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Motivation




Climate Interventions

Solar Climate Threat of climate change has led to...

Intervention Methods o _
e Proposed possible interventions

o Stratospheric aerosol injections
o Marine cloud brightening
3) Increasing the amount of . . .
stratospheric aerosol (SAI) 5) Decreasing the o Cirrus cloud thinning

amount of high

altitude cirrus o etC.
clouds (CCT)

4) Space-based methods

10-16 km

S bnise What are the downstream effects of
such mitigation strategies?

2) Increasing the reflectivity

1) Surface albedo of marine clouds (MCB)
enhancement

A4 Altering reflection of shortwave radiation

Image source: https://eos.org/science-updates/improving-models-for-solar-climate-intervention-research
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https://eos.org/science-updates/improving-models-for-solar-climate-intervention-research

Our Objective

Objective: Develop algorithms to characterize (i.e., quantify) relationships between climate variables related to a
climate event (in observed data)

Climate Pathway (associated with a climate event) Example
e Source variable * Mount Pinatubo eruption in 1991
e |Intermediate variables e Released 18-19 Tg of sulfur dioxide
e Impact variable e Proxy for anthropogenic stratospheric aerosol
injection

SOURCE FORCINGS IN THE CLIMATE
S3DUNOS INOYU4 DNISIHY SLOVdII
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Mount Pintabuo Example Pathway

AOD Monthly Climatologies

.
S O u rce . 1991-01-01 1991-02.01 1991-03-01 1991-04-01
N = £ B E o 5 £ NS

e Sulfur dioxide M=

® |njection of sulfur dioxide (18-19 Tg) into atmosphere [1]

Latitude

Intermediate; af

e Aerosol optical depth (AOD) [2]

® Vertically integrated measure of aerosols in air from surface to -1

stratosphere serc Temperature Monty Ci

1991-01-01

Impact: L

e Stratospheric temperature

® Temperatures at pressure levels of 30-50 mb rose 2.5-3.5

Latitude

degrees centigrade compared to 20-year mean [3]

Figure generated using Modern-Era Retrospective Analysis for Research and Applications, Version 2

(MERRA- 2) data [4] T LR ET I W 2 T8 [ E N W %o

Longitude

Climatology

bLoanG

Climatology
3

HaoaN
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Our Approach

Use machine learning...

Step 1: Model pathway variables with echo state
network

e Allow complex machine learning model to capture
complex pathway variable relationships

Echo State Forecast of
= temperature

at time t+1

Network

Step 2: Understand pathways via explainability

* Apply explainability techniques (feature
importance) to understand pathways captured by
model

Mt. Pinatubo

Effect of

variable

Doxx] on —~ ]

forecast of

temperature
at t+7

Temperature

Aerosol optical thickness
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Approach




Echo-State Networks

Machine learning model for temporal data Single layer ESN

e Sibling to recurrent neural network (RNN) Output stage (ridge regression):

O ESN reservoir parameters randomly sampled instead of

y, = Vh; + ¢
estimated

e Computationally efficient

Hidden stage (nonlinear stochastic transformation):
O Compared to RNNs and spatio-temporal statistical models)

V ~
e Previous work demonstrated use of ESN for long- h; = gn (—Wht—l + UXt—r)

[Aw|
term spatio-temporal forecasting

/
/ / /
Rer = X)X} ey Xy ]
O McDermott and Wikle [5] T t—7? Tt—T—7%) ) M—T—mT*

Note: Only parameters estimated are in V.
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Echo-State Networks: Spatio-Temporal Context

Spatio-temporal processes at spatial locations {s; € D C R%i=1,... ,N}overtimest=1,...,T..

Impact variable (e.g., stratospheric temperature):

Zy; = (Zy(s1), Zy +(s2), - - -, Zy ¢(sn))’

Source/intermediate variables (e.g., aerosol optical
depth):

Zk,t = (Zk,t(sl)a Zk,t(s2)7 sy Zk,t(SN))/
fork=1,..., K

Stage Formula

Data stage (outputs) Zy: ~ Pyy,

Output stage y, = Vh; + ¢
Hidden stage h; = gy, (ﬁWht—l + Ui’ct_T)

Data stage (inputs)  Zkt ~ ®rxp:  wherex; =[x 4,. ..

