his paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do SAND2023-05390C
not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia
National
Laboratories

Exceptional service in the national interest

Jeff Mauldin and Thomas Otahal
NLIT Summit 2023, Milwaukee, WI

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a whollyepartment of Energy’s National Nuclear Security Administration under contract DE-NA0003525.
owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract
DE-NA0003525.

() Sandia National Laboratories

— 2.7e+03 N —2.2e+03
— 2500 o000

wal-tau-mag Component
velocity_1 Component

—0

— 1.4e+00 —-3.1e+02

My managers 4+ years ago: “We think you should be the technical
lead for in situ visualization at SNL” N\

Me: “You mean take the Kitware Catalyst product, based on the N\
tens of thousands of lines of ParaView code, developed over

decades, and integrate with an SNL simulation code, developed

over decades, so they can do in situ visualization?”

Managers: “Close. We want you to integrate with several SNL
simulation codes. Maybe all of them!”

Me: “Ah.”

Managers: “You won't have to do it yourself. Kitware makes
Catalyst. You can share the work at SNL with team members.”

Me: “Good. How much manpower will we have?”

Managers: “Plenty! | think we can give you half your time and a
quarter of somebody else’s! Awhole 0.75 FTE!"

INTRODUCTION N\

AN
Goal: Provide in situ visualization and analysis capabilities in N\
various simulation codes, on various HPC platforms, to

Analysts at Sandia National Laboratories (SNL), and also to
clients outside SNL who use those codes.

This presentation focuses on the DevOps aspects of what we
are doing to try to succeed in this goal.

Most of the work has been done by Jeff Mauldin and Tom
Otahal, Members of the technical staff at SNL (More
acknowledgements at the end!)

AN

IN SITU VISUALIZATION AND PARAVIEW CATALYST)

AN

b

N\

In situ visualization computes images and data extracts by directly coupling to the simulation code. This direct
coupling gives the in situ software library access to simulation data structures and data fields as they are
calculated. This confers several benefits over traditional post-processing workflows of simulation data:

* Reduced I/0 costs since visualization images and data extracts are much smaller than full mesh output

* More frequent I/O is possible leading to higher frequency outputs

* Reduced disk space required to store output

* Potential reduction in end to end workflow length

ParaView Catalyst is an in situ library version of the ParaView visualization software (Kitware Inc.). Simulation
codes can access the visualization and analysis capabilities of ParaView at run-time by linking to ParaView
Catalyst.

Catalyst APl version 1.0 legacy documentation
https://www.paraview.org/files/catalyst/docs/ParaViewCatalystUsersGuide_v2.pdf

Catalyst APl version 2.0 documentation
https://catalyst-in-situ.readthedocs.io/en/latest/introduction.html

https://catalyst-in-situ.readthedocs.io/en/latest/introduction.html

CATALYST INTEGRATION WITH SEACAS 10SS

e SEACAS (Sandia Engineering Analysis \
Code Access System) contains 10SS (I/O i
Subsystem), which is a parallel 1/0 | 0SS databases
framework used by Sandia codes to catalyst_cgns and
read and write Exodus, CGNS, and other | catalyst_exodus
file formats i

; Convert sim mesh data

e Created catalyst_cgns and i to ParaView/VTK types
catalyst_exodus 0SS databases to Simulation ; Catalyst
output CGNS and Exodus data to Code | run-time ||
Catalyst i p'r)gm digpen

e Simulation codes can access Catalyst Handles Catalyst AP!
through existing code paths to write file i calls
data through 10SS .| [Initialize()

i * AddPipeline()

e Catalyst run-time plugin loaded with « CoProcess()

dlopen() allows separate build chains ’ * Finalize()

for simulation codes and Catalyst (with
same MPI| and compilers)

CATALYST TEST SUITE IN I0OSS

e Catalyst test suite uses program ioss2catalyst
which can be used from a tést fixture or from the
command line

e The ioss2catalyst program uses the IOSS function
copydatabasegto read CGNS and Exodus files in
Parallel and send them through the appropriate
OSS Catalyst database

