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High Dimensionality & Multimodal Data

Classification

Data classification is a fundamental task in Machine Learning (ML)
|dentify patterns and assign labels to input data

The predictive performance of classification models is influenced by the

number of input features utilized °* o,
®
R
Challenges ® I
= Multimodal Data: Refers to datasets that combine information from - O | I
multiple sources or modalities, e.g., text, images, audio, sensor data. /—/;\‘;*;%: o -
ENErE
= High Dimensionality: Refers to datasets with a large number of e
features or variables
= High-dimensional data often arises in multimodal datasets due to the
combination of multiple sources
= Each modality contributes its own set of features, resulting in an
increased overall dimensionality I
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Problem

= Analyzing and extracting meaningful insights from such data require specialized techniques
and handling

= As the dimensionality of the input space increases, the complexity of the classification task also
increases

= There is a growing interest in reducing the dimensionality of the input space to enhance the
predictive performance of classification models

Linear vs nonlinear dimensionality reduction

Approaches for dimensionality reduction
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Manifold Learning & Data Fusion

= |tis a dimensionality reduction technique used to understand the underlying structure of complex high-
dimensional data

= |t aims to uncover the intrinsic low-dimensional manifold on which the data points lie

= By preserving the local and global relationships between data points, manifold learning provides a more
meaningful representation for further analysis




Manifold Learning & Data Fusion

Manifold: A lower-dimensional, curved subspace
embedded within a higher-dimensional space that captures
the essential structure of the data

MACHINE
* CEARNING
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Data fusion I
Model 1 Model 2 Model k Features Feature k
Mose Data fusion I o Features
Output
Output Output -
Early Fusion Late Fusion Intermediate Fusion
Fusing multiple data before the analysis * Uses data sources independently and * Architecture built on the basis of the
fusion happens at a decision-making popular deep neural networks
Applicable on raw-data or pre-processed level - Fusion at different depths of the
data obtained from sensors « Inspired by ensemble methods model
Features should be extracted fromthe ~ * Simpler than early data fusion when . peep Learning fusion context: Learn aI
data before fusion - synchronization data is varied (Samplmg rate, data joint representation of each of the

dimensionality, measurement unit)

problems modalities

, _ « Often better results - uncorrelated
Simplest Form: Concatenation error - PCA, Autoencoders
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Description

= Autoencoders (AE) are a type of Artificial Neural Networks (ANN)
used for:

= Unsupervised Learning
= Dimensionality reduction/Compression
= Data Fusion

How do they work? / Architecture

= Encoder: Compresses the input data into a lower-dimensional
space using an encoder network - bottleneck layer

= Decoder: Then it reconstructs the input data back into the
original space using a decoder network

= |tlearns an internal representation/code to perform useful
transformations on the input data (middle layer)

= Finds a codification of the input multimodal data by learning Undercomplete: New higher
non-linear combinations of their features level variables are generated




s | Autoencoders for Multimodal Data Fusion

Training
= |nvolves minimizing the reconstruction error between the original input data and the decoded output
= Based on the Backpropagation algorithm with Mean Square Error (MSE)

= The model obtained will be able to map new examples onto the latent feature space
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Properties of AE

= Data specific: Only able to compress data similar to what they
have been trained on

= Lossy: Degraded output representation of the input

= Unsupervised: They do not need explicit labels to train on. They
can also be considered self-supervised because they generate

their own labels from the training data Note for AE:
* Output layer may be of:
Types « No Importance: Extract code g
= Fully connected * Importance: Clean the noise
. of the input data
= Convolutional

= Recurrent (e.g., LSTM-based for temporal ordering of cyber-
physical data)

Useful for Downstream Tasks I
= (Classification
= (Clustering

= Anomaly detection
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Basic Autoencoder
= Feed forward ANN with symmetrical layer architecture

=  The symmetry does not necessarily have to be reflected in the weights and activation
functions

=  Objective function corresponds to a per-instance loss function (MSE)

= Optimization of weights and biases: SGD, RMSProp, AdaGrad

Contractive Autoencoder

= Autoencoders are very sensitive to variations in the input data
= Small perturbations can generate very different encodings I

= Contractive Autoencoders include a regularization term that allows them to stabilize I
the encodings
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Denoising Autoencoder
= Uses noise to build a new feature space that is more resistant to corrupt entries
= Fundamental modification: Corruption of entrance during the training phase

= Number of input variables randomly chosen - set to 0 - reconstruction error is compared
to the original unmodified values

= Detects missing values

Robust Autoencoder

= Tolerate possible noise present in the training data
= Fundamental modification: Loss function used during training I

= Error function based in correntropy
=  Measures the probability density that two events are similar I

= The outliers affect this measure to a lesser extent than the MSE