Description
Basis function decomposition (e.g., PCA)

Ridge regression
Nonlinear stochastic transformation

7le,t]/ Basis function decomposition (e.g., PCA)
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Feature Importance

Feature importance aims to quantify effect of input variable on a model's predictions

Background

e Permutation feature importance [6]
e Pixel absence affect with ESNs [7]
e Temporal permutation feature importance [8]

Our Work

e Adapt for ESNs in context of spatio-temporal
data

Concept

e "Adjust" inputs at times(s) of interest

e Quantify effect on model performance

e Large decrease in performance indicates
important time(s)

Stratosphere temperature
(lagged)

Aerosol optical
depth (lagged)

RMSE
Stratosphere
temperature

(forecasted)

Stratosphere temperature
(lagged)

compare

Aerosol
optical depth
(lagged)

RMSE
Stratosphere
temperature

(forecasted) with
AOD adjusted
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Feature Importance: Spatio-Temporal Context

Compute Fl on the trained ESN model for...

e spatio-temporal input variable k

e over the block of times {¢,t — 1,...,t —b+ 1}

e on the forecasts of the spatio-temporal response variable at time ¢ 4 7.

X1,t,1 X1tp; | X2,t1 X2,t,P, XK,t1 XK,t,Pg Vit Yo
t=1 t=1
t=2 t=2
t=3 t=3
t=4 t=4
t=T t=T
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Feature Importance: Spatio-Temporal Context

X1,t1 - XLty | X2,t1 ™ X2,t,P, - XK,t,1 e | XK, tPg Vit Yot
t=1 t=1
t=2 t=2
t=3 t=3
t=4 t=4

Two Approaches: "Adjust" inputs by either
e Permutation: spatio-temporal permutation feature importance (stPFl)
* Set values to zero: spatio-temporal zeroed feature importance (stZFl)

Feature Importance: Difference in RMSEs from observed and "adjusted" spatial predictions

k,b ~ (k,b A~
It(,t—H)' =M (yt—|—7'7 y§+T)> -M (yt—|—7‘7 yt—l—T)
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Feature Importance: Spatio-Temporal Context

X1,t,1 X1t,p; | X2,t1 X2,t,P, XK,t,1 XK,t,Pg Yt Yot
t=1 t=1
t=2 t=2
t=3 t=3
t=4 t=4
t=T t=T

Visualization: Feature importance of x; during times {¢,t — 1,¢ — 2} on forecast of y, attimet + 1:

Feoture
j,rv\i)csr%obncc

n s e 7 % 9

T of Fovecost

VO

\
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Simulated Data Demonstration

Simulated response:
Zy 1(si) = Z24(s:)B + 6¢(si) + €x(si)
where

* Zy; spatio-temporal covariate
e J;(s;) spatio-temporal random effect

1id (() o )

Spatially averaged values of variables

Variable

1 2 3 4 5 6 7 8 9 10
EEEEEEEmEE
11 12 13 14 15 16 17 18 19 20
EEEETEREEE
21 22 23 24 25 26 27 28 29 30
EEEEERERERER
31 32 33 34 35 36 37 38 39 40
EEREEEEE..
41 42 43 44 45 46 47 48 49 50
J L ard
51 52 53 54 55 56 57 58 59 60
EEEEENEEEN
61 62 63 64 65 66 67 68 69 70
EREREERERNEE

|
Zy.(s) 5 0 20
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Simulated Data Demonstration

e Fitan ESN to forecast Zy ; with inputs Z1; - and Za;_,

e Consider stPFl and stZFl with blocks of size 1 to 3
e Each line represents the importance of the block of lagged times of an input variable on the forecast at time ¢

Z1 ZZ
1.0
0.5
WV_\MM\M

OO - e e A —
0]
o
=
£ 104
51
Q
£ N Permuted
© 0.51 — Zeroed
=
8 N\,//W\W
L 0.04

1.0

w
0.5
0.04 : : !