) o . | q ioss2catalyst Catalyst run-
e The test suite does not require linking to the Sierra nput Exodus uses 10SS time plugin dlog
or SPARC simulation codes, since the ioss2catalyst or CGNS files copydatabase() 0

program acts a stand-in for these programs

o Catalyst test suite contains 42 tests that exercise
code paths for CGNS and Exodus simulation data
conversion to Catahgt, Catalyst control parameters,
usage logging, and Phactori Sierra input deck
processing

e |f the Catalyst test suite builds on runs on an HPC
platform, users can have a high degree of
confidence it will run from a calling simulation code

INTEGRATING USER CONTROL OF CATALYST INTO SIMULATION \\

ENGINES
AN

Code level integration is via the |IOSS/Catalyst run time plugin using dlopéi
()

Analyst level integration requires communication from the analyst to
the Catalyst capability
» Analyst must have a way to create python for Catalyst to use

- Catalyst control syntax must be available to analyst in simulation
input deck so that script and any other settings can be identified

This analyst level integration needs to be managed in the devops
process

SIERRA ANALYST LEVEL INTEGRATION N\
AN

. Works with Sierra SM (Solid Mechanics), Sierra heat transfer code, "\
and Sierra fluid dynamics code

» Sierra input deck syntax is home grown and described with a set of
xml files. Some newer Sierra codes are moving away from this
syntax towards, e.g. YAML.

* Prior to any Catalyst integration Sierra input decks had a “results
output” block which had the option of specifying an output
databa)se type of “exodusll” (for full multiblock volume mesh
output

* We added an output database type of “catalyst” which sends the
mesh out to catalyst via the plugin rather than to the filesystem

CATALYST SCRIPT CREATION IN SIERRA N\

\\
Initial method for creating Catalyst scripts was by using the ParaView gui and the \
python capture capability to create scripts (still available)

This Catalyst script creation capability from the ParaView GUI has become
steadily more robust and easier to use in the ensuing years but still has some
disadvantages

We integrated a Catalyst scripting language into the Sierra input deck
* Allows us to exhaustively test available capability (in contrast to python)
* Analyst do not have to do a script construction step involving ParaView
* Increased likelihood of adoption (simple behaviors are easy to create)

Scripting language named “Phactori” (backronym of “Paraview Higher level of
AbstraCTiOn scRipting Interface”)

CATALYST IN SIERRA

begin results output catalyst example output results block
database type = catalyst
At Step 0, Increment = 200
element variables = von mises as vonmises
nodal Variables = displacement as displ
begin catalyst
begin camera closeupCam
look direction = -1 -1 -1
look at relative distance = 0.5
end camera closeupCam
begin clip myClip
relative point on plane = 0 0 O
plane normal = -1 -1 -1
side to keep = positive
end clip myClip
begin imageset myImageSet
camera = closeupCam
operation = myClip
color by scalar = vonmises
show edges = true
image size = 1280 1024
image basename = clipVM.
end imageset myImageSet
end
end results output catalyst example output results block

CATALYST SCRIPT CREATION

Catalyst Script Creation Using ParaView (SPARC and Sierra)

Data From Simulation
(likely low resolution) or -{ ParaView GUI Create Visualization Export Python Script
Stand-in data And Data Export

Scene ‘

Reference Python
Script from Catalyst
section in Simulation
Input Deck

Catalyst Script Creation Using Phactori

(Sierra) Put script directly
Create Visualization and into Simulation input deck

Data Export Scene using

Phactori scripting (SPARC) Create Phactori Reference .json format file
Script in .json format ~ from Simulation Input Deck

CATALYST SCRIPT CREATION IN SPARC h

As before, create Catalyst scripts using the ParaView GUI

Users may also create Catalyst scripts with Phactori. In Sierra Phactori is
internally converted to JSON format. In SPARC users may write Phactori
script directly in JSON in a file separate from the SPARC input deck

