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Motivation

Climate Interventions and Pathways
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Image source: https://eos.org/science-updates/improving-models-for-solar-climate-intervention-research

Threat of climate change has led to...

Proposed possible interventions
Stratospheric aerosol injections
Marine cloud brightening
Cirrus cloud thinning
etc.

Climate Interventions

What are the downstream effects of
such mitigation strategies?
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Climate Pathway (associated with a climate event)

Source variable

Intermediate variables

Impact variable

Example

Mount Pinatubo eruption in 1991

Released 18-19 Tg of sulfur dioxide

Proxy for anthropogenic stratospheric aerosol
injection

Our Objective

Objective: Develop algorithms to characterize (i.e., quantify) relationships between climate variables related to a
climate event (in observed data)
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Source:

Sulfur dioxide
Injection of sulfur dioxide (18-19 Tg) into atmosphere [1]

Intermediate:

Aerosol optical depth (AOD) [2]

Vertically integrated measure of aerosols in air from surface to

stratosphere

Impact:

Stratospheric temperature
Temperatures at pressure levels of 30-50 mb rose 2.5-3.5

degrees centigrade compared to 20-year mean [3]

Figure generated using Modern-Era Retrospective Analysis for Research and Applications, Version 2

(MERRA- 2) data [4]

Mount Pintabuo Example Pathway
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Step 1: Model pathway variables with echo state
network

Allow complex machine learning model to capture
complex pathway variable relationships

Step 2: Understand pathways via explainability

Apply explainability techniques (feature
importance) to understand pathways captured by
model

Our Approach

Use machine learning...
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Approach

Echo State Networks and Feature Importance
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Machine learning model for temporal data

Sibling to recurrent neural network (RNN)

ESN reservoir parameters randomly sampled instead of

estimated

Computationally efficient

Compared to RNNs and spatio-temporal statistical models)

Previous work demonstrated use of ESN for long-
term spatio-temporal forecasting

McDermott and Wikle [5]

Single layer ESN

Output stage (ridge regression):

Hidden stage (nonlinear stochastic transformation):

Note: Only parameters estimated are in .

Echo-State Networks

yt = Vht + ϵt

ht = gh( Wht−1 + U~xt−τ)
ν

|λw|

~xt−τ = [x′
t−τ , x′

t−τ−τ ∗ , . . . , x′
t−τ−mτ ∗]

′

V

9



Impact variable (e.g., stratospheric temperature): Source/intermediate variables (e.g., aerosol optical
depth):

Echo-State Networks: Spatio-Temporal Context

Spatio-temporal processes at spatial locations  over times ...

Stage Formula Description

Data stage (outputs) Basis function decomposition (e.g., PCA)

Output stage Ridge regression

Hidden stage Nonlinear stochastic transformation

Data stage (inputs) Basis function decomposition (e.g., PCA)

{si ∈ D ⊂ R
2; i = 1, . . . ,N} t = 1, . . . ,T

ZY ,t = (ZY ,t(s1),ZY ,t(s2), . . . ,ZY ,t(sN))′

Zk,t = (Zk,t(s1),Zk,t(s2), . . . ,Zk,t(sN))′

 for k = 1, . . . ,K

ZY ,t ≈ ΦY yt

yt = Vht + ϵt

ht = gh ( Wht−1 + U~xt−τ)
ν

|λw|

Zk,t ≈ Φkxk,t      where xt = [x′
1,t, . . . , x′

K,t]
′
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Background

Permutation feature importance [6]
Pixel absence affect with ESNs [7]
Temporal permutation feature importance [8]

Our Work

Adapt for ESNs in context of spatio-temporal
data

Concept

"Adjust" inputs at times(s) of interest
Quantify effect on model performance
Large decrease in performance indicates
important time(s)

Feature Importance

Feature importance aims to quantify effect of input variable on a model's predictions
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Feature Importance: Spatio-Temporal Context

Compute FI on the trained ESN model for...

