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ABSTRACT

The differential operator technique has been widely used in the particle transport community
for estimating the sensitivity of Monte Carlo estimates to problem parameters. Techniques like
stochastic calculus-based Malliavin estimators have been developed and applied to the calculation
of financial derivatives. The interest in the differential operator and Malliavin sensitivity methods
is the ability to reuse the existing Monte Carlo samples. We present comparisons between these
methods for the estimation of sensitivities on a non-scattering transport problem. Both methods
differ depending upon the tallies used for the underlying Monte Carlo approximation of the re-
sponse functional. Both methods provide accurate sensitivities approximations but differ in their
statistical uncertainties.
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1. INTRODUCTION

Local sensitivities are the impact of a problem parameter’s variation on a model response. These are useful
in performing sensitivity analysis as part of uncertainty quantification. The transport community has utilized
the differential operator method, described by Rief [1], for the calculation of sensitivities [2]. Another class
of sensitivity estimators has been developed in the financial derivatives community based upon the work
of Paul Malliavin [3]; see the books [4,5] for an introduction. These Malliavin sensitivity methods are of
minimal variance for Brownian motion [7] but to our knowledge have not been applied to linear particle
transport. See the technical report [6] for recent developments specific to particle simulations, including a
review of various sensitivity methods and their use in gradient-based optimization methods. The interest
in the differential operator and Malliavin sensitivity methods is the ability to reuse the existing Monte
Carlo samples. Both methods determine weightings that are applied to Monte Carlo samples and so can be
efficiently applied. This is in stark contrast to finite-difference approaches that require further Monte Carlo
samples to be computed.

This investigation of sensitivity methods is motivated in part by limitations with existing methods. One
specific limitation with the differential-operator method is in the calculation of sensitivities to boundary lo-
cations in the presence of scattering. One approach to this limitation has been proposed [8]. Here we inves-
tigate a non-scattering problem to facilitate comparison of the differential operator and Malliavin methods
in a problem with a boundary-location sensitivity, though there are alternative methods for non-scattering
transport problems [9].

We also remark that by the result in [11], we can calculate an approximation to the adjoint problem using
the same set of Monte Carlo samples used to approximate the Boltzmann transport solution. Since these
transport problems can be identified as expectations over formally defined stochastic processes, the methods
presented in this paper allow for the reuse of those same samples to calculate sensitivities for the adjoint
problem.
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The remainder of this paper is organized as follows. In Section 2, we define a non-scattering transport
problem with an internal boundary. For a particle transmission current, we derive the differential operator
sensitivity estimator due to variation in the position of an internal boundary in Section 3. We derive a
Malliavin sensitivity estimator for the same quantity in Section 4. In Section 5, we provide numerical
results comparing these two sensitivity estimators.

2. TRANSPORT PROBLEM

For comparison of the sensitivity methods, we define a simplified one-dimensional slab problem with two
regions, as illustrated in Fig. 1. Each region contains a material that is a pure absorber, meaning that any
particle interaction is an absorption event. We are interested in calculating the expected number or rate of
escape of particles from the right side of the problem and the sensitivity of that quantity to the position of
the boundary between the two regions, while the external escape boundaries of the problem remain at fixed
locations.

Source Region, Q, Transmitted
Current, J
Material Region, Material Region,
Oa1 Oa2 é
0 Xi X X

1 r

Figure 1: Transmitted current J and the parameters associated with the boundary value problem (1)

More precisely, we solve

0 s
P | (w0 = Qe (1a)

with vacuum boundary conditions and where the cross section and source are given by

Oq (x) = 0qa,149(0, xi)(x) + 0q,2 O(x;, xr)(x) s (1b)
00x. 1) = Lo (W0 110 (1)

1

0(a,b)(x) 1s an indicator function defined as equal to 1 when x is in the interval (a, b) and O otherwise, o
is the absorption cross section in region k, u is the cosine of the angle of the particle direction with respect
to the positive x direction, x; is the location of the interface between the two regions, and x, is the location
of the right boundary of the problem.

The solution i of the boundary-value problem (1) at x, and positive u is

U(xp,p) = &q(o, 1)(ﬂ)f r(xs,x;)dx,
M Xi 0

where

F(xXg3X7) = exp (—aa,l al ;’“S ) exp (—oa,zx’ ; x") )

is the probability that the particle reaches at least x, before absorption with the particle source position x;.
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We can now estimate the transmitted current at x,., an expected value, as
! L g x)
J = uy (xp, wdp = Qo ——dxsdu. 3)
0 0 Jo Xi

If £ is a uniformly distributed random number over the interval (0,1) then the source position can be
described via the relationship xy = £x; and

R(&;x;) = r(€xi3 x1) = exp (—aa,l—') exp (—aa,zx’ _ x") )
Ju 2

is the probability that a particle sampled at a location in the left interval (0, x;) reaches x, before absorption.
In this problem, it is possible to directly compute R, for each sampled source particle n because we know
the solution ¢ of the boundary value problem (1). However, in general the solution is cast as a Neumann
series [10].