SPARC input deck syntax specified in YAML

SPARC had volume-post-processing and surface-post-processing output
blocks; we added volume-runtime-processing and surface-runtime processing

blocks

Additional blocks for sending multiple grids (e.g. volume and wall surface) to
the same Catalyst script for simultaneous visualization and analysis

CATALYST IN SPARC

Catalyst Settings in SPARC Input Deck

N\
Phactori Script (JSON) Referred (catscript1.json)

volume-runtime-processing:
[{

datatype: cgns,

step-start: 0O,

step-frequency: 10,

variables: [density, velocity,
temperature, temperature vib, pressure, Ma,
total-enthalpy, nonlinear-residual,
turbulent-viscosity],
runtime-control: {

catalyst: {
control-script: {
script-type: phactori-json,
script: catscriptl. json

I

{

"camera blocks": {
"camz2":{"camera type":"camera',
"look direction":[0,0,11},
}I
"representation blocks":{
"rep Ma":{ "color by scalar":"Ma",
"variable type":"element"},

b

"imageset blocks":{
"i1s Ma camz2": {

"camera":"camz2",
"representation":"rep Ma",

"image basedirectory":"CatalystOutput",
"image basename":"Ma camzZ."

b
b

"operation blocks":{},

}

LusuoduwloD oA

o
=]
=
i)
(=]
(-]

|

NEW SPARC COMPOSITE-RUNTIME-PROCESSING OUTPU}\\ @)
BLOCKS

Towards In-Situ Analysis: Surface cross flow and surface tangential
flow on body surface in constant non-symmetric incoming airflow.
Sample points are positioned perpendicular to surface with
nonlinear sample spacing. (Greg Weirs develop the ideas for this
analysis/visualization with interactive ParaView, here you see results
created with SPARC in-situ.)

Crossflow only, arrows scaled to be visible from overview,
samples from slices at 30-degree angles to avoid screen
clutter

crossflow
-1.7e+02 -100 -50 2.0e+0]

‘ o

MO|JSSOID

-00
100

— 2.0e+01

|

— -1.7e+02

(/)]
(7p)
O
| -
@)
Y
O
=
Q0
>
©
e
(@)
C
=
(7p)
)
|
)
'
C

Cross flow

at nose,

tubes

Instead of
Gt . arrows

L X4

2.0e+01

-00
-100

-1.7e+02

crossflow

L

MO|JSSOID

100
— -1.7e+02

different view
-50

-
©
=

O

-
(7))
(7))
@)
|

@)

Nnose,

pressure

-9.000e+02 -780 -600 -450 -3.000e+02
reregd UL L L]y

INTEGRATING WITH SIERRA AND SPARC DEVOPS N\
AN

N\

Part of our DevOps process has been integrated into the SPARC and Sierra
DevOps processes

SPARC test suite has regression/integration tests which test the syntax of the
Catalyst-related input deck syntax and test the integration with Catalyst by
producing images

SIERRA has similar but less complete tests. Historically we only did a “smoke
test” inside of SIERRA and did all the other testing outside their DevOps
process. We are currently working on fully testing all the Sierra Catalyst input
deck syntax inside of the Sierra test suite

Coordination with SPARC and Sierra DevOps teams is required and ongoing
Note: we can expand this a lot, should we?

DEVOPS NEED FOR CATALYST IN SPARC AND SIERRA

Deployment environment at SNL for Catalyst is complex:

Multiple HPC platforms with different architectures:
» TLCC2 and CTS-1: traditional multicore nodes on
» ATS-1: Intel Many Core Architecture with, e.g. 80 cores per chip (Trinity at LANL)
» ATS-2: Nodes with Nvidia GPUs (Sierra at LLNL)
* Vanguard ARM CPUs
« CEE: Common Engineering environment, non-HPC high performance workstations

SPARC and Sierra typically use different MPI versions and different compiler versions on
each HPC and use different MPI versions from each other on each machine

