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IS FEATURE “X" READY FOR MY INTENDED USE? N\

Feature (n): user input to a scientific

software program that activates a specific
capability or behavior

Examples:

Material model formulation
Active physics (e.g., contact)
Solver selection

Time integration scheme

Discretization

N

AN

N\

As a user of SciSoft, how can | be confident \
that a given feature is ready for use?

What evidence is available to me for deciding
between two similar features?

Typical Evidence:
« Overall software test coverage
 |dentify that the feature is tested

- SME assertion that the feature is ready

s this evidence sufficient?
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A «veryy SIMPLE MOTIVATING EXAMPLE

Feature: Elastic/Linearly plastic material
Credibility Evidence:

v The overall code coverage is 90%

v" The model is used in several tests

o The code SME isn't available

Quiz time:

How many conditions are in this model? 5

Could those branches be in the 10% missing What would change if the user were
code coverage?  Absolutely presented with the following?

What can a user assert about the quality of Estimated coverage of <feature>: 30%
tests this model was used in?

Nothing, this is why the SME is involved! Goal: Enable such feedback




WHAT DOES ANY OF THAT HAVE TO DO WITH SOFTWARE
ARCHITECTURE?

- SciSoft is complex, long-lived & changing -_é

 SciSoft is often written by scientists and —
not computer scientists ]

« Features are often difficult to test in [tk search il basea |

isolation

Architecture (n): the relationship between a

user-facing feature and its software
implementation

Understanding the architecture is ]
a prerequisite to gathering
feature-level readiness evidence
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Library-level dependency graph of
the SIERRA/SM application




THE GENERAL APPROACH - MINE THE REGRESSION TESTS \
N

SciSoft typically have test suites General form: ming ||g(4, B) — C|| \

« Instrument the code/tests to provide:
- Features used by an execution Conceptual linear form:

Coverage
Coveraie

‘ ML multi-label classifier

l

ML multi-label classifier = “Given a feature
(set), estimate the coverage set”

- Code coverage from an execution

Features

« Run the instrumented test suite

Tests
Tests

A
« Per-test records form training data -

« Apply ML algorithms to construct a
model of the architecture

Features

Hh




WHAT CONSTITUTES A FEATURE? HOW TO IDENTIFY THEM? N

What

- Up to interpretation by user and/or SME
« General, e.g., model formulation

- Specific, e.g., sub-option/setting

How

- Feature annotation by SME or automatic

- Automatic annotation strongly preferred
« Always up to date

« Supports user-annotation of input
- Extension to library-level SciSoft APIs

N
AN

Feature identification requirements N

N

- Feature keys generated by unique context
- Keys don’t encode parameter/option values

« Keys can be mapped back to input

command
Input Key (e.g.)
begin material steel 0d4£3dd
density = 0.000756 bl6b186
begin parameters for model ml ep fail 698c7e’

youngs modulus = {youngs} 3aldach
poissons ratio = {poissons} <. ..0>
yield stress = {yield} <...>
<...>

end <none>

end <none>




FORMING THE TRAINING DATA (A, C)

Conceptual linear form:

Features

Coverage

Features

f Tests \

Coverage

f Tests \

Constructing A
* Run tests logging what features are used
« Label columns of A with feature keys

« Each test results in a (sparse) row of A

Constructing C

Optional level of detail:
 File, Function, Edge, Line

« @Greater detail increases dimension
Run tests with coverage instrumentation

Label columns of C with coverage keys

Each test provides a (sparse) row of C




MODELING THE ARCHITECTURE (B)

Conceptual linear form:
Coverage

Features Coverage

Tests
Features
|l

« Architecture modeling can be framed as
a ML multi-label classification problem

- We are using available classifiers

- Decision Tree classifiers are good for our
type of data
Use series of splits based on parameter
influence

- Suffer from variance and bias - can be
reduced by ensembles

N

yes| is sex male? (o

is age > 9.5?

\ 0.73 36%
‘ is sibsp > 2.5?
0.17 61%

0.05 2% 0.89 2%

Titanic passenger survival model as
a decision tree classifier [1]

[1] Lovinger, J., Valova, I. Infinite Lattice Learner: an ensemble for incremental learning. Soft Comput 24, 6957-6974 (2020).




ASIDE: SOFTWARE SUSTAINABILITY & CREDIBILITY BENEFITS FROM
ABILITY TO AUTOMATICALLY GATHER THE TRAINING DATA

Conceptual linear form:

Coverage
Features ]

Coverage

Benefits from C

Tests

f Tests \

Features

Benefits from A
- Supports optimal test-suite construction
Faster Cl for large projects

Targeted change-based testing

- Feature coverage database
- Statistics on how apps used “in the wild"”
 ldentification of weak/untested features

Automatically gathering this data is foundational to a variety of

potential user- & developer-facing credibility and productivity tools




THE DATASET: SIERRA/SM (SOLID MECHANICS) APP

SIERRA Engineering Mechanics Code Suite ——
0e+00 10000 20000 3,0(—:i+0£1

Source Lines of Code (C/C++) ~2M _ BUS—
# Regression and unit tests ~20k
% Source line coverage ~75%

« Focus on Solid Mechanics app
« Focusing on the “small” tests in the suite

« Use Feature Coverage Tool for building A

« Use LLVM CoverageSanitizer forB

« Custom callback for file-level coverage SIERRA/SM Dataset details

Conceptual linear form: # Tests (Samp|65) 6393
— # Features /005
# Covered Files (labels) 5347

