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Stripline short-circuit loads on the Z pulsed-power machine can \
produce planar shockless compression of solids to 400+ GPa N
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Magnetic drive propagates ramped stress wave into ambient material ) \

Material's compressibility deduced from velocimetry measurements
+ Shockless compression along quasi-isentrope close to isotherm
+ Accurate absolute measurement of pressure standards (e.g., for DAC)
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Platinum is a widely used pressure calibrant in DAC work
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New DAC techniques to P > 300 GPa require precise calibration \‘
Extrapolated models differ 5-10% \

* recent NIF/Z ramp-compression result with uncertainty 3.5%
* included 3 Z measurements to ~400 GPa (NIF data to ~800 GPa)
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High-precision data are available from 11 single-sample
measurements on Pt to peak stresses in the range 160-580 GPa
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Inverse Lagrangian analysis (ILA) of these data gives weighted- \
mean longitudinal stress as function of strain with uncertainty
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Yield stress and thermal EOS models allow reduction of long. \
stress to pressures on quasi-isentrope, isentrope, and isotherm

N,

N\
Standard application of Von Mises yield quasi-isentrope P, =0,-0'=0, _Ey \
criterion and Mie-Grineisen EOS 3
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Simply subtracting deviatoric stress to obtain quasi-isentrope \\
pressure can introduce elastic-region errors, limiting accuracy

A straight line in u, p, or n from P,=0 ... N\
 Cannot avoid discontinuity in wave speed above elastic limit

: . isentropic elastic limit Y5 \
« Does not match known elastic response at ambient

Initial yield stress depends strongly on microstructure

- Isentrope pressure Pgshould not depend on yield stress 22765 & 22766 used
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To avoid these issues, compute quasi-isentrope & isentrope
reductions in wave speed instead of stress/pressure
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Interpolating bulk wave speed between known ambient value \
and plastic region gives smooth pressure curve
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Monte-Carlo UQ analysis of the reduction procedure requires \
statistical models for 10 input parameters N

simplified Steinberg-Guinan yield N
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Monte-Carlo UQ analysis of the reduction procedure requires \
statistical models for 10 input parameters N

AN
mean: fit to Cochrane et al (2022) *
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Monte-Carlo UQ analysis of the reduction procedure requires \
statistical models for 10 input parameters N

N\
mode = 0.9; 68.3% Cl = [0.66, 0.93] \

Y, p([Y,, A]D) 0.29, N/A >3l _
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5PQ (GPa)

Obtain rough estimate of sensitivities by “screening” for effect \

of one univariate or bivariate parameter distribution at a time N

N\
 Screening Monte Carlo (MC) converged by 100,000 samples ¥
« Non-normal distributions described by average median-centered 68.3% confidence interval (Cl) \
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None of the remaining 4 parameters surpassed 0.1-GPa effect

13



Uncertainty contributed by reduction procedure quantified by \\
500,000-sample Monte Carlo added in quadrature to total o, h

« Non-normal distributions again described by average median-centered 68.3% confidence interval (CI)\~
+ Two views of reduction corrections and Cl: (left) absolute, before adding to total oo, std. dev., and

(right) in units of oo, , after adding to total oo, std. dev.
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‘in preparation for submission to J. Appl. Phys. (2023)

Conclusion \\

Rigorous propagation of experimental uncertainties to total oo (#) .
- about 1% at ~450 GPa from weighted averaging of 11 high-precision Z measurements on Pt *

N\

Improved procedure for reduction to pressures on quasi-isentrope, isentrope, isotherm
« work in wave speeds instead of stress and pressure

* interpolate across elastic-plastic transition from known ambient bulk ¢, ¢ to plastic-flow ¢, ,
* P, depends only on yield-stress derivative dY/dP, not initial yield stress Y,
* P;depends also on absolute Y(P) but with nearly inconsequential sensitivity

Monte Carlo analysis quantifies reduction procedure contribution to uncertainty

- in descending order of importance, parameters of measurable effect are those for strength, initial
density, Grlineisen parameter, and Taylor-Quinney coefficient

- ambient bulk sound speed, shear modulus, heat capacity, and temperature are inconsequential
« non-normal distribution described well by averaged median-centered confidence intervals

 Reduction to isotherm P is correction of ~3 do, at ~450 GPa, resulting in oP,around 1.2%

UQ does not yet include uncertainty in Cu and LiF material models used in ILA

Bayesian model calibration (BMC) suggests decreased sensitivity at highest pressures should
inflate uncertainty there (1.2% from ILA might really be 1.5%)

Brown et al, “Quantifying uncertainty in analysis of shockless dynamic compression experiments on platinum, Part 2: Bayesian model calibration,”
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