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• Background and Motivation

• Experimental Methods

• Subcritical Crack Growth in High-pressure 
Hydrogen and Hydrogen With Oxygen Impurity

‒ SA372 Grade J steel

‒ SA372 Grade L steel

‒ X100 pipeline steel

‒ 13-8 stainless steel

• Summary and Conclusions



Oxygen is known to affect measurements of fatigue and 
fracture
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• Numerous examples of trace 

gases mitigating fatigue crack 

growth rate (FCGR) in laboratory 

conditions

• Example:

– (1) Oxygen reduces FCGR to air

– (2) Oxygen has no effect on FCGR 

in H2
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Ref.: Somerday et al, Acta Mater 61 (2013) 6153.

Ref.: Nibur et al, SAND2010-4633 (2010).
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• Fatigue crack growth tests are typically 

performed at 1 Hz (±decade)

– da/dN = 10-5 mm/cycle

– Time for ∆a = 1mm: ~1 day 

– 1 day = 0.02% of 10 year life

• Are the time scales of a typical 

laboratory fatigue test sufficient to 

demonstrate kinetics over decades?

– More accurately simulate the 

mechanical/environmental conditions 

that components see when in use

– Does trace oxygen have long term 

mitigation effects on hydrogen 

embrittlement?Ref.: Somerday et al, Acta Mater 61 (2013) 6153.

Ref.: Nibur et al, SAND2010-4633 (2010).



Sustained load testing can be executed over periods of  
days to weeks to months to years
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• Fixed displacement tests

• Placed in pressure vessels & 

pressurized up to 140 MPa 

gaseous environment

– Experiments in this study 

were performed at 103MPa

• Test durations can range 

from days to years

• Instrumented reaction pins 

allows us to determine 

incubation time

• Directly compare subcritical 

crack growth in hydrogen 

and mixed gas environments

Wedge-opened loaded

(WOL)

ASTM E1681 – Threshold Stress Intensity Factor for 

Environment-Assisted Cracking 



Crack initiation and growth rates can be measured 
during constant displacement fracture experiments

6

• Instrumented reaction pins allow 
for determination of incubation 
time and crack growth rates

– Continuous data collection 
throughout the duration of the 
experiments

• Time between the initial crack 
propagation and arrest can range 
between seconds to hours

– With a constant displacement, the 
crack growth rates can be 
determined from the load on the 
reaction pin

• Post-test fatigue and heat tinting 
are used to mark fracture 
surfaces
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Material selection and fracture surfaces 

Grade L Grade J

X100 13-8

• SA372 Grade J steel

– YS = 700 MPa

• SA372 Grade L steel

– YS = 730 MPa

• X100 pipeline steel

– YS = 760 MPa

• Precipitation Hardened 13-8 
stainless steel

– YS = 1480 MPa 
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Grade L 

Kapp = 34MPa m
YS = 730 MPa
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• Grade L shows a 5x delay at higher preload (Kapp =  60 MPa m) and a 1.5x delay at lower preload (Kapp =  34 
MPa m)

• Similar crack arrest thresholds for all test conditions
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• Similarly, the Grade J material showed delays of 15x at a higher preload (Kapp =  145 MPa m) and a 2.2x delay 
increase at a lower preload (Kapp =  135 MPa m)

• K thresholds were within ±5 MPa m of average for both the pure and mixed gas conditions

82
81

100PPM & 1000PPM O2 delay incubation time
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• X100 also saw a delay with the addition of 100PPM O2

• Both 13-8 samples fractured (a/W > 97%) within seconds of exposure to H2 + 100PPM O2
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Similar crack growth rates and arrest thresholds for both 
H2 and mixed gas environment
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• Crack growth rates (da/dt) fall 

within the expected ranges from 

previous tests in pure hydrogen at 

similar pressures

• Adding oxygen to a high pressure 

hydrogen environment (103MPa) 

was shown to increase the time it 

took for subcritical cracks to 

propagate

– The addition of oxygen impurities 

did not prevent crack propagation 

or effect crack arrest thresholds
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Summary
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• The effects of low oxygen impurities in 
hydrogen gas on subcritical crack growth 
in high pressure hydrogen environment 
was studied

– Constant displacement fracture tests were 
carried out in pure hydrogen and mixed 
gas (100 and 1000PPM oxygen) 
environments at 103MPa (15ksi)

• KTHa appears to be independent from 
oxygen content

– All tests with pure hydrogen and oxygen 
impurities fall within an apx. 10MPa m
range

• The 13-8 material fractured nearly through 
the width of the sample during initial 
pressurization

Grade J

X100

Grade L



Summary
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• Introducing 100PPM oxygen increased the 
incubation time by factors between 1.5x and 
15x, but did not prevent crack propagation

• Increasing the oxygen content from 100PPM to 
1000PPM further delayed the incubation time, 
but had a smaller relative effect than going 
from pure hydrogen to hydrogen + 100PPM 
oxygen

– The relative increase in incubation time when 
moving from 100 to 1000PPM oxygen was minor 
for the Grade J material

• Based on this data, low oxygen impurities should not 
be relied upon for long-term mitigation of hydrogen 
embrittlement 

• We would like to acknowledge James McNair, 
Jeff Campbell, and Brendan Davis for their 
assistance with the experimental setup
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