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IS FEATURE “X” READY FOR MY INTENDED USE?

Examples:

• Material model formulation

• Active physics (e.g., contact)

• Solver selection

• Time integration scheme

• Discretization

As a user of SciSoft, how can I be confident 
that a given feature is ready for use?

What evidence is available to me for deciding 
between two similar features?

Typical Evidence:
• Overall software test coverage

• Identify that the feature is tested

• SME assertion that the feature is ready
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Is this evidence sufficient?

Feature (n): user input to a scientific 
software program that activates a specific 
capability or behavior



Goal: Enable such feedback 

A (VERY) SIMPLE MOTIVATING EXAMPLE

Feature: Elastic/Linearly plastic material

Credibility Evidence:

ü The overall code coverage is 90%

ü The model is used in several tests

o The code SME isn’t available

Quiz time:

How many conditions are in this model?

Could those branches be in the 10% missing 
code coverage?

What can a user assert about the quality of 
tests this model was used in?
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Absolutely

Nothing, this is why the SME is involved!

What would change if the user were 
presented with the following?

Estimated coverage of <feature>: 30%



WHAT DOES ANY OF THAT HAVE TO DO WITH SOFTWARE 
ARCHITECTURE?

• SciSoft is complex, long-lived & changing

• SciSoft is often written by scientists and 
not computer scientists

• Features are often difficult to test in 
isolation
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Architecture (n): the relationship between a 
user-facing feature and its software 
implementation 

Understanding the architecture is 
a prerequisite to gathering 
feature-level readiness evidence

Library-level dependency graph of 
the SIERRA/SM application

...

...



THE GENERAL APPROACH – MINE THE REGRESSION TESTS

• SciSoft typically have test suites

• Instrument the code/tests to provide:
• Features used by an execution
• Code coverage from an execution

• Run the instrumented test suite

• Per-test records form training data

• Apply ML algorithms to construct a 
model of the architecture
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ML multi-label classifier

ML multi-label classifier à “Given a feature 
(set), estimate the coverage set”



WHAT CONSTITUTES A FEATURE? HOW TO IDENTIFY THEM?

What
• Up to interpretation by user and/or SME

• General, e.g., model formulation
• Specific, e.g., sub-option/setting

How
• Feature annotation by SME or automatic

• Automatic annotation strongly preferred
• Always up to date
• Supports user-annotation of input
• Extension to library-level SciSoft APIs
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Feature identification requirements
• Feature keys generated by unique context

• Keys don’t encode parameter/option values

• Keys can be mapped back to input 
command

Input Key (e.g.)
begin material steel                           0d4f3dd 
    density         = 0.000756                 b16b186
    begin parameters for model ml_ep_fail      698c7e7
      youngs modulus     = {youngs}            3a1dac5
      poissons ratio     = {poissons}          <...>
      yield stress       = {yield}             <...>
      ...                                      <...>
    end                                        <none>
end                                            <none>



FORMING THE TRAINING DATA (A, C)

Constructing A
• Run tests logging what features are used

• Label columns of A with feature keys

• Each test results in a (sparse) row of A

Constructing C
• Optional level of detail:

• File, Function, Edge, Line
• Greater detail increases dimension

• Run tests with coverage instrumentation

• Label columns of C with coverage keys

• Each test provides a (sparse) row of C
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MODELING THE ARCHITECTURE (B)

• Architecture modeling can be framed as 
a ML multi-label classification problem

• We are using available classifiers

• Decision Tree classifiers are good for our 
type of data
• Use series of splits based on parameter 

influence
• Suffer from variance and bias – can be 

reduced by ensembles
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Titanic passenger survival model as
a decision tree classifier [1]

[1] Lovinger, J., Valova, I. Infinite Lattice Learner: an ensemble for incremental learning. Soft Comput 24, 6957–6974 (2020).



ASIDE: SOFTWARE SUSTAINABILITY & CREDIBILITY BENEFITS FROM 
ABILITY TO AUTOMATICALLY GATHER THE TRAINING DATA

Benefits from A

• Feature coverage database

• Statistics on how apps used “in the wild”

• Identification of weak/untested features

Benefits from C

• Supports optimal test-suite construction
• Faster CI for large projects
• Targeted change-based testing
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Automatically gathering this data is foundational to a variety of 
potential user- & developer-facing credibility and productivity tools



THE DATASET: SIERRA/SM (SOLID MECHANICS) APP

• Focus on Solid Mechanics app

• Focusing on the “small” tests in the suite

• Use Feature Coverage Tool for building A

• Use LLVM CoverageSanitizer for B
• Custom callback for file-level coverage SIERRA/SM Dataset details

# Tests (samples) 6393
# Features 7005
# Covered Files (labels) 5347
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SIERRA Engineering Mechanics Code Suite

Source Lines of Code (C/C++) ~2M
# Regression and unit tests ~20k
% Source line coverage ~75%
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INITIAL RESULTS

• Examine performance of two classifiers

• Split test with all data to train/test and 
30% reserved for training

• Use native “score” – fraction of 100% 
correct sample predictions

11

Features (7005) Coverage (5347)
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1.4% non-zeros 29% non-zeros

Sparsity pattern of training data.
Note high coverage density.

