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Stripline short-circuit loads on the Z pulsed-power machine can 
produce planar shockless compression of solids to 400+ GPa
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Magnetic drive propagates ramped stress wave into ambient material
Material’s compressibility deduced from velocimetry measurements

• Shockless compression along quasi-isentrope close to isotherm
• Accurate absolute measurement of pressure standards (e.g., for DAC)
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Platinum is a widely used pressure calibrant in DAC work
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New DAC techniques to P > 300 GPa require precise calibration
Extrapolated models differ 5-10%

• recent NIF/Z ramp-compression result with uncertainty 3.5%
• included 3 Z measurements to ~400 GPa (NIF data to ~800 GPa)

Fratanduono et al, 
Science 372, 1063 (2021)

Cochrane et al, Phys. Rev. B 105, 224109 (2022)



High-precision data are available from 11 single-sample 
measurements on Pt to peak stresses in the range 160-580 GPa
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Davis and Brown, “Quantifying 
uncertainty in analysis of shockless 
dynamic compression experiments on 
platinum, Part 1:  Inverse Lagrangian
analysis,” in preparation for 
submission to J. Appl. Phys. (2023)



Inverse Lagrangian analysis (ILA) of these data gives weighted-
mean longitudinal stress as function of strain with uncertainty
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Davis and Brown, “Quantifying uncertainty in analysis of shockless dynamic compression experiments on platinum, Part 1:  Inverse Lagrangian analysis,” 
in preparation for submission to J. Appl. Phys. (2023)

Davis, “Update on multi-megabar shockless compression at Sandia’s Z machine (2022),” 
presented at APS March Meeting 2022

win Pt Cu, , ,

  

L xu t X X cδ δ δ δ δ δσ

δφ φ

→ →

= standard deviation of



6

Standard application of Von Mises yield 
criterion and Mie-Grüneisen EOS

Assume constant cV and β = 0.9

Need functions Y(P), G(P), and Γ(ρ)
Iterate to self-consistent PQ ↔ Y
Integrate ordinary diff. eqn. to get PT

Yield stress and thermal EOS models allow reduction of long. 
stress to pressures on quasi-isentrope, isentrope, and isotherm
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Simply subtracting deviatoric stress to obtain quasi-isentrope 
pressure can introduce elastic-region errors, limiting accuracy

A straight line in u, ρ, or η from PQ=0 …
• Cannot avoid discontinuity in wave speed above elastic limit
• Does not match known elastic response at ambient

Initial yield stress depends strongly on microstructure
• Isentrope pressure PS should not depend on yield stress
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YIEL=0.29 GPa

YIEL=0.68 GPa

Z2765 & Z2766 used 
different (old) material

isentropic elastic limit YIEL



To avoid these issues, compute quasi-isentrope & isentrope 
reductions in wave speed instead of stress/pressure
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Interpolating bulk wave speed between known ambient value 
and plastic region gives smooth pressure curve
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Monte-Carlo UQ analysis of the reduction procedure requires 
statistical models for 10 input parameters
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     ,  distribution µ, s1/2 units

Y0 p([Y0, A]|D) 0.29, N/A GPa

A p([Y0, A]|D) 72, N/A TPa -1

Γ0 N([µlnΓ0
, µq], Σ) 0.971, 0.118

q N([µlnΓ0
, µq], Σ) 0.94, 0.411

β B(6.4, 1.6) 0.90; [0.66, 0.93]

ρ0 N(µρ0
, sρ0

) 21.421, 0.043 g/cm3

c0,S N(µc0,S
, sc0,S

) 3.617, 0.055 mm/µs

G0 N(µG0
, sG0

) 63.7, 3.6 GPa

cV N(µcV
, scV

) 130.2, 0.4 J/(kg·K)

T0 N(µT0
, sT0

) 300, 3 K

Brown et al, J. Dynamic Behavior of Materials 7, 196-206 (2021)



Monte-Carlo UQ analysis of the reduction procedure requires 
statistical models for 10 input parameters
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distribution µ, s1/2 units

Y0 p([Y0, A]|D) 0.29, N/A GPa

A p([Y0, A]|D) 72, N/A TPa -1

Γ0 N([µlnΓ0
, µq], Σ) 0.971, 0.118 R=0.882

q N([µlnΓ0
, µq], Σ) 0.94, 0.411

β B(6.4, 1.6) 0.90; [0.66, 0.93]

