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ABSTRACT

This document outlines a statistical framework for establishing a shelf-life program for components
whose performance is measured by a binary response, usually ‘pass’ or ‘fail.” The approach applies to
both single measurement devices and repeated measurement devices. The high-level objective of
these plans is to quickly detect any sizeable increase in fraction defective as the product ages. The
statistical approach is to choose a sample size and monitoring technique that alarms when the
fraction defective increases to an unacceptably high level, but does not alarm when the process is at
nominal. The nominal (acceptable) fraction defective is used, and an increased fraction defective
(unacceptable) is assumed as part of the control chart design. The control chart recommended for
this problem is the Bernoulli Cumulative Sum (CUSUM) control chart.
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ACRONYMS AND TERMS

Nuclear Security Enterprise

Acronym/Term Definition
ARL Average Run Length
BC Bernoulli CUSUM
HVB High Voltage Breakdown
MRL Median Run Length
NSE




1. INTRODUCTION

The primary goal of a shelf life plan is to quickly detect a change that would threaten the
component’s ability to deliver the desired output within specifications over its required stockpile life.
In this report a statistical framework is outlined for establishing a shelf-life program for components
whose performance is measured by a binary response variable, usually ‘pass’ or ‘fail.” The approach
applies to both single measurement devices and repeated measurement devices, although additional
process control charts may be useful in the case of repeated measurements. Shelf life plans for
monitoring variables data were previously developed in Crowder (2017).

A type of deviation from nominal that will be modeled in this report is a step-change or gradual
increase in fraction defective. This is a fraction defective that starts at nominal or better but
instantaneously or gradually increases to an unacceptably high level as the component ages. Possible
causes include wear out, corrosion, or other aging phenomena that may induce a catastrophic failure.
A control chart of shelf life data should produce an alarm so that this condition can be mitigated
before the component threatens a significant portion of the stockpile. An example of a gradual
change model is in Figure 1 below.

p1

Fraction Defective

Po

Index

Figure 1. Gradual Increase in Fraction Defective

In this figure pq is the nominal fraction defective and p; is the minimum unacceptable fraction
defective.

The report is divided into three additional sections. An overview of the Bernoulli CUSUM (BC) is
presented first, along with a simulated example of its use. In the following section, general
recommendations are made for designing a BC control chart to monitor fraction defective, assuming
a step-change or gradual increase in fraction defective. Properties of the BC chart in terms of its run
length distribution are presented as part of the design. Finally, recommendations are made
(Appendix B) for designing a BC chart to monitor data from a shelf-life program at Sandia Labs.



2. AN OVERVIEW OF THE BERNOULLI CUSUM

In probability and statistics, a Bernoulli Process is a sequence of independent binary random variables
X1,X,, X3, ..., that each take on the value 0 or 1. The random variable X; takes on the value 1 with
probability p and takes on the value 0 with probability (1 — p). In manufacturing, we can think of a
sequence of manufactured parts as being assigned the value 1 if the part is defective, and the value 0
if the part functions propetly. Then p represents the manufactured fraction defective. It is of interest
to monitor the fraction defective and provide timely feedback to process engineers if the fraction
defective is believed to have increased.

The BC control chart is a statistical process monitoring technique used to detect changes in the
fraction defective p, from a nominal value p, to an unacceptable level p;. It “cumulates” the number
of defects that occur in a manufacturing window and provides an ongoing test of whether the
fraction defective has increased. The Bernoulli CUSUM chart has appeared in the recent statistical
process control literature (see Reynolds and Stoumbos (1999), Szarka (2011), Szarka and
Woodall(2011), and Crowder (2017)), used primarily for high quality, high volume processes. A
challenge has been to use the chart for high quality processes with somewhat lower volume.
Several control charts, including the traditional p-chart, can be used to monitor processes with
binary data. The p-chart monitors the fraction defective in successive samples, with a minimum
recommendation of 25 to 50 parts per sample. Other control charts suggested for this problem
include the Binomial CUSUM, applied to the number of failures per sample, and the Geometric
CUSUM, applied to the number of good parts between failures.