SPARC and Sierra typically use different versions and builds of many TPLs

Catalyst must be configured, built, tested, and deployed for each HPC for each simulation
code

THE DARK AGES

el ”i! "*""'*ml

‘mh" i |! }]m |!\

Vi
]l i ljlr"!i’ [Jhl“n blF A
R

i (it
.{;"-ii_':'l“Ih

bl

(i 'Jij"ﬂ‘rr

u | wuu i
4':' i m"h nr'1

HJ J

l[[
Iff

THE DARK AGES N\

N\
* Used ParaView superbuild to build ParaView/Catalyst on each HPC) \

* Hand tweaking of all CMake options, many machinations necessary on
each HPC to get successful builds compatible with corresponding version
of Sierra and Catalyst

* Knowledge of build details on each platform contained in various build
scripts and engineer’s heads

* Testing done by Catalyst build engineer on Each machine by hand via
running simulation codes with Catalyst Scripts

« We at least had a set of automated test via CMake that would run Sierra
repeatedly with different autogenerated test Sierra input decks. Very
useful but difficult to maintain and run.

THE DARK AGES (PARAVIEW SUPERBUILD ONLY)

Login to Load modules, set
Particular » environment variables,
HPC create aliases, other build

environment setup

Determine build and install
locations, create build
directory

Clone ParaView superbuild

y

Switch to correct ParaView superbuild branch

v

= Tweak ParaView source code if necessary

I‘ i
/
/

Build Simulation
code (Sierra or
SPARC or maybe
Nalu) with proper
linking to this plugin.

Configure, build,
install loss Catalyst
plugin using this
catalyst build

Build with make. When it
fails do the previous two
steps again until you have
successful make

Run Sim code with
catalyst script, likely
waiting in queue

When it core dumps, /

figure out why, go back /

’/ Examining old build scripts and prior
successful makes on the given HPC,
determine all the proper CMake options for
ParaView superbuild and execute CMake.
Repeat until successful cmake.

several steps fix it, and try
again

Success!

Big Picture of At Tower

Current Catalyst for Ansible
Sierra and SPARC A
DevOps

ParaView Superbuild Per-HPC Environment
ParaView || ParaView Third Party SPARC modules Sierra modules

CMake Packages (CMake,
configure, Meson) libstdc++ Python MPI libtools
Hdf5 LLVM sbatch, bsub, mpiexec

Configure and Build Tools Compilers

OSmes || NetCD
a F CMake | | configure Gnu Intel

make Ninja Meson Clang | | ARM

STAMPS: THE HERALD OF THE NEW AGE

STAMPS: THE HERALD OF THE NEW AGE N\

* We built the Sandia Targeted Automatic Make ParaView System (STAMPS) N

+ Python script wrappers for ParaView Superbuild, which wraps ParaView N
CMake and its third party dependencies

* For each platform for each simulation code, platform specific CMake
settings and any necessary third party package related alterations are
contained in a python script specific to that platform and simulation code

* Top level build command to specify platform and locations of build and
install directories (useful for both testing and deployment)

* Also builds I0SS catalyst plugin (for SPARC or Sierra as specified)
» Git repo to maintain system

* Likely we will continue to use STAMPS for a long time but we may
eventually replace ParaView Superbuild with SPACK

AN
STAMPS \
\\

Formerly building on each HPC using ParaView Superbuild required a N
lot of command line operations
* Lots of opportunity for error

* Time consuming
* Disorganized

After STAMPS you could simply log on to the HPC, clone STAMPS,
run the build command for the platform/code of interest, and walk

away
 No user error

» Organized
* No monitoring of build process needed

STAMPS

python3 /vscratchl/jamauld//stamps/stamps paraview build.py \

--build format ats2 pv 5 11 0 sparc \

—--build directory /vscratchl/jamauld/build dirs/build 1003 ats2 pv 5 11 0 sparc \
—-install directory /vscratchl/jamauld/install dirs/install 1003 ats2 pv 5 11 0 sparc \
--build ioss catalyst plugin \