Another expression for the probability that the particle reaches at least x, before absorption is

l(xs;xi)=f A(e>InrEx)) () e dt, (52)
0

which follows from the equality

o0
r(xs;xi) = f e 'dt.
Inr(&x;;x;)

In analogy to the discussion preceding (4), we define the random variable

T(Exi3X1) = A o in(1-£0)>(1-6)x) V= 7 In(1—£2)>x, —xi )2 (5b)

where &) and &, are independent uniform random numbers on (0,1). Terms of the form —@ repre-
sent rate o exponentially distributed numbers denoting the distance to an interaction in the x-dimension.
Each indicator function is determining whether or not the particle escapes the material region and because
the probability #(x,;x;) is the expected value of the random variable q{;>in,(£x,;x;)) under the unit-rate
exponential distribution, we have

N—oo N

N
fim ~ 3 T(Exiix) = 1€xiix) ®)
n=1

Putting all of this together, we can approximate the transmission current response

1 1
J =0 fo fo r(€x;; x;) dé du (7a)
Q N
= lim WO ; R(&pxi5 x;) (7b)
or
1 1
=00 fo fo (Exisx) de du (8)
Qo i
= Z\}I—I>noo ~ ; T(EnxisXi) . (8b)
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The distinction between the two estimators is that the former tallies random numbers in the unit interval
determined by an analytical form of the solution ¢ and the latter tallies exponentially distributed binary
random variables representing an analog Monte Carlo method. The nature of the resulting Monte Carlo
approximations is also distinct. In the former tally, the integrand is deterministic and the Monte Carlo
approximation is for the double integral. In contrast, the latter tally has the Monte Carlo approximation
given by (6) for the integrand #(£x;; x;) representing an expected value.

Recall that the interest in the differential operator and Malliavin sensitivity methods is the ability to reuse
the existing Monte Carlo samples. The goal is to determine weightings p(&,,, ) or 7(&€,, ) so that

dJ Qo y )
o NN ; R(énxi3 i) p(€ns fin) (Oa)
N
= Z\}EIIM%;T(fnxi;xi)T(fn,#n)- (9b)

We remark that the weightings p(&,,, u,) or T(&€,, u,,) are likely to be distinct because the nature of the
Monte Carlo approximations are distinct as discussed following (8).

3. DIFFERENTIAL OPERATOR SENSITIVITY

The two different tallies (7) and (8) lead to distinct differential operator sensitivities. The differential oper-
ator sensitivity using (7) is

d—%ff‘ ) dé d
Xi
0qg,2 — 0q,l Oqg,1
= Qo r@wﬂm)( + =) dé du (10)
0 Jo H H
which can be approximated as
Qo N 0a2 = 0a,l Oa,l
Sho = = ) Rénxisx) (———=+&——). (11
P~y 2 )

n=1

In contrast, the differential operator sensitivity using (8) is

d—mfjf—@%m%@
Xi

_Qof f dx; zvlflmﬁZT(fnxl,x))dgdﬂ

1 1 . 1 )
:QOL ‘]; (]\}I—IPOON;axl

where we formally replaced the differentiation of a limit of a sum with the limit of the sum differentiation
terms. In practice, the approximation

xi3x;)) dé du (12)

0 0a2—0al Tal
5 xi3 Xi) & T(Enxis %) (———"= + £ —=) (13)
Xi HMn Mn
18 assumed to hold to obtain
Qo © Ta2 = 0al Oa,l
SN = 2N T x) (= L r ). (14)

In other words, we assume that the sensitivity weightings p(&,,, 4n) or 7(&,, iy, ) discussed in (9) needed to
reuse the existing Monte-Carlo samples are the same.
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4. MALLIAVIN WEIGHTINGS

The two different tallies (7) and (8) lead to the distinct Malliavin sensitivities. To arrive at a weighting
consistent with the Malliavin approach using (7), the derivative on the transmission current (3) can also be
evaluated using the Leibniz rule, i.e.,

o r(xs,X)
dx, dxl f f a d/J
= Qo f r(x“x)d +Qof f r(xs,x) —dxsd,u+Q0f fx' : .r(xs,x)dxsdu

=—Q0ff r(xi; x;) dxsd,u——J+Qof f"r(x‘,x) O—Mﬂo-al)dxsdy (15)

where we used the equality

1
f r(x,,x,)—d/,t——f f r(xl,x, dxsd,u
0

A Monte Carlo approximation for (15) results in

v _Oox xo-xiy 1 0o Ta2—0q1 1
Shanl = WZ;CXP ( —0a2 o ) . + N Z}R(fnxi;xi)(u— — _) (16)

n Xi

where the third term of (15) exploits the approximation of (10) by (11). Note that both terms in the latter
parentheses have units of reciprocal length and the exponential in the first term is the probability that the
particle survives to x, given that it starts at x;. We also remark that the approximation is a naive Monte
Carlo approach for the Malliavin sensitivity.

In contrast, a weighting consistent with the Malliavin approach using (8), i.e.,

f fx' t(-xs’ Xi) d
dx, dxl s aHt

stumbles into difficulties similar to those encountered by the differential operator approach; see (12). The
Malliavin counterpart to (14) is

SN  _ Qo Al Xr _xl Qo i T O—a,Z —O0q,1 1 17
SMall = N eXP(—O'a,z . x—l WZ (&nxis x;) T_X_L) 17
n=1

n=1
where we assume the approximation (13) holds so that the sensitivity weightings p(&,, 1n) or 7(€,, i)
discussed in (9) are the same.

