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High Dimensionality & Multimodal Data2

§ Data classification is a fundamental task in Machine Learning (ML)

§ Identify patterns and assign labels to input data

§ The predictive performance of classification models is influenced by the 
number of input features utilized

Classification

Challenges  
§ Multimodal Data: Refers to datasets that combine information from 

multiple sources or modalities, e.g., text, images, audio, sensor data.

§ High Dimensionality: Refers to datasets with a large number of 
features or variables

§ High-dimensional data often arises in multimodal datasets due to the 
combination of multiple sources

§ Each modality contributes its own set of features, resulting in an 
increased overall dimensionality



High Dimensionality & Multimodal Data

Problem

§ Analyzing and extracting meaningful insights from such data require specialized techniques 
and handling

§ As the dimensionality of the input space increases, the complexity of the classification task also 
increases

§ There is a growing interest  in reducing the dimensionality of the input space to enhance the 
predictive performance of classification models
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Approaches for dimensionality reduction

PCA
[Principal 

Component 
Analysis]

LDA
[Linear 

Discriminant 
Analysis]

Assumption: The data lies 
on a linear subspace 

Not always true in real-world scenarios!



Manifold Learning & Data Fusion 
§ It is a dimensionality reduction technique used to understand the underlying structure of complex high-

dimensional data

§ It aims to uncover the intrinsic low-dimensional manifold on which the data points lie

§ By preserving the local and global relationships between data points, manifold learning provides a more 
meaningful representation for further analysis
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Manifold Learning & Data Fusion5

Manifold: A lower-dimensional, curved subspace 
embedded within a higher-dimensional space that captures 

the essential structure of the data

Autoencoders: Consist one of the most fundamental 
Manifold Learning/Data Fusion techniques

Data Fusion: The process of combining and integrating 
multiple heterogeneous data sources or modalities to 
generate a unified representation, enabling enhanced 

insights and decision-making



Manifold Learning & Data Fusion6

Early Fusion Late Fusion Intermediate Fusion

• Fusing multiple data before the analysis

• Applicable on raw-data  or pre-processed 
data obtained from sensors

• Features should be extracted from the 
data before fusion – synchronization 
problems

• Simplest Form: Concatenation 

• Uses data sources independently and 
fusion happens at a decision-making 
level

• Inspired by ensemble methods
• Simpler than early data fusion when 

data is varied (sampling rate, data 
dimensionality, measurement unit)

• Often better results – uncorrelated 
error 

• Architecture built on the basis of the 
popular deep neural networks

• Fusion at different depths of the 
model

• Deep Learning fusion context: Learn a 
joint representation of each of the 
modalities

• PCA , Autoencoders
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§ Autoencoders (AE) are a type of Artificial Neural Networks (ANN) 
used for:
§ Unsupervised Learning
§ Dimensionality reduction/Compression
§ Data Fusion

Description

How do they work? / Architecture
§ Encoder: Compresses the input data into a lower-dimensional 

space using an encoder network – bottleneck layer

§ Decoder: Then it reconstructs the input data back into the 
original space using a decoder network

§ It learns an internal representation/code to perform useful 
transformations on the input data (middle layer)

§ Finds a codification of the input multimodal data by learning 
non-linear combinations of their features

Undercomplete: New higher 
level variables are generated
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Training

§ Involves minimizing the reconstruction error between the original input data and the decoded output

§ Based on the Backpropagation algorithm with Mean Square Error (MSE)

§ The model obtained will be able to map new examples onto the latent feature space
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Properties of AE

§ Data specific: Only able to compress data similar to what they 
have been trained on

§ Lossy: Degraded output representation of the input

§ Unsupervised: They do not need explicit labels to train on. They 
can also be considered self-supervised because they generate 
their own labels from the training data

Types

§ Fully connected

§ Convolutional 

§ Recurrent (e.g., LSTM-based for temporal ordering of cyber-
physical data)

Useful for Downstream Tasks

§ Classification 

§ Clustering

§ Anomaly detection

Note for AE:
• Output layer may be of:

• No Importance: Extract code
• Importance: Clean the noise 

of the input data
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Basic Autoencoder

§ Feed forward ANN with symmetrical layer architecture

§ The symmetry does not necessarily have to be reflected in the weights and activation 
functions

§ Objective function corresponds to a per-instance loss function (MSE)

§ Optimization of weights and biases: SGD, RMSProp, AdaGrad

Contractive Autoencoder

§ Autoencoders are very sensitive to variations in the input data

§ Small perturbations can generate very different encodings

§ Contractive Autoencoders include a regularization term that allows them to stabilize 
the encodings
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Denoising Autoencoder

§ Uses noise to build a new feature space that is more resistant to corrupt entries

§ Fundamental modification: Corruption of entrance during the training phase

§ Number of input variables randomly chosen – set to 0 – reconstruction error is compared 
to the original unmodified values

§ Detects missing values

Robust Autoencoder

§ Tolerate possible noise present in the training data

§ Fundamental modification: Loss function used during training

§ Error function based in correntropy
§ Measures the probability density that two events are similar 
§ The outliers affect this measure to a lesser extent than the MSE
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