—--build iossZcatalyst application \

—-—number of builild processes 64

STAMPS WORKFLOW SIMULATION CODE

Log in to
particular HPC

i

Clone
STAMPS

Construct STAMPS build
command (build dir, install
dir, etc.)

l

Run STAMPS, results in
Catalyst install

'

Build and Test
Simulation Code
(Takes a long time)

CATALYST TEST SUITE IN I0OSS

e Catalyst test suite uses program ioss2catalyst
which can be used from a tést fixture or from the
command line

e The ioss2catalyst program uses the IOSS function
copydatabasegto read CGNS and Exodus files in
Parallel and send them through the appropriate
OSS Catalyst database

) o . | q ioss2catalyst Catalyst run-
e The test suite does not require linking to the Sierra nput Exodus uses 10SS time plugin dlog
or SPARC simulation codes, since the ioss2catalyst or CGNS files copydatabase() 0

program acts a stand-in for these programs

o Catalyst test suite contains 42 tests that exercise
code paths for CGNS and Exodus simulation data
conversion to Catahgt, Catalyst control parameters,
usage logging, and Phactori Sierra input deck
processing

e |f the Catalyst test suite builds on runs on an HPC
platform, users can have a high degree of
confidence it will run from a calling simulation code

STAMPS RUNS SEACAS CATALYST TESTS N\

AN
As described, the SEACAS Catalyst test suite is absolutely vital ‘\

to maintaining code reliability

We added to STAMPS the options and other groundwork to

allow us to turn on the test suite for the IOSS catalyst plugin.
SEACAS package required to run ioss catalyst plugin tests

Method of running CTest varies on each platform

After quite a bit of work, on each HPC platform after the
STAMPS build script is run we can go into the
loss_catalyst plugin build directory and run ctest to test the
result (or submit a job via sbatch or bsub to run ctest)

Now the build engineer can run the build script and then run
ctest to verity the build

STAMPS RUNS SEACAS CATALYST TESTS

STAMPS WORKFLOW WITH CATALYST TEST SUITE

Log in to
particular HPC

i

Clone
STAMPS

Construct STAMPS build
command (build dir, install
dir, etc.)

Run STAMPS, results in
Catalyst install

'

Run Catalyst Test
Suite with CTest

ANSIBLE FOR CATALYST CONFIGURE, BUILD, TEST, INSTALL

* While STAMPS is a vast improvement, we still have to log on to
each HPC, check out STAMPS, run the build script, and then
run CTest

» Could maintain a script on each HPC to do this automatically

* Ansible playbooks are more maintainable and consistent than
shell scripts and have access to libraries for dealing with things
like git and file creation (it's easier to pass along understanding
of an Ansible playbook than an ad-hoc shell script)

ANSIBLE FOR CATALYST CONFIGURE, BUILD, TEST, INSTALL

* The hardest piece turned out to be the testing

* Very inconsistent how testing must be done on the various platforms
* Some you just run CTest where you build
« Some you run CTest from a batch file
* sbatch
* Bsub

« Sometimes you need to use mpiexec to run CTest on the allocated node, sometimes mpiexec isn’t
available and you have to use srun

» Other considerations I've probably forgotten but which are stored in the HPC-corresponding Ansible
playbook (or playbook section)

ANSIBLE FOR CATALYST CONFIGURE, BUILD, TEST, INSTALL

* Now build engineer can, from a single location, run Ansible
playbooks which configure, build, install, and test the Catalyst and
|OSS catalyst plugin

* Engineer can run a single playbook or launch many of them
simultaneously (I do this often). Compute burden on host system is
low. | usually background the jobs and redirect their output to
different files for each playbook run.

* Our Ansible playbooks can copy test results back to the launching
system, but we usually turn off this step and let reporting go to
cdash (see later).