spatio-temporal input variable 

over the block of times 

on the forecasts of the spatio-temporal response variable at time .

k

{t, t − 1, . . . , t − b + 1}

t + τ

12



Feature Importance: Spatio-Temporal Context

Two Approaches: "Adjust" inputs by either

Permutation: spatio-temporal permutation feature importance (stPFI)

Set values to zero: spatio-temporal zeroed feature importance (stZFI)

Feature Importance: Difference in RMSEs from observed and "adjusted" spatial predictions

I
(k,b)
t,t+τ = M(yt+τ , ŷ

(k,b)
t+τ )−M (yt+τ , ŷt+τ)
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Feature Importance: Spatio-Temporal Context

Visualization: Feature importance of  during times  on forecast of  at time :x1 {t, t − 1, t − 2} yt t + 1
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Simulated response:

where

 spatio-temporal covariate

 spatio-temporal random effect

Simulated Data Demonstration

ZY ,t(si) = Z2,t(si)β + δt(si) + ϵt(si)

Z2,t

δt(si)

ϵt(si)
iid
∼ N(0,σ2

ϵ )
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Simulated Data Demonstration

Fit an ESN to forecast  with inputs  and 

Consider stPFI and stZFI with blocks of size 1 to 3
Each line represents the importance of the block of lagged times of an input variable on the forecast at time 

ZY ,t Z1,t−τ Z2,t−τ

t
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Climate Application

Mount Pinatubo
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Objective

Quantify relationship between AOD and
stratospheric temperature during these events

Data

Modern-Era Retrospective Analysis for Research
and Applications, Version 2 (MERRA- 2)

Training Years: 1980 to 1995

Includes eruptions of Mount Pinatubo (1991)
and El Chichón (1982)

Time Interval: Monthly

Latitudes: -86 to 86 degrees

Mount Pinatubo Example: Data
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ESN Output

Stratospheric Temperature (50mb)

ESN Inputs

Stratospheric Temperature (50mb; one month lag)

Lagged AOD (one month lag)

Preprocessing (all variables)

Climatologies

Principal components (first 5)

Mount Pinatubo Example: Model
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Key Point

Peak of importance for
AOD (and lack of peak
of importance for
lagged stratospheric
temperatures),
provides evidence that
volcanic eruption
impact on
temperature can be
traced through AOD

FI Metric

Weighted RMSE
(weighted by cosine of
the latitude)

Mount Pinatubo Example: Feature Importance
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Conclusions and Future Work

21



Summary and Conclusions

Summary

Interested in quantifying relationships between climate variables associated with pathway of climate event

Motivated by increasing possibility of climate interventions

Our machine learning approach:

Use ESN to model variable relationships

Understand variable relationships using proposed spatio-temporal feature importance

Conclusion

Approach provided evidence of AOD being an intermediate variable in Mount Pinatubo climate pathway
affecting stratospheric temperature
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Future (Current) Work

ESN extensions

Addition of multiple layers
ESN ensembles
Bayesian ESNs

Spatio-temporal feature importance

Implement proposed retraining technique [9] to lessen detection of spurious relationships
Adapt to visualize on spatial scale
Comparison to other newly proposed explainability techniques for ESNs (layer-wise relevance propagation) [10]

Mount Pinatubo application

Inclusion of additional pathway variables (e.g., SO2, radiative flux, surface temperature)
Importance of grouped variables
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ESN Details
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ESN Details
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ESN Details
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ESN Details
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ESN Details
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Issue and Solution

Black-box:

ESN parameters NOT interpretable (unlike spatio-temporal statistical models)
Objective is to quantify variable relationships...

Interpretable: A model is interpretable if it is possible to assign meaning to the model's parameters in the context of
the application, which provides insight into how the model inputs relate to the model outputs.

Consider a linear model:  We can interpret the coefficient  as the amount the response
variable  increases for a one unit increase in the predictor variable .