Coverage

Features

Tests
Tests

Features

10




INITIAL RESULTS N\
\

Features (7005) Coverage (5347) \

: :_ oy
N - Examine performance of two classifiers \
m
ul  Split test with all data to train/test and
9 30% reserved for training
Q|
5 | . * Use native “score” - fraction of 100%
correct sample predictions
Sparsity pattern of training data. 0% 0.64 )
Note high coverage density. ExtraTrees'
30% 0.68 0.24
6k - B Features 0% 0.64 -
High feature Coverage RandomForest?
diversity in 30% 0.68 0.24
c L samples “mainline” coverage
3 i R — - :
9 ' 'mpacfs over-it . Can filtering the training data improve
) fit/predictions?
0 .

0 Sample Occurrence 6k [1] https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
[2] https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html




FILTERING THE TRAINING DATASET Sparsity pattern of reduced training data.

Features (6992) Coverage (4284)

« Desire automatic approaches
 |dentify duplicate samples

« Reduce duplicate samples with union of

coverage data
« 1-core vs. N-core cases of the same test

Samples (3468)

" T 0.8% non-zeros 12% non-zeros
«  Remove “mainline” features and

coverage -

- B Features

« Filter out columns with >=99% fill o Coverage
_ _ Maintain high
- Removed features: boilerplate, e.g., ‘begin feature diversity
in samples

sierra’

- Removed coverage: libraries (e.g., ioss,
stk), parsing

Count

Greatly reduced
“mainline” coverage

Sample Occurrence 3.5K
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FILTERING THE TRAINING DATASET \

SIERRA/SM Reduced Dataset Details

# Tests (samples) 3468 \
# Features 6992
# Covered Files (labels) 4284

Classifier performance on reduced dataset

Rl Sample Score

0% 0.622
ExtraTrees'

30% 1.0 0.183 -

0% 0.999 - 0.621
RandomForest?

30% 0.998 0.169 -

Reduced training dataset provides better fit and maintains accuracy for the full sample set

[1] https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.htm!
[2] https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html




EXPERIMENT: IDENTIFICATION OF FEATURE SUPPORT

« SIERRA/SM has typical structure of a 30
year old SciSoft package

- Materials do have a well-defined interface bin/adagio
« All models implemented in Lamé library

« Source file names relate to model name

* Able to construct/verify known label set liblame.a

Given a feature key for a material model,
If the model is accurate, [ ../Elastic.h ] [ ../MLEP.C ]

Then the model will predict Lamé library files
that support that model C]

Bonus: If the model is precise, the prediction [ ../johnson_cook model.F ]
doesn't contain other sources

15



RESULTS: IDENTIFICATION OF FEATURE SUPPORT \

Material: elastic Material: johnson cook \\

# Samples 2305 # Samples

# Correct Lamé labels 7 of 7 # Correct Lamé labels  50f9

# Wrong Lamé labels 0 V # Wrong Lamé labels 2 x
# Non-Lamé labels 259 # Non-Lamé labels 291

Material: mlep

Material: dsa

# Samples # Samples
# Correct Lameé labels  50f 10 x # Correct Lameé labels 5 of 7 x
# Wrong Lamé labels 2 # Wrong Lamé labels 2

# Non-Lamé labels 245 # Non-Lamé labels 245

“# Samples” is the number of times the specified material appears in the training data

Too much noise/bias in the model - Predicts everything is elastic

16




N

USE SME GUIDANCE TO FOCUS TRAINING DATASET FOR MATERIALS

\\
- Know that all material models are SIERRA/SM Material Only Dataset \
implemented in ‘1ame/’ directory # Tests (samples) 3468
« Know feature correlation, i.e., model # Features (materials) 135
options are associated with the specific # Covered Files (labels) 681
model

« Reduce feature set to possible materials

« Reduce coverage set to files in ‘1ame /'

elastic 7 of 7
mlep 10 0of 10
*johnson cook  9o0f9

* Train sub-model with reduced dataset

How might we automatically detect *dsa 7 of 7
these reduced spaces to improve jc + mlep 8 of 14
daCcura Cy7 * Model never used alone in sample set

17




SUMMARY N\
\

N\,

All Features Model \

« Can predict which source files cover a

given input deck with ~60% accuracy clastic ] [ —71— ]
*  Current model is noisy mlep _.@ o;@b O@—» elastic
- |dentifies a lot of library-type files dsa |
« Overpredicts coverage for specific - L. — —
features

« Bias from sample feature distribution

- Can improve new developer productivity |
- Provide pointers to where a feature is Materials Only Model

implemented, even if not super specific L 1—:»—1 . _
elastic ! elastic

- Poor predictor of specific features mlep |— {i}b @ ﬁ}-» mlep
without sub-modeling
dsa /! dsa

« Segmented models can improve - [ -
accuracy

18




FUTURE WORK

Open Questions

- Can we using unsupervised learning to automatically discover correlated features and
construct piecewise models spanning the feature space?
«  How could we sustainably incorporated SME knowledge?

 |Is overprediction of file coverage acceptable? To what extent? Can we train to this metric?

Next Steps to Provide User Feedback

* Query full coverage data given files supporting a feature

- Develop coverage metric meaningful to an end user

* Integrate information into other user-facing credibility tools

19
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