ANSIBLE FOR CATALYST CONFIGURE, BUILD, TEST, INSTALL N\

N\

Configure, Build, Test, Install Catalyst and IOSS Catalyst plugin for Sierra on
TLCC2 Host

...for Sierra on CTS-1 Host

Ansible Control Node
User runs ansible
playbook(s)

...for Sierra on CEE Host

...for Sierra on ATS-1 Host

Configure, Build, Test, Install Catalyst and IOSS Catalyst plugin for SPARC on
TLCC2 Host

...for SPARC on CTS-1 Host

...for SPARC on CEE Host

...for SPARC on ATS-1 Host

...for SPARC on ATS-2 Host

...for SPARC on Vanguard Host

CDASH REPORTING N\

\\
Initially Ansible playbooks would copy the test results back to the host system, and we could view \
the results from each HPC back on the host system

We were heading towards scheduled automatic launching of ansible playbooks and we didn’t want
to have to look at test report files by hand

We added to the IOSS Catalyst plugin CTest the capability to report to CDash

After, again, a fair amount of work, we got each HPC to successfully report the CTest results to a
CDash dashboard

CDASH REPORTING

Login All Dashboards

CDash - ioss_catalyst_plugin_tes: X
yst_plug

&~ = C M % https://viztools-cdash.sandia.gov/index.php?project=ioss_catalyst_plugin_testing&date=2023-05-30 0O A a s 03 T []

0 ioss_catalyst_plugin_testing

< PREV | CURRENT | NEXT » Dashboard Calendar Project

Experimental 7 buids

Site
stria-login1
vortex66
mutrino.sandia.gov

eclipse-login8.sandia.gov

skybridge-
login3.sandia.gov

eclipse.sandia.gov

cee-build030.sandia.gov

Y

[view timeline]

Build Name
A Linux-g++ &
A Linux-mpicxx &
\ ioss-catalyst/sierra-pv-5-11-0;ats1
{\ ioss-catalystsierra-pv-5-11-0;cts1
{\ ioss-catalystsierra-pv-5-11-0;tlcc2

\ ioss-catalyst/sparc-pv-5-11-O;cts1

A

ioss-catalyst/sierra-devel-pv-5-11-0;cee

Configure Build Test

Error Warn Error Warn Not Run Fail Pass
v v v v

Start Time ¥

May 30, 2023 - 08:33
uTC

May 30, 2023 - 08:16
uTC

May 30, 2023 - 19:00
uTC

May 30, 2023 - 09:51
uTC

May 30, 2023 - 09:48
uTC

May 30, 2023 - 08:38
uTC

May 30, 2023 - 08:27
uTC

& kitware

CDash v3.1.0 @ Kitware | Report problems | View as JSON | 0.02s (0s)
Current Testing Day 2023-06-01 | Started at 01:00 UTC

+ B o 2o x

SCHEDULED AUTOMATED BUILDING WITH \\
ANSIBLE TOWER

\\

Now we had automated configure, build, install, test, and test N\
report to CDash on each HPC via Ansible playbooks

Rather than launching these jobs by hand via the “ansible-
playbook”™ command, we wanted these jobs to launch automatically

from a DevOps system

We wanted to schedule nightly builds/tests on each HPC platform
for each simulation Code

SCHEDULED AUTOMATED BUILDING WITH \\

ANSIBLE TOWER \

* We created an Ansible Tower environment (projects, templates, hosts, \
schedules, etc.)

* Nightly Scheduled jobs for configure, build and test, (and install test)
* |OSS catalyst plugin for Sierra

* Cee with sierra module

« Cee with sierra-devel module

* Cee with sparc module

« TLCC2 and CTS-1 with sierra-devel module and sparc module
* ATS-1 with sierra-devel module and sparc module