A primary advantage of the BC is that the plotted statistic is calculated after the inspection of each
part. Because of this property, it has the best statistical properties in terms of detecting increases in
fraction defective for high quality processes (Szarka, 2011). By “best statistical properties” it is meant
that this type of control chart will detect increases in fraction defective more quickly than competing
control charts.

The upper one-sided Bernoulli CUSUM statistics, By, t = 1,2, 3,..., are
B =max (0,Bi_1 + (X; —71)), D

where By = 0 and 7 is a small constant greater than zero but less than one. The X;'s represent the
random Bernoulli sequence of 0’s and 1’s. The BC produces an alarm if B, = H, a threshold value
that is chosen, along with 7, as part of the CUSUM design. The Likelihood Ratio Test for testing a
simple hypothesis of py vs. p; leads to the Bernoulli CUSUM statistic as optimal. Reynolds and
Stoumbos (1999) discuss this relationship and recommend choice of 7.

The measure of performance often used to evaluate the Bernoulli CUSUM is the Average Run
Length (ARL), defined as the expected number of parts tested until the threshold H is exceeded. A
signal on the BC chart provides a warning that the process fraction defective may have increased.
An investigation of the process would follow any such alarm. Because the Run Length distribution
is highly skewed, we will instead use the Median Run Length (MRL) as the primary measure of
performance. This same measure helps determine the best possible design for the CUSUM chart
regarding choice of H and 7.


http://en.wikipedia.org/wiki/Probability
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Random_variable

An example of how the Bernoulli CUSUM works is given in the Figure 2 below.

Bernoulli CUSUM (p0= 0.01, p1= 0.06)

(H= 1.0, r= 0.04)

Cumulative Sum

1 25 50 75 100 125 150 175 200
Part Number

Figure 2 — Example Bernoulli CUSUM Control Chart with (H,7)=(1.0, 0.04).

This example uses simulated data with an initial defect rate of py = 0.01 for the first 100 parts
followed by a defect rate of p; = 0.06 for the second 100 parts. The control limit is H = 1.0 and the
reference value is 7 = 0.04. The plotted Bernoulli CUSUM value is zero until the first defect occurs
at part number 62, where the CUSUM increases to the value (1 — 0.04) = 0.96 (applying Equation
1). From that point forward, the CUSUM decreases by 0.04 for each part that passes until it returns
to zero. With two failures at part numbers 123 and 132, the CUSUM signals because two failures
have occurred in a relatively small window of parts. With H =1.0 and r =0.04, the CUSUM will
signal whenever 2 failures occur within a window of 1/ 7 = 25 parts. In Figure 2, the BC chart has
been plotted beyond the signal at observation 132. In practice, this alarm would be reported to the
surveillance team for further investigation.

Advantages of the Bernoulli CUSUM compared to other control charts used for binary data:

1. The method has been shown to detect increases in the process fraction defective faster than
competing methods, measured by Median Run Length. It is used to answer the question:
Has the fraction defective increased?

2. The method has the advantage of testing for an increase in fraction defective after each part.

There is no need to accumulate parts before testing for an increase.

The method provides a “moving window” of current process performance.

4. The method applies to process manufacturing data, product acceptance data, and shelf-life
data. The ordering of the individual data values must, of course, be meaningful.

5. The method is relatively easy to explain and implement, and standard statistical packages can
be used to plot the Bernoulli CUSUM.

&
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The advantages listed above have led to the development of the Bernoulli CUSUM for monitoring
the production of high reliability, high consequence electrical components. We discuss this
application below. The goal is that the BC will provide an early indication of an increase in fraction
defective during product acceptance testing or shelf-life testing. In the next section a strategy is
presented for design of a Bernoulli CUSUM control chart.

3. DESIGN OF THE BERNOULLI CUSUM

The measure of performance often used to evaluate the Bernoulli CUSUM is the Average Run
Length (ARL), defined as the expected number of parts tested until the threshold H is exceeded. A
signal on the BC chart provides an alarm that the process fraction defective may have increased. An
investigation of the process would follow any such alarm.