Explainable: A model is explainable if it is possible to implement post hoc investigations on a trained model that
infer how the model inputs relate to the model outputs.

Feature importance: Aims to quantify the effect of an input variable on a model's predictions. Various
techniques have been proposed for computing FI

ŷ = β̂0 + β̂1x1. β̂1

ŷ x1
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Feature Importance Details

Let  denote the FI on the trained ESN model  for

spatio-temporal input variable 
over the block of times 
on the forecasts of the spatio-temporal response variable at time .

We compute the FI  as follows:

Step 1: Obtain forecasts  at time .

Step 2: Let  be a model prediction performance metric comparing observed to predicted values with the
constraint that smaller values indicated better model performance (e.g., root mean squared error). Compute the
performance metric on the trained model  at time  as:

I
(k,b)
t,t+τ f

k
{t, t − 1, . . . , t − b + 1}

t + τ

I
(k,b)
t,t+τ

f(xt, xt−1, . . . , x1) = ŷt+τ t + τ

M

f t + τ

M (yt+τ , ŷt+τ) .
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Feature Importance Details

Step 3: Generate adjusted forecasts using one of the following two methods:

Permutation (stPFI): For replicate , randomly permute the values within each vector
. Replace the corresponding observed values within  with the

permuted versions. Let the versions of  containing the permuted values associated with
variable  and replicate  be denoted as

respectively. Then obtain forecasts at time  as

The  replications are implemented to account for variability among permutations.

r = 1, 2, . . . ,R
xk,t, xk,t−1, . . . , xk,t−b+1 xt, xt−1, . . . , xt−b+1

xt, xt−1, . . . , xt−b+1

k r

x
(k,r)
t , x

(k,r)
t−1 , . . . , x

(k,r)
t−b+1,

t + τ

f (x
(k,r)
t , x

(k,r)
t−1 , . . . x

(k,r)
t−b+1, xt−b, . . . , x1) = ŷ

(k,b,r)
t+τ .

R
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Feature Importance Details

Step 3: Generate adjusted forecasts using one of the following two methods:

Zeroing (stZFI): Replace the vectors of  within  with zeros. Let the

versions of  containing the inserted zeros associated with variable  be denoted as

respectively. Then obtain forecasts at time  as

Note that no replications are needed to account for variability with zeroing.

xk,t, xk,t−1, . . . , xk,t−b+1 xt, xt−1, . . . , xt−b+1

xt, xt−1, . . . , xt−b+1 k

x
(k)
t , x

(k)
t−1, . . . , x

(k)
t−b+1,

t + τ

f (x
(k)
t , x

(k)
t−1, . . . x

(k)
t−b+1, xt−b, . . . , x1) = ŷ

(k,b)
t+τ .
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Feature Importance Details

Step 4: Compute the prediction performance metric on the forecasts obtained by inputting the adjusted predictions
into the trained model . That is, with stPFI compute

for , and with stZFI compute

f

M(yt+τ , ŷ
(k,b,r)
t+τ ) ,

r = 1, . . . ,R

M(yt+τ , ŷ
(k,b)
t+τ ) .
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Feature Importance Details

Step 5: Finally, either compute stPFI at time  as the average change in model prediction performance when
inputs  are permuted:

or stZFI at time  as the change in model prediction performance when inputs  are set

to 0:

t + τ
xk,t, xk,t−1, . . . , xk,t−b+1

I
(k,b)
t,t+τ = [

R

∑
r=1

M(yt+τ , ŷ
(k,b,r)
t+τ )] −M (yt+τ , ŷt+τ) ,

1

R

t + τ xk,t, xk,t−1, . . . , xk,t−b+1

I
(k,b)
t,t+τ = M(yt+τ , ŷ

(k,b)
t+τ )−M (yt+τ , ŷt+τ) .
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Effect of Correlation on FI
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Simulated Data: Effect of Variability on FI
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Simulated Data: Effect of Variability on FI
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Simulated Data: Effect of Variability on FI
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