* ATS-2 and Vanguard with sparc module

* Currently moving to ParaView 5.11 and still standing up automated testing for
various platforms

i} | ° CDash - ioss_catalyst_plugin_test X ’ Ansible Automation Blatform | = X | - - O X
< G Q E] https://tower.sandia.gov/#/templates?template.name__icontains=5.11 o A \e {B T:é -=- u_;'
Q
A e - & jamauld ~
o]
o]
Templates D
+
Dashboard
Jobs
O E = -5 v
Schedules > -l Name ~ I | l Q Delete 1-50f5
Activity Stream
Mame (name__icontains) 51 X Clear all filters
Workflow Approvals
MName 1 Type Organization Last Ran Actions
Resources
Templates > O pv5.11 ats1 sierra-devel auto build test Job Template ProdViz Team DevOps 6/1/2023, 2:15:53 AM L 4 v [l]
Credentials
Projects — . . N | _ .
> J pv5.11 cee sierra-devel auto build test Job Template ProdViz Team DevOps 6/1/2023, 2:00:53 AM L 4 rd []
Inventories
Hosts
> O pv5.11 cee sparc build test sparc-dev/clang module Job Template ProdViz Team DevOps 6/1/2023, 1:45:50 AM L 4 v [l]
Access
Organizations >] pv5.11 cts1 sparc auto build test Job Template ProdViz Team DevOps 6/1/2023, 1:15:53 AM « 4]
> O pv5.11 ctsl tlec2 sierra-devel auto build test Job Template ProdViz Team DevOps 6/1/2023, 2:15:51 AM L 4 rd |]
Administration
1-5of 5items = 1 of 1 page
Credential Types
Notifications a
Instance Groups €§3

im] | o CDash - ioss_catalyst_plugin_tes: X n Ansible Automation Platform | [0 X —|—
& C () {31 httpsy//tower.sandia.gov/#/home] T= :
— Red Hat
= A 2] & jamauld ~
Views Dashboard
Dashboard
Jobs
Sehedules 15 6 1 O - O
. Hosts Failed hosts Inventories Inventory sync failures Projects Project sync failures
Activity Stream
Workflow Approvals
Job status Recent Jobs Recent Templates
Resources
Templates Past two weeks w Alljob types = All jobs
Credentials 12
Projects "
Inventories
14
Hosts
12
Access fg 10
o
e
Organizations < 8
-]
4
Administration -
o
Credential Types 518 519 520 521 522 523 524 5125 526 527 528 520 530 5i31 &1
Date

Motifications

Instance Groups

RECENT PRACTICAL SUCCESS

Week of June 5-9 2023, all automated builds started failing
Dashboard was suddenly empty of successful results

Investigation revealed that there was a new system requirement for “git-Ifs”, a large file
system module for git

Altered ansible playbooks so that the git clone activity had the needed access to a git-Ifs
install

No users affected, discovery of problem was all automatic
Proximity in time and singularity of problem made fixing it much easier

If problem had been undiscovered until a new ParaView release it would have been much
harder to find and fix

A FEW THINGS IN THE FUTURE

AN

Replacing ParaView Ansible Tower h
Superbuild with Spack bl h
: Per-HPC Environment AN
STA;V'PS) SPARC modules Sierra modules
Spack sbatch, bsub, mpiexec

Per-HPC Environment

SPARC modules Sierra modules
libstdc++ || Python MP || libtools Hdf5
OSI\/IIes LLVM NetCDF
Configure and Build ?I'ools Compilers
CMake configure Gnu Intel
make ninja Meson Clang AR
M

CATALYST API 2 IN IOSS

0SS

Simulation
Code

locatalyst_DatabaselO in
write mode

ParaView Catalyst API 2

—

catalyst_initialize()
Create Conduit Node

catalyst_execute()

locatalyst_DatabaselO in
read mode

1. Initialize with Conduit

Node from simulation
write

2. ParaView IOSS reader

reads data

AN

*,

AN

New Catalyst 10SS \
database class:
locatalyst_DatabaselO

On I0SS write, creates a
Conduit Node

On I0OSS read, accesses
data from a Conduit Node
ParaView has an IOSS
reader
locatalyst_DatabaselO is
just another 10SS
database type like Exodus
or CGNS

Code paths in Catalyst and
ParaView GUI are
identical!