5. NUMERICAL RESULTS

To assess the accuracy and performance of these sensitivity methods, we consider a set of test problems.
Source particles are isotropic and uniformly distributed in the left region, which has a cross section of o ;.
The boundary between the two regions is at x;. The right region has cross section o, 2 and extends from the
boundary at x; to x,. The transmitted particle current is tallied at the x,, boundary of the problem. Results
are normalized to a source strength of Qg = 1.

All test problems have a total slab width of x,, = 2. The values examined for the material interface location,
x;, and the cross sections, 0,1 and 0, 2, are given in Table 1. The first three test problems, with the same
cross section in both regions, are only testing sensitivity to the extent of the source region. The other six
test problems also test sensitivity due to the change in the cross section at the material interface.
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Table 1: Parameter values for test problems.

1 2 3 4 5 6 7 8 9
x; 1051101570510 |15{05]|1.0/15
0411010110 [05]05(05]20]|20]20
042 (10|10 |10]20(20({20({05]05|05

In Table 2 we provide semi-analytical solutions for the current, J, and sensitivity to the interface position, S,
for the test problems. The results shown in Table 3 are the senstivities calculated using the differential op-
erator method, Spo, and the Malliavin method, Sya. The standard deviations of the mean for the estimated
sensitivities are provided as o s, and os,,,,- These estimated statistical errors indicate that both methods
provide estimates of the sensitivity that are in statistical agreement with the solutions in Table 2. Further, we
observe that the two methods provide different levels of statistical uncertainty, indicating that for different
problems one of the methods will have an advantage over the other in terms of computational efficiency.
That is, one method will reach a specific level of statistical uncertainty with fewer particles simulated and
less computational expense than the other.

The results shown in Table 4 are the senstivities calculated using the 7;, simulation method instead of the R,
method. Again, results are given for both the differential operator method, Spo, and the Malliavin method,
Shan. As expected, the additional random sampling increases the statistical variance in both the estimation
of the current (not shown) and of the sensitivities. Despite the inconsistency between the derivation method
and the tally method, we still observe that the results are in statistical agreement with the benchmark results
and that the two sensitivity methods provide different levels of statistical uncertainty.

Table 2: Benchmark results for test problems.

1 2 3 4 5 6 7 8 9
0.05321 | 0.07956 | 0.12765 | 0.00917 | 0.02768 | 0.09127 | 0.11353 | 0.10265 | 0.10602
S 1 0.03977 | 0.06894 | 0.13266 | 0.01972 | 0.06307 | 0.23080 | -0.04025 | -0.00615 | 0.01953

Table 3: Results for test problems using R, tally estimators.

1 2 3 4 5 6 7 8 9
Spo | 0.03977 | 0.06875 | 0.13242 | 0.01972 | 0.06306 | 0.23056 | -0.04017 | -0.00599 | 0.01946
Sman | 0.03982 | 0.06900 | 0.13279 | 0.01969 | 0.06324 | 0.23093 | -0.04004 | -0.00608 | 0.01981
Ospo | 0.00005 | 0.00009 | 0.00017 | 0.00002 | 0.00007 | 0.00020 | 0.00010 | 0.00009 | 0.00011
TSy | 0.00004 | 0.00006 | 0.00009 | 0.00002 | 0.00006 | 0.00018 | 0.00024 | 0.00032 | 0.00045
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Table 4: Results for test problems using 7, tally estimators.

1 2 3 4 5 6 7 8 9
Spo | 0.03925 | 0.06867 | 0.13248 | 0.01965 | 0.06310 | 0.23039 | -0.04181 | -0.00686 | 0.01871

Sman | 0.03954 | 0.06882 | 0.13199 | 0.01956 | 0.06348 | 0.23214 | -0.04029 | -0.00597 | 0.01934
05, | 000044 | 0.00026 | 0.00022 | 0.00004 | 0.00018 | 0.00049 | 0.00131 | 0.00100 | 0.00101
TSy | 0:00020 | 0.00028 | 0.00042 | 0.00021 | 0.00039 | 0.00078 | 0.00030 | 0.00023 | 0.00023

6. CONCLUSIONS

We have compared the differential operator method, which has been widely used within the transport com-
munity, with the Malliavin sensitivity method on a non-scattering transport problem, Numerical results
demonstrated that the two methods provided estimates of the sensitivity that were in statistical agreement
with analytical results. In some cases the Malliavin sensitivity calculations provided improved computa-
tional efficiency. These efficiency gains indicate that the method warrants further investigation. Future
work that extends these sensitivity evaluations to more general transport problems that include scattering is
desirable as is investigation of the consequence of applying Monte Carlo approximation to fundamentally
distinct tallies; see the discussion following (8). In general, conditions for the convergence of the sensitivity
estimators to the derivative of the expectations, and whether the same weightings can be used given the
distinct tallies would benefit from further analyses.
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