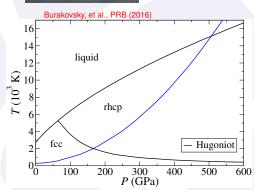
This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

New Sesame Equation of State for Iridium

<u>Josh Coe</u>, S. Rudin, D. Rehn, Pat Kalita, K. Cochrane, B. Branch, C. Seagle Los Alamos and Sandia National Laboratories

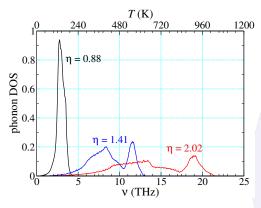
Shock Compression of Condensed Matter – 2023 June 20, 2023

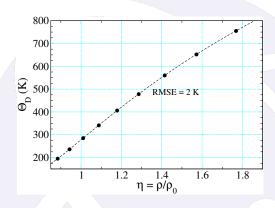

® ENERGY NASA

Why Ir?

- Mainly interested in use as high-impedance flyer for Z
 - Second-highest density among naturally-occurring metals, $\rho_0 = 22.56 \text{ g/cm}^3$
 - High melting temperature, $T_{\rm melt} \approx$ 2720 K (4435 °F)
 - Excellent corrosion resistance
- Known fcc and liquid phases
 - $T_{\rm melt}$ is an ITS-90 fixed point
- Tentative identification of a random-stacking hex closed packed (rhcp) phase
 - not studied here
- We have constructed a preliminary EOS table for Ir
 - Sesame 93550

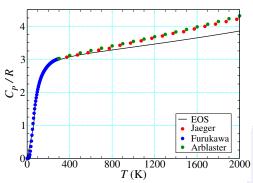
Sesame Model

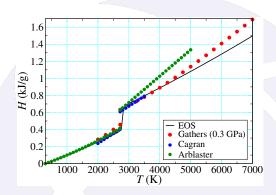

3-part decomposition of Helmholtz free energy


$$F(\rho, T) = \phi(\rho) + F_{\text{ion}}(\rho, T) + F_{\text{elec}}(\rho, T)$$

- Included only fcc and liquid phases
- Cold curve based on fit to shock data, then 0 K TFD
 - Assumes Mie-Grüneisen form.
 - Accurate to within \sim 10% over the domain of the shock data
- Ionic excitations
 - Quasiharmonic approximation: Θ and Γ are $f(\rho)$ only
 - Lindemann melt line
 - hightlig interpolation (liquid)
- Electronic excitations
 - Thomas-Fermi-Dirac

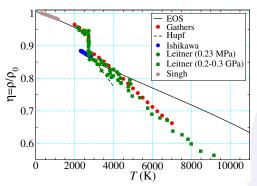
Ion Thermals

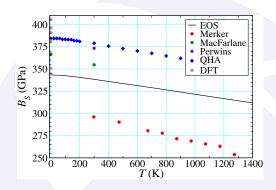




- Phonons by direct force method \rightarrow density of states as $f(\eta)$ (left)
- Moments of phonon DOS \rightarrow characteristic temperatures $\Theta(\eta)$ (right)
- $\Theta(\eta) \to \Gamma(\eta)$ through $\Gamma = d \ln \Theta/d \ln \eta$

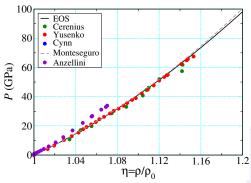
Isobaric Results

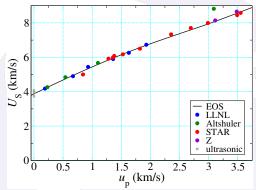




- Deviation in C_P due to some combination of strong anharmonicity (Moseley, et al., PRM 2020) and electronic contribution
- High $\rho \rightarrow \text{low } H \text{ for } T \geq 5000 \text{ K (next slide)}$

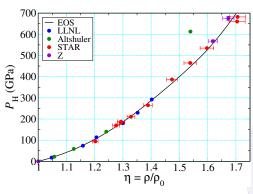
Isobaric Results

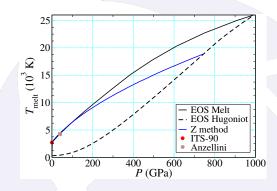




- ullet Liquid needs to deviate strongly from solid o hard optimization problem
 - This is where automation (particle swarm, MCMC) could be really helpful
- Bulk modulus in middle of experimental data, low end of DFT
 - PW91 and PBE give a result very close (< 2%) to the EOS

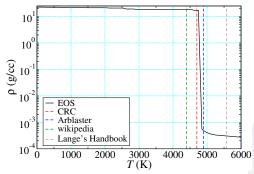
Static and Dynamic Compression

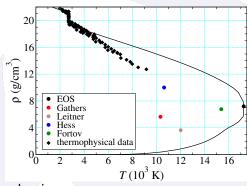




- New Z points consistent with previous shock data
- Fitting to shock data recovers most of the DAC data
 - Only functional that isn't too stiff and recovers ρ_0 is PW91

Shock and Melt





- Melt line agrees well with DFT (Z method) P ≤ 150 GPa, then stiffer
 - Both consistent with 2 experimental points
 - Important parameter $(d\Gamma/d\rho)$ poorly constrained by phonon calculations
- Z method predicts highest P_H points almost melted, EOS predicts shock melting at $P_{\rm H} \sim 1000$ GPa

Vapor Dome

- Use boiling temperature (T_b) to constrain cohesive energy
 - Reference values for T_b vary by over 1000 K!
 - Cohesive energy from Kittel agrees well with "best" T_b
- This still yields a critical temperature (T_c) that is much too high
 - − Again, liquid ρ too high → T_c too high

Next Steps and Acknowledgements

- Would be nice to:
 - Fix the liquid density move over to MCMC (uncertainty quantification!)
 - Nail down location of shock melting
 - Better constrain the critical point. DFT?
 - Replace TFD with QAA (Tartarus)
 - Coupled calibration with strength model (SNL)
- Thanks to:
 - Scott Crockett for funding
 - Travis Sjostrom and Danny Rehn for code development
 - Scott Crockett, Josh Townsend, and coauthors for lots of helpful conversations