Because the Run Length distribution is highly skewed, however, we will instead use the Median Run
Length (MRL) as the primary measure of performance. This measure is used to determine the
“best” design for the CUSUM chart in terms of choice of H and r. Given a nominal value py and an
unacceptable value p;, the recommended design of the Bernoulli CUSUM is given by the following
steps:

1. As a preliminary choice for ', use the expression

—log(1 p
r= (2)
P1(1 = Po)y’
09 (e T=p1) 1(1 pi))

This value is recommended by Reynolds and Stoumbos (1999). This choice is based on the
representation of the CUSUM chart as the optimal outcome of a sequential probability ratio test
(SPRT), testing pg vs. p;. The reference value must satisfy 0.0 < r < 1.0, but it will typically be close
to zero.

2. Choose the control limit H. This value affects both the false alarm rate and the number of parts
tested until an increase in fraction defective is detected. A reasonable approach is to choose H so
that the Median Run Length (MRL) is large enough to avoid any false alarms over the life of use of
the BC when the fraction defective remains at nominal (p = pg).

3. For the choice of (H, r) determined from Steps 1 and 2, evaluate the MRL for values of the
fraction defective that are greater than nominal (p > py). The MRL when the fraction defective
exceeds nominal is the “time to detection” of an unacceptable fraction defective. Additional choices
of (H, r) can easily be explored via simulation or by using tabled values of MRLs (see Appendix
A).These tables show sensitivity to small changes in both H and 7.

Tables of MRLs in Appendix A were generated via simulation for values of H and r with ranges
1.0 < H < 3.0 and 0.01 <7 < 0.04. These tables can be used to identify a starting point for (H,r)
using the steps above. Percentiles of the Run Length Distribution can used for a more detailed
analysis of the BC performance, and to make probability statements regarding possible outcomes.
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An example of how to use these tables in a sensitivity analysis is given next. In this example the
values of H being compared are H = 1.0 and H = 1.4. The vales of the reference r being compared
arer = 0.01 and r = 0.04.

Table 1. Median Run Lengths for various (H,7) combinations

H=1.0 H=1.4 H=1.0 H=1.4
P r=0.01 r=0.01 r=0.04 r=0.04
0.01 187 227 413 605
0.02 84 89 132 177
0.03 56 56 72 90
0.04 43 42 49 58
0.05 34 33 35 42
0.06 28 28 28 34
0.07 24 24 24 27
0.08 21 21 21 22
0.09 19 18 19 20
0.10 17 17 17 18

This table shows that the MRLs increase as H increases with r fixed, for the smallest values of p,
and decrease as r decreases with H fixed, for p < 0.05. The control limit H can be adjusted to
produce a desired MRL for the nominal case, and the value 7 can be used to find the minimum
MRL for a given value of p greater than nominal. These tables can be supplemented with additional
percentiles of the run length distribution.

For the special case (H, ) = (1.0, 0.04), the full run length distributions (with 5", 50", and 95"
percentiles identified) appear below for p = 0.01 (Figure 3) and p = 0.06 (Figure 4).

12



Histogram of Run Length Distribution
{Bernoulli CUSUM with H= 1.0, r= 0.04, p= 0.01)

000164 1 1
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Figure 3 - Run Length Distribution with p = 0.01.

Histogram of Run Length Distribution
(Bernoulli CUSUM with H= 1.0, r= 0.04, p= 0.06)

50th 1 95th 5th Percentile= 7
H 50th Percentile= 28
95th Percentile= 103

Density

100 150 200
Run Length

Figure 4 - Run Length Distribution with p = 0.06.

