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Why Ir?
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• Mainly interested in use as high-impedance
flyer for Z
– Second-highest density among

naturally-occurring metals, ρ0 = 22.56 g/cm3

– High melting temperature, Tmelt ≈ 2720 K
(4435 °F)

– Excellent corrosion resistance
• Known fcc and liquid phases

– Tmelt is an ITS-90 fixed point
• Tentative identification of a random-stacking

hex closed packed (rhcp) phase
– not studied here

• We have constructed a preliminary EOS
table for Ir
– Sesame 93550
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Sesame Model
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• 3-part decomposition of Helmholtz free energy

F (ρ,T ) = ϕ(ρ) + Fion(ρ,T ) + Felec(ρ,T )

• Included only fcc and liquid phases
• Cold curve based on fit to shock data, then 0 K TFD

– Assumes Mie-Grüneisen form
• Accurate to within ∼10% over the domain of the shock data

• Ionic excitations
– Quasiharmonic approximation: Θ and Γ are f (ρ) only
– Lindemann melt line
– hightliq interpolation (liquid)

• Electronic excitations
– Thomas-Fermi-Dirac
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Ion Thermals
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• Phonons by direct force method → density of states as f (η) (left)
• Moments of phonon DOS → characteristic temperatures Θ(η) (right)
• Θ(η) → Γ(η) through Γ =d lnΘ/d ln η
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Isobaric Results
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• Deviation in CP due to some combination of strong anharmonicity
(Moseley, et al., PRM 2020) and electronic contribution

• High ρ → low H for T ≳ 5000 K (next slide)
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Isobaric Results
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• Liquid needs to deviate strongly from solid → hard optimization problem
– This is where automation (particle swarm, MCMC) could be really helpful

• Bulk modulus in middle of experimental data, low end of DFT
– PW91 and PBE give a result very close (< 2%) to the EOS
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Static and Dynamic Compression
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• New Z points consistent with previous shock data
• Fitting to shock data recovers most of the DAC data

– Only functional that isn’t too stiff and recovers ρ0 is PW91
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Shock and Melt
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• Melt line agrees well with DFT (Z method) P ≤ 150 GPa, then stiffer
– Both consistent with 2 experimental points
– Important parameter (dΓ/dρ) poorly constrained by phonon calculations

• Z method predicts highest PH points almost melted, EOS predicts
shock melting at PH ∼1000 GPa
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Vapor Dome
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• Use boiling temperature (Tb) to constrain cohesive energy
– Reference values for Tb vary by over 1000 K!
– Cohesive energy from Kittel agrees well with “best” Tb

• This still yields a critical temperature (Tc) that is much too high
– Again, liquid ρ too high → Tc too high
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Next Steps and Acknowledgements

• Would be nice to:
– Fix the liquid density – move over to MCMC (uncertainty quantification!)
– Nail down location of shock melting
– Better constrain the critical point. DFT?
– Replace TFD with QAA (Tartarus)
– Coupled calibration with strength model (SNL)

• Thanks to:
– Scott Crockett for funding
– Travis Sjostrom and Danny Rehn for code development
– Scott Crockett, Josh Townsend, and coauthors for lots of helpful conversations
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