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Overview

Background and Motivation

Experimental Methods

Subcritical Crack Growth in High-pressure
Hydrogen and Hydrogen With Oxygen Impurity
— SA372 Grade | steel

— SA372 Grade L steel
— X100 pipeline steel
— 13-8 stainless steel

Summary and Conclusions
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Oxygen Is known to affect measurements of fatigue and \\

fracture
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* Numerous examples of trace
gases mitigating fatigue crack
growth rate (FCGR) in laboratory
conditions

- Example:
— (1) Oxygen reduces FCGR to air

— (2) Oxygen has no effect on FCGR
In H,
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Oxygen Is known to affect measurements of fatigue and \\

fracture

 Fatigue crack growth tests are typically
performed at 1 Hz (xdecade)
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— da/dN = 10> mm/cycle
— Time for Aa = Tmm: ~1 day

— 1 day = 0.02% of 10 year life

 Are the time scales of a typical
laboratory fatigue test sufficient to
demonstrate kinetics over decades?

— More accurately simulate the
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mechanical/environmental conditions

50 .
that components see when in use

— Does trace oxygen have long term
mitigation effects on hydrogen
embrittlement?




Sustained load testing can be executed over periods of
days to weeks to months to years

Fixed displacement tests

Placed in pressure vessels &
pressurized up to 140 MPa
gaseous environment

— Experiments in this study
were performed at 103MPa

Test durations can range
from days to years

Instrumented reaction pins
allows us to determine
Incubation time

Directly compare subcritical
crack growth in hydrogen
and mixed gas environments

Wedge-opened loaded
(WOL)

ASTM E1681 — Threshold Stress Intensity Factor for
Environment-Assisted Cracking




Crack initiation and growth rates can be measured \\
during constant displacement fracture experiments

Grade J WOL Experimental Results *
* Instrumented reaction pins allow O r \
for determination of incubation 001 k Crack propagation
time and crack growth rates _ - _ Arrest: 10kN
_ _ Z 002 } C . K = 86MPaym
— Continuous data collection El rol
throughout the duration of the = 003 | vl
experiments O V)
: - _ -0.04 |- N
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— With a constant displacement, the
crack growth rates can be
determined from the load on the
reaction pin

Grade L: WOL Fracture Surface

» Post-test fatigue and heat tinting
are used to mark fracture
surfaces
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Material selection and fracture surfaces

Grade L Grade J

« SA372 Grade J steel
— YS =700 MPa

« SA372 Grade L steel
— YS =730 MPa

« X100 pipeline steel
— YS =760 MPa

 Precipitation Hardened 13-8
stainless steel

— YS = 1480 MPa




100PPM & 1000PPM O, delay incubation time
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. Gradj_l_ shows a 5x delay at higher preload (K,,, = 60 MPay/m) and a 1.5x delay at lower preload (K,,, = 34
MPa+/m)

* Similar crack arrest thresholds for all test conditions
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100PPM & 1000PPM O, delay incubation time
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B Pure H2 = 100PPM = 1000PPM

mPure H2 = 100PPM = 1000PPM

« Similarly, the Grade J material showed delays of 15x at a higher preload (Kapp = 145 MPay/m) and a 2.2x delay
increase at a lower preload (Kapp = 135 MPa+/m)

- K thresholds were within £5 MPa+/m of average for both the pure and mixed gas conditions
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100PPM O, delays incubation time for X100,

but 13-8 fractured immediately

450

« X100 also saw a delay with the addition of 100PPM O,
« Both 13-8 samples fractured (a/W > 97%) within seconds of exposure to H, + 100PPM O,
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Similar crack growth rates and arrest thresholds for both \

H, and mixed gas environment h

AN
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« Crack growth rates (da/dt) fall Crack Growth Rates \\
within the expected ranges from 1E-02
previous tests in pure hydrogen at 1E03 |
similar pressures
_ _ 1.E-04 |
* Adding oxygen to a high pressure
hydrogen environment (103MPa) LE-0S r
was shown to increase the time it lg LE06 F mGrade L H2
took for subcritical cracks to = AHY130 H2
1.E-07 } ¢ DOT-3AAX H2
propagate 3
XDOT-3T H2
— The addition of oxygen impurities 1.E-08 X DOT 3T H2
did not prevent crack propagation 1E09 | ® SA372 Grade J H2
or effect crack arrest thresholds ' OSA372 Grade J H2 + 100PPM 02
1.E-10 } AX100 H2 + 100PPM O2
® Grade J H2 + 1000PPM 02
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Summary

- The effects of low oxygen impurities in o Crack arrest threshold vs. applied preload
hydrogen gas on subcritical crack growth
in high pressure hydrogen environment
was studied 00T
— Constant displacement fracture tests were g so _'_E_'?.'_ ______ Grade J
carried out in pure hydrogen and mixed >
gas (100 and 1000PPM oxygen) & o L
environments at 103MPa (15ksi) = Y T
© —— kA ___.
* K.y, appears to be independent from & 40 |
oxygen content e —m—m e
[
— All tests with pure hydrogen and oxygen 20 T a___8broel
impurities fall within an apx. 10MPa+y/m
range 0 - - - -
) 0 50 100 150 200
« The 13-8 material fractured nearly through K [MPa vm]
the width of the sample during initial applied LVIT'd VM
. . B Grade J H2 O GradeJH2 + 100PPM 02 ® Grade J H2 + 1000PPM 02
pressurlzatlon ® Grade L H2 O Grade LH2 + 100PPM O2 @ Grade L H2 + 1000PPM 02

A X100 H2 A X100 H2 + 100PPM 02
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Summary

* Introducing 100PPM oxygen increased the 600 -
incubation time by factors between 1.5x and
15x, but did not prevent crack propagation .
500 | SN
* Increasing the oxygen content from 100PPM to 0 G G
1000PPM further delayed the incubation time, £ o, NN %y,
but had a smaller relative effect than going o 400 L na N,
from pure hydrogen to hydrogen + 100PPM £ 700@;4;\\\ 00@%
oxygen : 200 L . o o ?
— The relative increase in incubation time when .g S~
moving from 100 to 1000PPM oxygen was minor © S~ c ‘\!
for the Grade J material 9 200 r RRENCCOPY
o S< e
« Based on this data, low oxygen impurities should not £ " B *HQ\ -
be relied upon for long-term mitigation of hydrogen 100 F S~o
embrittlement S~o .
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« We would like to acknowledge James McNair,
Jeff Campbell, and Brendan Dauvis for their K,pplied [MPa V]
assistance with the experimental setup
B Grade J H2 0 Grade J H2 + 100PPM 02 B Grade J H2 + 1000PPM 02
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Thank you for your
attention!

Rob Wheeler
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