These histograms, each based on 10,000 simulations, show skewness in the run length distributions
for p = 0.01 and p = 0.06. In these cases, the 50" percentile provides the best estimate of central
tendency, and the 5™ and 95" percentiles provide a 90% probability interval for Run Length
outcomes. For the Run Length distribution with p = 0.01, these values (Figure 3) are interpreted to
mean that 50% of the time the chart will signal within approximately 410 observations, and 95% of
the time the chart will signal within approximately 1700 observations. This can be interpreted as the
false alarm rate. For the Run Length distribution with p = 0.006, these values (Figure 4) are
interpreted to mean that 50% of the time the chart will signal within approximately 30 observations,
and 95% of the time the chart will signal within approximately 100 observations. This can be

13



interpreted as the time (number of parts) to detection when the fraction defective is unacceptably
high.

4. BERNOULLI CUSUM TO MONITOR PRODUCTION PERFORMANCE

The Bernoulli CUSUM was used to monitor the production of a high-reliability, high-consequence
electronic part manufactured within the Nuclear Security Enterprise (NSE). The design of an
appropriate BC chart for this problem, following the steps above, is described in this section.

The part requires some manual operator assembly, so a nominal value of pg= 0.005 is considered
the lowest reasonably attainable fraction defective. Production personnel perform 100% inspection
and the most common failure mode is high voltage breakdown (HVB). A single part is very
expensive, so timely feedback regarding any increase in fraction defective is critical. False alarms are
also costly, so a median run length when p= 0.005 is desired to be at least 8000 parts. It is desired
that the BC control signals quickly whenever the fraction defective is at or exceeds p;= 0.05.

Step 1. The preliminary choice for r is (using expression (2))

—0.05
097 —58)

0.05(1 0.005).

10950051 =0.05)

0.95
—log(5995)

0.05(0.995)
l09(5.5050.95)

= 0.02.
Step 2. The proposed Bernoulli CUSUM design strategy results in the following condition:
Subject to MRL = 8000 when py= 0.005,
choose the best overall combination of (H, r) when p;= 0.05.

When the process is operating at fraction defective pg or lower, it is desirable to have a large MRL,
to minimize false alarms. The median run length when py= 0.005 is therefore required to be 8000 or
greater. The value p; is the minimum unacceptable fraction defective and must be detected quickly.
When the process is operating at this level or greater, it is desirable to have a small MRL.

Expression (2) was used to provide the starting reference value r = 0.02. Monte Carlo simulation
with searches were then used to identify various combinations of (H, r) for 0.005 < p < 0.05 that
produce an MRL of approximately 8000 when py= 0.005 (Table 2). It should be noted that the MRL
values that appear in Table 2 are approximate, each based on 10,000 simulations.

14



Table 2. Combinations of (H,7) that Produce a Nominal MRL of Approximately 8000.

p H=22 H=24 H=2.6 H =238 H=3.0
r=0.020 r=0.017 r=0.014 r=0.012 r=0.0105
0.005 8000 8000 8000 8000 8000
0.01 1274 1153 1013 971 881
0.02 255 244 232 233 231
0.03 123 123 123 130 134
0.04 80 83 85 89 93
0.05 58 62 66 71 74

From this table we can see that MRLs greatly vary for each combination of (H,r) when the fraction
defective is greater than py=0.005. Larger H values result in quicker detection when p = 0.01 or
0.02, but slower detection when p = 0.03, 0.04 or 0.05. Since we are more interested in quicker
detection when p = 0.01 or 0.02, the recommended choice is to use (H,7) = (3.0, 0.0105). This
combination of (H,r) will produce a signal on the Bernoulli CUSUM chart if there are 4 or more
failures within 1/0.0105 = 95 or fewer patts. Table 3 gives the 5%, 25%, 50%, 75" and 95" percentiles
of the Run Length distribution for this BC chart.

Table 3. Percentiles of Run Length Distribution of Bernoulli CUSUM with (H, r) = (3.0, 0.0105)

p 5t 25th 501t 75 95h
0.005 692 3259 8000 15585 30455
0.01 172 463 881 1540 3500
0.02 68 139 231 375 645
0.03 45 83 134 203 353
0.04 35 63 93 138 236
0.05 27 50 74 100 178

In the row of Table 3 with fraction defective p= 0.01, the MRL (50" percentile) is 881, the 5"
percentile is 172 and the 95" percentile is 3500. These extreme percentiles provide a “best case” and
“worst case” number of parts that will be needed to detect an increase in fraction defective to p=
0.01. To lower these numbers, the MRL when p= 0.005 would also have to be lowered, resulting in
an increased false alarm rate. The choice of (H,r) = (3.0, 0.0105) is an attempt to balance the desire
to quickly detect an increase in fraction defective with the desire to keep the false alarm rate low.