Time
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Climate Application



Mount Pinatubo Example: Data

Objective AOD: Climatology

e Quantify relationship between AOD and 2-
stratospheric temperature during these events

Data

* Modern-Era Retrospective Analysis for Research

and Applications, Version 2 (MERRA- 2)

Stratospheric Temperature: Climatology

* Training Years: 1980 to 1995

o Includes eruptions of Mount Pinatubo (1991)
and El Chichon (1982) 1

e Time Interval: Monthly 0

e |atitudes: -86 to 86 degrees

1
1980 1985 1990 1995
Date
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Mount Pinatubo Example: Model

ESN Output

e Stratospheric Temperature (50mb)

ESN Inputs

e Stratospheric Temperature (50mb; one month lag)

e Lagged AOD (one month lag)
Preprocessing (all variables)
e Climatologies

* Principal components (first 5)

RMSE

ESN trained through year shown on row label
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o
H 13
T e i it D T e P
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e i e et e e A et e s i o
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e, oo, e A e
i e S o~ ot e riree
E g
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Mount Pinatubo Example: Feature Importance

Feature Importances with Block Size = 3 Key Point
AOD Stratospheric Temperature
2.0 ! ; Peak of importance for
151 AOD (and lack of peak
pri 104 of importance for
- ; ! lagged stratospheric
. W l temperatures),
. | ! provides evidence that
2.0 | : volcanic eruption
154 I | impact on
. temperature can be
) . traced through AOD
00 Mw\/wm WMMMMM FI Metric
1 9I80 1 9I85 1 9I9O l 1 9I80 1 9I85 1 9I90 I
Date Weighted RMSE

(weighted by cosine of
the latitude)
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Conclusions and Future Work



Summary and Conclusions

Summary
* Interested in quantifying relationships between climate variables associated with pathway of climate event
* Motivated by increasing possibility of climate interventions
e Our machine learning approach:
o Use ESN to model variable relationships
o Understand variable relationships using proposed spatio-temporal feature importance
Conclusion

e Approach provided evidence of AOD being an intermediate variable in Mount Pinatubo climate pathway
affecting stratospheric temperature

@|22



Future (Current) Work

ESN extensions

e Addition of multiple layers
e ESN ensembles
* Bayesian ESNs

Spatio-temporal feature importance

e Implement proposed retraining technique [9] to lessen detection of spurious relationships

e Adapt to visualize on spatial scale
e Comparison to other newly proposed explainability techniques for ESNs (layer-wise relevance propagation) [10]

Mount Pinatubo application

* Inclusion of additional pathway variables (e.g., SO2, radiative flux, surface temperature)
e Importance of grouped variables
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ESN Details

Quadratic Echo State Network

Output Stage: Ridge regression

Y;: = V1‘l‘1t + Vz‘lﬁ-}— € € ~ Gau (O, a?I)

AN

Response matrix:
Principal component
scores (time series)
that capture spatial
trends

Rldg‘? R'dg'? Ridge
regression regression -
- o regression
coefficients coefficients .
) . error variance
(linear) (quadratic)

Embedding Vector: Inputs

7]

= __ / ! ! !
Xy = [xt,xt#*,xt_zﬂ ceey Xy K,

Number of previous
times to include in
embedding vector

!

Lag between
embedding
vector times

Hidden Stage:
Nonlinear
stochastic
transformation of
input vectors)

Scaling parameter:

amount of memory in
the system (between 0
and 1 for stability)

Helps control the

Embedding
vector
(covariates):

Previous time's
hidden units

Principal
component
scares

//_

/

Nonlinear
activation function
(e.g., sigmoidal
function such as a
hyperbolic tangent
function)

—
~

Reservoir weight matrices:
Determine which and to what

Spectral radius:
Largest
eigenvalue of W

degree, past embeddings and
current embeddings will be
used to construct features h,

for the quadratic regression

Reservoir Weight Matrices: Details

Previous time hidden unit weight matrix: Can be thought of analogously
to a transition matrix in a vector autoregressive model in that it can capture
transition dynamic interactions between various inputs

Indicator
variables

Wm wig = 7;5Uni f(aw, aw) + (1 — 7;)d0 ’Y;”J"N/E’ern(ww)
U = [uj i Uij = 1f;,-'ﬂ_;ﬂ'“m ay) + (1 _/’Y;fj),‘so Vi Nﬁ”ﬂ)

—

/

é,——"'

Uniform distribution
parameters: Set to
small values to help

prevent overfitting

Dirac function

Bernoulli distribution parameters:

Can be thought of as the probability

of including a particular weight in the

model (set to small values to create a
sparse network)
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ESN Details

Quadratic Echo State Network

Output Stage: Ridge regression

Y; = Vih; + Voh! + € € ~ Gau (0,021)

Response matrix: - .
Principal component Ridge Ridge Ridge
scores (time series) rEgression Tl regression
that capture spatial coefficients coefficients e
trends (linear) (quadratic)

= __ ! f
e = [xt,xt#*,x

! I}

v
h; = gp (|)\—Wht_1 + Uit)

W = [w; iy
U = [u; j; 5

wi) = 72.‘3Unif(*am, aw) + (1 — %?UJ)JD

ui,j — 'y;ijnif(—Gm au) + (1 o "Y:;,)‘SD

iy ~ Bern(my)

i ~ Bern(m,)
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ESN Details

Quadratic Echo State Network

Y: = Vih, + Vohi + & € ~ Gau (0,021)

Embedding Vector: Inputs

= ! /
X = [xt,xtif*,x

Number of previous
times to include in
/ embedding vector

! !
PR

Lag between
embedding
vector times

124
h; = g (mWhtl + Uit)

W = [w; )i
U = [u; i

wi,l = "'(:iUn%f(*ﬂw: a"w) + (1 - ’Y:f’l)é‘ﬂ

wij = Vi Unif(—au, au) + (1 = 7;;)d

iy ~ Bern(my)

v;; ~ Bern(my)
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ESN Details

Quadratic Echo State Network

Y: = Vihi + Vohi + & € ~ Gau (0,071)

= ! !
X; = [xt,xt#*,x

' ! !

Hidden Stage:
Nonlinear
stochastic
transformation of
input vectors)

Scaling parameter:
Helps control the
amount of memory in
the system (between 0
and 1 for stability)

/

AN

o - Embedding
Pn?vmus tlr[le s vector
hidden units (covariates):
Principal
component
scores

A

v

e (7™ /o
r

Nonlinear

_—
~_

W = [w;]i
U = [ug )i 5

Reservoir weight matrices:

activation function
(e.g., sigmoidal
function such as a
hyperbolic tangent
function)

Spectral radius:
Largest
eigenvalue of W

Determine which and to what
degree, past embeddings and
current embeddings will be
used to construct features h,

for the quadratic regression

wi,l — ’}’:iUﬂZf(*aw’ a"w) + (1 - ’}l':j’l)JD

iy ~ Bern(my)

v;t; ~ Bern(my)
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ESN Details

Quadratic Echo State Network

Y: = Vih; + Vohi + & € ~ Gau (0,021)

/ ! /
t—277 " ° ’xt7m7"j|

= ! !
X = [xt,xtfﬂ,x

1
h; = gp (mWhtl + Uit)

Reservoir Weight Matrices: Details

Previous time hidden unit weight matrix: Can be thought of analogously Indicator
to a transition matrix in a vector autoregressive model in that it can capture variables
transition dynamic interactions between various inputs /

. uw w"
W = [w,-!ﬂi,; wy = ’Y::}Un’bf(*aw, aw) + (1 - 7;');)50 ’Yi,g"\’/gern(ﬂw)

—_— __— r

U= [ui,j]i,j ui,j%y/f:au, au) ar (1 j}l‘so ’y;fj N/Béﬂ'u)
Z

Uniform distribution
parameters: Set to
small values to help
prevent overfitting

Dirac function

Bernoulli distribution parameters:

Can be thought of as the probability

of including a particular weight in the

model (set to small values to create a
sparse network)
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Issue and Solution

Black-box:;

e ESN parameters NOT interpretable (unlike spatio-temporal statistical models)
e Objective is to quantify variable relationships...

Data Predictions

Interpretable: A model is interpretable if it is possible to assign meaning to the model's parameters in the context of
the application, which provides insight into how the model inputs relate to the model outputs.

o Consider a linear model: y = By + B1x1. We can interpret the coefficient 8, as the amount the response
variable g increases for a one unit increase in the predictor variable x1.

