 
database class: 
Iocatalyst_DatabaseIO 

• On IOSS write, creates a 
Conduit Node

• On IOSS read, accesses 
data from a Conduit Node

• ParaView has an IOSS 
reader

• Iocatalyst_DatabaseIO is 
just another IOSS 
database type like Exodus 
or CGNS

• Code paths in Catalyst and 
ParaView GUI are 
identical!



LESSONS LEARNED

• We did not and do not really have enough manpower for our requirements
• Productizing Catalyst in our environment is entirely hopeless without 

DevOps, but at least a tractable problem with DevOps
• Automated testing is key--difficult in a varied HPC environment but vital
• Catalyst has some unique challenges due to the way it integrates into 

simulation codes, and design, implementation, and DevOps work for each 
code is necessary

• Ansible is excellent and has some useful advantages over bespoke scripts, 
but if we had started a bit later we probably would have at least compared 
and considered gitlab runners



RELATED PUBLICATIONS

V. G. Weirs, E. M. Raybourn, R. Milewicz, K. Muollo, J. A. Mauldin, and T. J. Otahal, ‘Enabling 
Catalyst Adoption in SPARC’, in 2022 IEEE/ACM International Workshop on In Situ Infrastructures 
for Enabling Extreme-Scale Analysis and Visualization (ISAV), 2022, pp. 20–25.

J. A. Mauldin, T. J. Otahal, A. M. Agelastos, and S. P. Domino, ‘In-Situ Visualization for the Large 
Scale Computing Initiative Milestone’, in Proceedings of the Workshop on In Situ Infrastructures 
for Enabling Extreme-Scale Analysis and Visualization, Denver, Colorado, USA, 2019, pp. 1–5.

Templet, Jr., Gary J., Glickman, Matthew R., Kordenbrock, Todd Henry, Levy, Scott  Larson Nicoll, 
Lofstead, Gerald Fredrick, Mauldin, Jeff, Otahal, Thomas Jay, Ulmer, Craig D., Widener, Patrick, 
and Oldfield, Ron A.. Data Services for Visualization and Analysis - ASC Level II Milestone (7186). 
United States: N. p., 2020. Web. doi:10.2172/1663267



CONCLUSION

• Catalyst still looks to be necessary as we move toward using Exascale, 
and can be useful at smaller scales

• Analysts and Simulation Code teams need ubiquitous availability
• Due to our DevOps implementation we are much closer to our goal
• Provide in situ visualization and analysis capabilities in various simulation 

codes, on various HPC platforms, to Analysts at Sandia National 
Laboratories (SNL), and also to clients outside SNL who use those codes.

• Catalyst is (finally) attracting more interest and a few real users at SNL
• We need to continue our DevOps work which is ongoing to get to the point 

where SNL Code teams and Analysts can depend on Catalyst availability 
wherever the simulation codes reside

• We have received a little increased manpower (yay Alex!), but we probably 
still need additional help if we are committed to providing this capability 
long-term



SOME ACKNOWLEDGEMENTS

Jeff Mauldin and Tom Otahal did a great deal of the work presented, but there were tremendous 
contributions from many Technical Staff :
SPARC liaison and driving force Greg Weirs
Members of the 9326 Viz team including Alan Scott, Phil Smith, Dave Karelitz, Alex Pelletier, 
Warren Hunt, and Manoj Bhardwaj
IOSS mastermind Greg Sjaardema
Members of the SPARC community including (but not limited to): Travis Fisher, Derek Dinzl, Sam 
Browne, Jeff Fike
Members of the Sierra community including (but not limited to): Jesse Thomas, Sam Browne, 
Justin Lamb, Rebecca Nylen, Mark Merewether, Peter Grimmer, Douglas Vangoethem, George 
Orient



SOME ADDITIONAL CATALYST OUTPUT



LONGER MULTI-RESTART NALU RUN

Testing with Nalu
Wind turbine airfoil turbulence
Running on Mutrino, SNL small Trinity look-alike
2560 processors
Around 50 overnight runs on Mutrino, primarily when system was not in heavy use by other 
analysts



XY SLICE THROUGH MIDDLE
COLORED BY LOG BASE 10 OF Q-CRITERION





3D VIEW OF FRONT SECTION OF AIRFOIL
ISOSURFACE AT Q-CRITERION OF 1.0E6
COLORED BY PRESSURE

INCLUDES INSET OF XY SLICE COLORED BY 
Q-CRITERION