A retrospective analysis of electronic part pass/fail data was performed using this Bernoulli CUSUM
design. The plot of the resulting BC chart appears below.
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Bernoulli CUSUM of Electronic Part Pass/Fail Data

Window with 4 failures in 61 parts (6.6%). Overall failure rate is 0.2%.

Cumulative Sum
~N

1

0

T

1 2500 5000 7500 10000 12500 15000 17500
Part Number

Figure 5 - Bernoulli CUSUM of Electronic Part Pass/Fail Data

This analysis suggests a process problem occurred around part number 1800 when 4 failures
occurred within a window of 61 parts (fraction defective is p = 0.066) The analysis also indicated,
however, that the problem did not persist, with an overall fraction defective of p = 0.002, well below
the nominal target. The Bernoulli CUSUM chart with these parameters was implemented to monitor
ongoing production and is presently in use.

Appendix A below presents tables of Median Run Lengths for various choices of Bernoulli CUSUM

parameters (H,7). Appendix B outlines the design of a Bernoulli CUSUM chart to use in a shelf-life
program when only binary data are available.
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APPENDIX A. TABLES OF MRLS FOR THE BERNOULLI CUSUM CHART

The range of values in these tables should be sufficient to design a Bernoulli CUSUM chart for
shelf-life programs typically used within the NSE. If additional combinations of (H,r) need to be
investigated, the user can do so via simulation using the author’s Matlab script (Appendix C) that is
available.

Table Al. Median Run Lengths for H = 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0 with r = 0.01.

p H=10 H=12 H=14 H=16 H=18 H=20
r=001 r=001 r=001 r=001 r=001 r=001
0.01 188 203 225 269 328 428
0.02 83 84 89 102 119 145
0.03 56 56 56 60 74 89
0.04 42 42 42 42 52 66
0.05 34 34 34 34 39 54
0.06 28 28 28 28 30 45
0.07 24 24 24 24 25 38
0.08 21 21 21 21 21 33
0.09 19 19 19 19 19 30
0.10 17 17 17 17 17 27

Table A2. Median Run Lengths for H = 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0 with r = 0.02.

p H=10 H=12 H=14 H=16 H=18 H=20
r=002 r=002 r=002 r=002 r=002 r=002
0.01 257 294 334 429 614 966
0.02 98 104 115 137 170 218
0.03 56 59 66 75 92 107
0.04 42 43 45 52 60 74
0.05 34 34 34 39 46 54
0.06 28 29 28 31 39 45
0.07 24 25 24 25 31 39
0.08 21 21 21 21 26 33
0.09 19 19 19 19 23 30
0.10 17 17 17 17 20 27
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Table A3. Median Run Lengths for H = 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0 with r = 0.03.

p H=10 H=12 H=14 H=16 H=18 H=20
r=003 r=003 r=003 r=003 r=003 7r=003
0.01 327 391 474 618 979 1870
0.02 114 121 142 175 238 342
0.03 62 68 79 91 113 145
0.04 43 45 51 59 72 87
0.05 33 35 37 43 52 62
0.06 28 27 31 35 42 49
0.07 24 24 25 28 35 39
0.08 21 21 21 24 29 34
0.09 19 19 19 21 26 31
0.10 17 17 17 17 23 27

Table A4. Median Run Lengths for H = 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0 with r = 0.04.