[1] https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
[2] https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
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Classifier Test % Train Score Test Score

ExtraTrees1
0% 0.64 -

30% 0.68 0.24

RandomForest2
0% 0.64 -

30% 0.68 0.24

Can filtering the training data improve 
fit/predictions?



FILTERING THE TRAINING DATASET

• Desire automatic approaches

• Identify duplicate samples

• Reduce duplicate samples with union of 
coverage data
• 1-core vs. N-core cases of the same test

• Remove “mainline” features and 
coverage
• Filter out columns with >= 99% fill
• Removed features: boilerplate, e.g., ‘begin 

sierra’
• Removed coverage: libraries (e.g., ioss, 

stk), parsing
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0.8% non-zeros 12% non-zeros

Sparsity pattern of reduced training data.
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FILTERING THE TRAINING DATASET
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Classifier Test % Train Score Test Score

ExtraTrees1
0% 1.0 -

30% 1.0 0.183

RandomForest2
0% 0.999 -

30% 0.998 0.169

Classifier performance on reduced dataset

[1] https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html 
[2] https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

SIERRA/SM Reduced Dataset Details

# Tests (samples) 3468
# Features 6992
# Covered Files (labels) 4284

Full Sample Score

0.622
-

0.621
-

Reduced training dataset provides better fit and maintains accuracy for the full sample set



EXPERIMENT: IDENTIFICATION OF FEATURE SUPPORT

• SIERRA/SM has typical structure of a 30 
year old SciSoft package

• Materials do have a well-defined interface
• All models implemented in Lamé library
• Source file names relate to model name
• Able to construct/verify known label set

Given a feature key for a material model,
If the model is accurate,
Then the model will predict Lamé library files 
that support that model
Bonus: If the model is precise, the prediction 
doesn’t contain other sources
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bin/adagio

liblame.a

…/Elastic.h

…/johnson_cook_model.F

…/MLEP.C

…

…



RESULTS: IDENTIFICATION OF FEATURE SUPPORT 
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“# Samples” is the number of times the specified material appears in the training data 

Material: elastic

# Samples 2305
# Correct Lamé labels 7 of 7
# Wrong Lamé labels 0
# Non-Lamé labels 259

Material: mlep

# Samples 68
# Correct Lamé labels 5 of 10
# Wrong Lamé labels 2
# Non-Lamé labels 245

Material: johnson_cook

# Samples 61
# Correct Lamé labels 5 of 9
# Wrong Lamé labels 2
# Non-Lamé labels 291

Material: dsa

# Samples 28
# Correct Lamé labels 5 of 7
# Wrong Lamé labels 2
# Non-Lamé labels 245

Too much noise/bias in the model à Predicts everything is elastic



USE SME GUIDANCE TO FOCUS TRAINING DATASET FOR MATERIALS

• Know that all material models are 
implemented in ‘lame/’ directory

• Know feature correlation, i.e., model 
options are associated with the specific 
model

• Reduce feature set to possible materials

• Reduce coverage set to files in ‘lame/’ 

• Train sub-model with reduced dataset
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SIERRA/SM Material Only Dataset

# Tests (samples) 3468
# Features (materials) 135
# Covered Files (labels) 681

Model # Correct
elastic 7 of 7
mlep 10 of 10
*johnson_cook 9 of 9
*dsa 7 of 7
jc + mlep 8 of 14
* Model never used alone in sample set

How might we automatically detect 
these reduced spaces to improve 

accuracy?



SUMMARY

• Can predict which source files cover a 
given input deck with ~60% accuracy

• Current model is noisy
• Identifies a lot of library-type files
• Overpredicts coverage for specific 

features
• Bias from sample feature distribution

• Can improve new developer productivity
• Provide pointers to where a feature is 

implemented, even if not super specific

• Poor predictor of specific features 
without sub-modeling

• Segmented models can improve 
accuracy
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FUTURE WORK

Open Questions
• Can we using unsupervised learning to automatically discover correlated features and 

construct piecewise models spanning the feature space?
• How could we sustainably incorporated SME knowledge?

• Is overprediction of file coverage acceptable? To what extent? Can we train to this metric?

Next Steps to Provide User Feedback
• Query full coverage data given files supporting a feature
• Develop coverage metric meaningful to an end user
• Integrate information into other user-facing credibility tools
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