Explainable: A model is explainable if it is possible to implement post hoc investigations on a trained model that
infer how the model inputs relate to the model outputs.

e Feature importance: Aims to quantify the effect of an input variable on a model's predictions. Various
techniques have been proposed for computing Fl
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Feature Importance Details

Let Z (kD)

bt denote the Fl on the trained ESN model f for

e spatio-temporal input variable k
* over the block of times {¢,t — 1,...,t —b+ 1}
e on the forecasts of the spatio-temporal response variable at time ¢ + 7.

(k,b)

1 as follows:

We compute the FI Z,

Step 1: Obtain forecasts f(x¢,X¢—1,...,X1) = ¥, , attimet 4 7.

Step 2: Let M be a model prediction performance metric comparing observed to predicted values with the
constraint that smaller values indicated better model performance (e.g., root mean squared error). Compute the
performance metric on the trained model f at time t + T as:

M (yt+T, 5’t+r) :
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Feature Importance Details

Step 3: Generate adjusted forecasts using one of the following two methods:

e Permutation (stPFl): For replicater = 1, 2, ..., R, randomly permute the values within each vector
Xk ts Xkt—1y- - - » Xk t—b+1. REplace the corresponding observed values within Xz, X;_1, . .., X;_p41 With the
permuted versions. Let the versions of x;,X; 1, ...,X;_pr1 containing the permuted values associated with
variable k and replicate r be denoted as

(kr) (k) (k,r)
xt 7xt_1 9 o oo ,Xt_b+17
respectively. Then obtain forecasts at time ¢t 4+ 7 as
(kyr) (K1) (k,r) ~ (k,b,r)
f (xt s X1 s Xy i Keby e X1 | =Yy

The R replications are implemented to account for variability among permutations.
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Feature Importance Details

Step 3: Generate adjusted forecasts using one of the following two methods:

* Zeroing (stZFl): Replace the vectors of Xy ¢, Xg ¢ 1, « - - y X t—p4+1 Within X¢, Xz 1, ..., X;_p11 With zeros. Let the
versions of X4, X; 1, - ..,X;_p+1 Ccontaining the inserted zeros associated with variable k be denoted as
(k) (k) (k)

respectively. Then obtain forecasts at time ¢ 4+ 7 as
(k) (k) () ~ (k,b)
f(xt s Xi 1y Xy g1 Xtby -y X1 ) =Y,

Note that no replications are needed to account for variability with zeroing.
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Feature Importance Details

Step 4. Compute the prediction performance metric on the forecasts obtained by inputting the adjusted predictions
into the trained model f. That is, with stPFl compute

~ (k,b,r)
M (yt+77yt+7' ) )
forr =1,..., R, and with stZFl compute

M (yHﬂ S’r(fi’i)) :
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Feature Importance Details

Step 5: Finally, either compute stPFl at time ¢ + 7 as the average change in model prediction performance when
iINPUts Xg ¢y X t—1,- - - y Xg t—pt1 Are permuted:

tt—i-T — [_ ZM <yt+7'7 tiir )] -M (yt+7"yt+7') )

or stZFl at time ¢ + 7 as the change in model prediction performance when inputs Xy ¢, Xg t—1, . - - , Xg t—p41 are set
to O:

kb (kb X
It(,t+7)' =M (yH—T? y?E-i-T)) -M (yt+7'7 yH—T) .
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Effect of Correlation on Fl

Effect of Correlation on PFI

Correlation between features can lead to biased PFI values dues to the model being forced to extrapolate

* When a correlated variable is permuted, it can lead to observations not in the training data

* Model is forced to extrapolate for that observation

« Extrapolation can lead to a major effect on prediction making a variable seem more important than it is

Example

Data is simulated so that X1 affects Y but X2 does
not;

(Left) Within training data (stars) random forest
correctly determines relationship between X1, X2,
and Y (contour lines) but incorrect outside of training
data

(Right) When X2 is permuted, observation could land

outside training data and lead to change in
prediction (i.e., large PFI)

Source: Hooker, Mentch, and Zhou (2021)

Xo

X
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Simulated Data: Effect of Variability on Fl

Spatially averaged values of variables Z,, Z4, Z,

4

10 - Variable
g -4
©
> — Z4

0 -4

-10 .

0 20 40 60
Time
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Simulated Data: Effect of Variability on Fl

Feature importance

Feature Importances for ,=4
Note: y-axis scales differ by row

Z4 Z4 22 22
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Simulated Data: Effect of Variability on Fl

Feature importance
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