P H=10 H=12 H=14 H=16 H=18 H=20
r=004 r=004 7r=004 r=004 r=0.04 1r=0.04
0.01 395 490 625 850 1500 3300
0.02 133 150 178 229 334 515
0.03 70 79 92 114 149 203
0.04 47 51 59 70 88 111
0.05 37 40 42 49 61 74
0.06 29 30 33 37 46 54
0.07 24 25 27 32 38 44
0.08 21 21 23 26 32 37
0.09 18 19 20 23 27 32
0.10 17 17 18 20 24 28
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Table A5. Median Run Lengths for H = 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0 with r = 0.05.

p H=10 H=12 H=14 H=16 H=18 H=20
r=005 r=005 r=005 r=005 r=005 r=0.05
0.01 475 610 755 1125 2200 5000
0.02 147 172 211 283 465 745
0.03 g1 95 107 136 196 263
0.04 55 57 67 82 104 138
0.05 38 43 48 57 75 89
0.06 29 33 36 44 54 64
0.07 25 27 31 35 42 51
0.08 21 22 25 29 35 41
0.09 19 19 22 25 30 35
0.10 17 17 18 22 25 31

In Appendix B, an example is presented to illustrate the design of a shelf-life program using the
values tabled above.
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APPENDIX B. DESIGN OF A BERNOULLI CUSUM FOR A SHELF-LIFE
PROGRAM

Suppose that a shelf-life plan is to be developed for a component that is required to be in the
stockpile for twenty years. Suppose further that the component’s reliability requirement is

R =0.99 (py = 0.01), and the minimum acceptable reliability is R = 0.95 (p; = 0.05). The
Bernoulli CUSUM chart should thus be designed to rarely signal when the fraction defective is
p = 0.01, but quickly signal when the fraction defective increases to p = 0.05.

The Median Run Length (MRL) will again be used as the primary measure of performance, and it
will be used to determine the best BC chart design in terms of (H, 7). The design of the Bernoulli
CUSUM follows the steps outlined above.

1. As a preliminary choice, set the control limit reference value equal to

~log =LY

r= (B1)
p1(1 —po)y’
logCG—r=—-3% 1(1 pO))

Substituting py = 0.01 and p; = 0.05 into (B1) results in 7 = 0.025. The tables in Appendix A do
not include r = 0.025 as an exact choice, so the focus is instead on r = 0.02 and r = 0.03.

2. Choose the control limit H. This value helps determine the false alarm rate, the number of parts
that are tested until the BC signals under nominal conditions. A reasonable approach is to choose
the nominal MRL to be larger than the total number of parts that could be tested during the entire
shelf life program. The following table was constructed from subsets of tables in Appendix A, using
r = 0.02 and 0.03 with H = 1.0,1.2,and 1.4.

Table B1. Possible Choices of (H, ) for Bernoulli CUSUM chart.

p H=10 H=12 H=14 H=10 H=12 H=14

r = 0.02 r=002 r=002 r=003 r=003 r=0.03
0.01 257 294 334 327 391 474
0.02 98 104 115 114 121 142
0.03 56 59 66 62 68 79
0.04 42 43 45 43 45 51
0.05 34 34 34 33 35 37
0.06 28 29 28 28 27 31
0.07 24 25 24 24 24 25
0.08 21 21 21 21 21 21
0.09 19 19 19 19 19 19
0.10 17 17 17 17 17 17

3. For the choices of (H, r) determined from Steps 1 and 2, compare the MRLs for values of p that
are greater than nominal. These are the median number of “parts tested until detection” of an
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increase in fraction defective. Table B1 shows that the number of parts to detection is approximately
the same for all choices in the table whenever p = 0.05. The choice (H, r) = (1.0,0.02) has the
quickest detection of any choice, but it also has the smallest MRL when p = 0.01. This means it has
the highest likelithood of a false alarm over the life of the program. A reasonable compromise
between detection and false alarm rates is (H, 7) = (1.2, 0.03). Percentiles of the Run Length
distribution could also be used for a more detailed comparison of the options in the table. If it is
decided that (H, r) = (1.2,0.03) gives acceptable performance for all values of 0.01 < p < 0.10, it
would be taken as the final choice.