b

55

AN

LESSONS LEARNED N\

* We did not and do not really have enough manpower for our requirements

* Productizing Catalyst in our environment is entirely hopeless without
DevOps, but at least a tractable problem with DevOps

» Automated testing is key--difficult in a varied HPC environment but vital

» Catalyst has some unique challenges due to the way it integrates into
simulation codes, and design, implementation, and DevOps work for each
code Is necessary

* Ansible is excellent and has some useful advantages over bespoke scripts,
but if we had started a bit later we probably would have at least compared
and considered gitlab runners

RELATED PUBLICATIONS N\
AN

V. G. Weirs, E. M. Raybourn, R. Milewicz, K. Muollo, J. A. Mauldin, and T. J. Otahal, ‘Enabling \
Catalyst Adoption in SPARC’, in 2022 IEEE/ACM International Workshop on In Situ Infrastructures
for Enabling Extreme-Scale Analysis and Visualization (ISAV), 2022, pp. 20-25.

J. A. Mauldin, T. J. Otahal, A. M. Agelastos, and S. P. Domino, ‘In-Situ Visualization for the Large
Scale Computing Initiative Milestone’, in Proceedings of the Workshop on In Situ Infrastructures
for Enabling Extreme-Scale Analysis and Visualization, Denver, Colorado, USA, 2019, pp. 1-5.

Templet, Jr., Gary J., Glickman, Matthew R., Kordenbrock, Todd Henry, Levy, Scott Larson Nicoll,
Lofstead, Gerald Fredrick, Mauldin, Jeff, Otahal, Thomas Jay, Ulmer, Craig D., Widener, Patrick,
and Oldfield, Ron A.. Data Services for Visualization and Analysis - ASC Level Il Milestone (7186).
United States: N. p., 2020. Web. doi:10.2172/1663267

CONCLUSION \\

» Catalyst still looks to be necessary as we move toward using Exascale, AN
and can be useful at smaller scales \

Analysts and Simulation Code teams need ubiquitous availability

Due to our DevOps implementation we are much closer to our goal

* Provide in situ visualization and analysis capabilities in various simulation
codes, on various HPC platforms, to Analysts at Sandia National
Laboratories (SNL), and also to clients outside SNL who use those codes.

Catalyst is (finally) attracting more interest and a few real users at SNL

We need to continue our DevOps work which is ongoing to get to the point
where SNL Code teams and Analysts can depend on Catalyst availability
wherever the simulation codes reside

We have received a little increased manpower (yay Alex!), but we probably
still need additional help if we are committed to providing this capability
long-term

SOME ACKNOWLEDGEMENTS \\
\\

Jeff Mauldin and Tom Otahal did a great deal of the work presented, but there were tremendous \

contributions from many Technical Staff :

SPARC liaison and driving force Greg Weirs

Members of the 9326 Viz team including Alan Scott, Phil Smith, Dave Karelitz, Alex Pelletier,
Warren Hunt, and Manoj Bhardwaj

|OSS mastermind Greg Sjaardema

Members of the SPARC community including (but not limited to): Travis Fisher, Derek Dinzl, Sam
Browne, Jeff Fike

Members of the Sierra community including (but not limited to): Jesse Thomas, Sam Browne,
Justin Lamb, Rebecca Nylen, Mark Merewether, Peter Grimmer, Douglas Vangoethem, George
Orient

SOME ADDITIONAL CATALYST OUTPUT

LONGER MULTI-RESTART NALU RUN

Testing with Nalu

Wind turbine airfoil turbulence

Running on Mutrino, SNL small Trinity look-alike
2560 processors

Around 50 overnight runs on Mutrino, primarily when system was not in heavy use by other
analysts

XY SLICE THROUGH MIDDLE
COLORED BY LOG BASE 10 OF Q-CRITERION

3D VIEW OF FRONT SECTION OF AIRFOIL
ISOSURFACE AT Q-CRITERION OF 1.0E6
COLORED BY PRESSURE

INCLUDES INSET OF XY SLICE COLORED BY
Q-CRITERION

i