ρ0 N(µρ0
, sρ0

) 21.421, 0.043 g/cm3

c0,S N(µc0,S
, sc0,S

) 3.617, 0.055 mm/µs

G0 N(µG0
, sG0

) 63.7, 3.6 GPa

cV N(µcV
, scV

) 130.2, 0.4 J/(kg·K)

T0 N(µT0
, sT0

) 300, 3 K Cochrane et al, Phys. Rev. B 105, 224109 (2022)
Matsui et al, J. Appl. Phys. 105, 013505 (2009)
Fei et al, Proc. Nation. Acad. Sci. 104, 9182-9186 (2007)
Holmes et al, J. Appl. Phys. 66, 2962-2967 (1989)

( )
( )0ln ln ln 1q η∆ Γ = ∆ Γ + ∆ −

∆Γ = Γ −ΓMatsui, Fei, or Holmes Cochrane

    mean:  fit to Cochrane et al 
 std. dev:  fit  
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Monte-Carlo UQ analysis of the reduction procedure requires 
statistical models for 10 input parameters
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distribution µ, s1/2 units

Y0 p([Y0, A]|D) 0.29, N/A GPa

A p([Y0, A]|D) 72, N/A TPa -1

Γ0 N([µlnΓ0
, µq], Σ) 0.971, 0.118

q N([µlnΓ0
, µq], Σ) 0.94, 0.411

β B(6.4, 1.6) 0.90; [0.66, 0.93]

ρ0 N(µρ0
, sρ0

) 21.421, 0.043 g/cm3

c0,S N(µc0,S
, sc0,S

) 3.617, 0.055 mm/µs

G0 N(µG0
, sG0

) 63.7, 3.6 GPa

cV N(µcV
, scV

) 130.2, 0.4 J/(kg·K)

T0 N(µT0
, sT0

) 300, 3 K

mode = 0.9; 68.3% CI = [0.66, 0.93]
95.4% CI = [0.48, 0.98]

Remaining 5 parameters = independent 
univariate normal distributions



Obtain rough estimate of sensitivities by “screening” for effect 
of one univariate or bivariate parameter distribution at a time
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None of the remaining 4 parameters surpassed 0.1-GPa effect

• Screening Monte Carlo (MC) converged by 100,000 samples
• Non-normal distributions described by average median-centered 68.3% confidence interval (CI)



Uncertainty contributed by reduction procedure quantified by 
500,000-sample Monte Carlo added in quadrature to total δσx
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• Non-normal distributions again described by average median-centered 68.3% confidence interval (CI)
• Two views of reduction corrections and CI: (left) absolute, before adding to total δσx std. dev., and

(right) in units of δσx , after adding to total δσx std. dev.



Conclusion
Rigorous propagation of experimental uncertainties to total δσx(η)

• about 1% at ~450 GPa from weighted averaging of 11 high-precision Z measurements on Pt

Improved procedure for reduction to pressures on quasi-isentrope, isentrope, isotherm
• work in wave speeds instead of stress and pressure
• interpolate across elastic-plastic transition from known ambient bulk c0,S to plastic-flow cL,Q

• PQ depends only on yield-stress derivative dY/dP, not initial yield stress YIEL

• PS depends also on absolute Y(P) but with nearly inconsequential sensitivity

Monte Carlo analysis quantifies reduction procedure contribution to uncertainty
• in descending order of importance, parameters of measurable effect are those for strength, initial 

density, Grüneisen parameter, and Taylor-Quinney coefficient
• ambient bulk sound speed, shear modulus, heat capacity, and temperature are inconsequential
• non-normal distribution described well by averaged median-centered confidence intervals
• Reduction to isotherm PT is correction of ~3 δσx at ~450 GPa, resulting in δPT around 1.2%

UQ does not yet include uncertainty in Cu and LiF material models used in ILA
Bayesian model calibration (BMC) suggests decreased sensitivity at highest pressures should 
inflate uncertainty there (1.2% from ILA might really be 1.5%) 
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Brown et al, “Quantifying uncertainty in analysis of shockless dynamic compression experiments on platinum, Part 2:  Bayesian model calibration,” 
in preparation for submission to J. Appl. Phys. (2023)


