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Why ||'? wikipedia

* Mainly interested in use as high-impedance
flyer for Z

— Second-highest density among
naturally-occurring metals, po = 22.56 g/cm?®
— High melting temperature, T, =~ 2720 K
(4435 °F)
— Excellent corrosion resistance
e Known fcc and liquid phases b
— Tmelt is an ITS-90 fixed point ne
e Tentative identification of a random-stacking & (!
hex closed packed (rhcp) phase =
— not studied here <

¢ We have constructed a preliminary EOS
table for Ir

Burakovsky, et al., PRB (2016)
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Sesame Model

e 3-part decomposition of Helmholtz free energy

F(p, T) = ¢(p) + Fion(p, T) + Felec(p; T)

Included only fcc and liquid phases
Cold curve based on fit to shock data, then 0 K TFD
— Assumes Mie-Griineisen form
® Accurate to within ~10% over the domain of the shock data
lonic excitations
— Quasiharmonic approximation: © and I are f(p) only
— Lindemann melt line
— hightliq interpolation (liquid)
Electronic excitations
— Thomas-Fermi-Dirac
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lon Thermals

T (K)
0240 480 720 960 1200 800~ ]
R R R r -
1 700[
=0.88 ; .
0.8 n 600
wn —_ L /‘
o) i
Q 06 \M/ 500 [ ,./ RMSE=2K
= | ®Q [
=) r .
g 04 400] e
< ¥ .
S 300 o
02 _—
I 200[ #” ]
S 1 12 14 L 1.
% 5 20 25 1.6 8

% (THz)15 M= p/p,
¢ Phonons by direct force method — density of states as f(n) (left)
¢ Moments of phonon DOS — characteristic temperatures ©(n) (right)

® O(n) — I'(n) through T =d In©/d Inn
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Isobaric Results

UNCLASSIFIED

— EOS 1
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e Deviation in Cp due to some combination of strong anharmonicity

(Moseley, et al., PRM 2020) and electronic contribution

e High p — low H for T = 5000 K (next slide)
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Isobaric Results
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¢ Liquid needs to deviate strongly from solid — hard optimization problem
— This is where automation (particle swarm, MCMC) could be really helpful

e Bulk modulus in middle of experimental data, low end of DFT
— PWO91 and PBE give a result very close (< 2%) to the EOS
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Static and Dynamic Compression
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* New Z points consistent with previous shock data
e Fitting to shock data recovers most of the DAC data
— Only functional that isn’t too stiff and recovers pg is PW91
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Shock and Melt
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* Melt line agrees well with DFT (Z method) P < 150 GPa, then stiffer

— Both consistent with 2 experimental points
— Important parameter (dI'/dp) poorly constrained by phonon calculations

e Z method predicts highest Py points almost melted, EOS predicts

9

shock melting at Py ~1000 GPa
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Vapor Dome
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EOS
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¢ Use boiling temperature (T,) to constrain cohesive energy

— Reference values for T, vary by over 1000 K!
— Cohesive energy from Kittel agrees well with “best” T,

e This still yields a critical temperature (T;) that is much too high

9

— Again, liquid p too high — T, too high
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Next Steps and Acknowledgements

¢ Would be nice to:
— Fix the liquid density — move over to MCMC (uncertainty quantification!)
Nail down location of shock melting
Better constrain the critical point. DFT?
Replace TFD with QAA (Tartarus)
Coupled calibration with strength model (SNL)
¢ Thanks to:
— Scott Crockett for funding
— Travis Sjostrom and Danny Rehn for code development
— Scott Crockett, Josh Townsend, and coauthors for lots of helpful conversations
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