The number of parts to test should then be based on how quickly the increase in fraction defective
must be detected. Table B1 shows that the median number of measurements to detect an increase in
fraction defective from p = 0.01top = 0.05 is approximately 35. If detection within a few years is
necessary, then the same 35 parts would be tested annually. The median number of measurements to
detect an increase in fraction defective from p = 0.01 top = 0.10 is 17. If detection within a few
years is necessary, then the same 17 parts would be tested annually. Choice of sample size thus
becomes a compromise between cost of parts plus testing and cost of delaying detection. This
number could be rounded to 20 to be close to the so-called “90/10” stockpile surveillance sampling
number of 22 parts. A rule of thumb recommendation is thus to test 20 parts each year to
quickly detect a 10% or worse problem.

An implicit assumption is that the probability of failure does not increase simply as the result of
testing. The type of failure mechanisms that would be detected with this approach are those
associated with manufacturing defects that are precipitated by aging, but not by repeated testing.

Several cautions must be made, however, with respect to control charting with repeated
measurements from a limited number of samples.

1. Process changes made during production can result in changes in performance and the
appearance of sub-populations. A small sample of components measured repeatedly over
time is less likely to be representative of the entire population and such changes may not be
reflected in the shelf life parts.

2. Repeated measurements may degrade the performance of the component over time.

3. The small sample size cannot accommodate the potential need for experimental parts
outside the shelf life study.

4. Fewer parts will be available for reliability estimation. This problem may be compounded by
the desire to reduce testing quantities in the future.

The parts taken for the shelf life program should be collected during each production year to make
them as representative as possible.

For single measurement devices, the total sample size would be the number chosen using Steps 1-3
above, times the number of years allotted to testing. For example, if testing in a 30-year program is
to be done on years 5, 10, 15, 20, and 25, and 30, the rule of thumb requirement would be (6 x 20)=
120 parts to quickly detect p; = 0.10 and (6 x 35)= 210 parts to quickly detect p; = 0.05.
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Table B2 below is a simulated outcome of testing the same 20 parts each year, when the underlying
fraction defective remains constant at p = 0.01. It is assumed that a failed unit is not re-tested.
Failures are denoted by the red number ‘1,” and successes are denoted by ‘0.’

Table B2. Simulated Outcome of Twenty Parts Each Tested Annually for Twenty Years

Yr\Part |1 |2 |3 |4 (5|6 |7 |8 |9 (10|11 |12 |13 |14 |15 |16 |17 |18 |19 |20
1 010(00O O JOJOJO]JO]O JO JO JO JO JO |O |O JO |O |O
2 010(00OJOJOJOJO]JO]O JO JO JO JO JO |O |O JO |O |O
3 0/0(0[O|OJO|JOJO]JO]O |JO JO JO JO O [O [O |O |O |O
4 010(00O O JOJOJO]JO]O JO JO JO JO JO |O |O JO |O |O
5 010(00OJOJOJOJO]JO]O JO JO JO JO JO |O |O JO |O |O
6 0/0(0[O|OJO|JOJO]JO]O |JO JO JO JO O [O [O |O |O |O
7 01000 JOJOJOJO]JO]JO |T JO JO JO JO |O |O |O |O |O
8 0100 OO T ]O]JO]O]O 0O [0 |0 |0 [0 [0 [O ]O |O
9 01000 |0 0101010 0O [0 |O |O [O |O |O |O |O
10 010]0[010 0101010 0O [0 |0 |0 [0 [0 [O ]O |O
11 010]0[010 0]10]0 /0 0O [0 |0 |0 [0 |0 [0 O |O
12 01000 |0 0101010 0O [0 |O |O [O |O |O |O |O
13 010]0[010 0101010 0O [0 |0 |0 [0 [0 [O ]O |O
14 010010 0]10]0 /0 0O [0 |0 |0 [0 |0 [0 O |O
15 0 0100 0101010 0O [0 |O |O [O |O |O |O |O
16 0 01010 0101010 0O [0 |0 |0 [0 [0 [O ]O |O
17 0 01010 0101010 0O [0 |0 |0 [0 |0 [0 O |O
18 0 0100 0101010 0O {0 |0 |O |O |1T O |O |O
19 0 01010 0]10]0 |0 0O {0 |O |O |O 1 10 |0

20 0 01010 0101010 0 |0 |0 |0 [0 0 10

The resulting BC Chart, with (H,r) = (1.2,0.03) appears below. Note from Table B1 that the “false
alarm” rate is 1 in 390. The false alarm in this chart appears at part number 334, consistent with the
estimated median.
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Bernoulli CUSUM (p= 0.01)
(H= 1.2, r= 0.03)
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Figure B1. Bernoulli CUSUM Chart of Simulated Part Data with (H,r) = (1.2,0.03).
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APPENDIX C. MATLAB SCRIPT FOR EVALUATING RUN LENGTH PERCENTILES

This program evaluates the run length distribution for the Bernoulli
CUSUM Control Chart used to detect changes in fraction defective.

3% 3R % ¥

clear all;

% Reference value (set to ref=0.02)
ref=0.02;

% Upper Control Limit (H) (set to UCL= 2.0)
UCL=2.0;

fprintf('%4.2f %5.4f \n',UCL,ref);
% Set the number of Simulated Runs (set to b=10,000)
b=10000;
% Enter the fraction defective (fd) values (0.01 to ©.10 by 0.01)
fd(1)=0.01;fd(2)=0.02;fd(3)=0.03;fd(4)=0.04;fd(5)=0.05;
fd(6)=0.06;fd(7)=0.07;fd(8)=0.08;fd(9)=0.09;fd(10)=0.10;
%
for il=1:10
p=fd(il);
for i=1:b
% Initialize B_CUSUM (set to ©.0); Value chosen is a "head start"
B_CUSUM=0.0;
K=1;
while B_CUSUM<UCL
% Compute next value of the CUSUM
X=binornd(1,p);
B_CUSUM=max(0.0,B_CUSUM +(X-ref));
K=K+1;
end
Run(i)=K-1;
end
% Compute the Average, 5th, 25th, 50th, 75th, and 95th percentiles
% of the Run Length Distribution
RL_Ave=mean(Run);
RL_5th=prctile(Run,5);
RL_25th=prctile(Run,25);
RL_50th=prctile(Run,50);
RL_75th=prctile(Run,75);
RL_95th=prctile(Run,95);
run_length(il,1)=p;run_length(il,2)=RL_Ave;run_length(il,3)=RL_5th;
run_length(il,4)=RL_25th;run_length(il,5)=RL_50th;
run_length(il,6)=RL_75th;run_length(il,7)=RL_95th;
% Print the Average, 5th, 25th, 50th, 75th, and 95th percentiles
% of the Run Length Distribution
fprintf('%4.3f %8.2f %8.2f %8.2f %8.2f %8.2f %8.2f \n',p,RL_Ave,RL_5th, ...
RL_25th,RL_50th,RL_75th,RL_95th);
end
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Output from above Matlab script:

2.00 0.0200

0.010 1379.23 114.00 428.00 960.50 1912.00 4048.50
0.020 292.56 42.00 107.00 214.50 394.00 808.00
0.030 143.92 28.00 60.00 108.00 191.00 383.50
0.040 92.89 21.00 43.00 73.00 121.00 233.50
0.050 68.44 18.00 35.00 55.00 89.00 165.00
0.060 5433 15.00 29.00 44.00 70.00 127.00
0.070 44.85 13.00 25.00 38.00 56.00 101.00
0.080 38.66 11.00 22.00 33.00 48.00 86.00
0.090 34.23 10.00 20.00 30.00 43.00 74.00
0.100 30.31 9.00 18.00 27.00 39.00 63.00

The first line of output gives the values of H and 7. Successive lines of the output give the values of
p, ARL, 5%, 25%, 50%, 75%, and 95" percentiles of the run length distribution.

26



DISTRIBUTION

Email—Internal

Name Org. Sandia Email Address
Matthew D. Smith 05574 mdsmith@sandia.gov
Staff of Department 05574 05574 ORG-05574@sandia.gov
Technical Library 01911 sanddocs@sandia.gov
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