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ABSTRACT 

This document outlines a statistical framework for establishing a shelf-life program for components 
whose performance is measured by a binary response, usually ‘pass’ or ‘fail.’ The approach applies to 
both single measurement devices and repeated measurement devices. The high-level objective of 
these plans is to quickly detect any sizeable increase in fraction defective as the product ages. The 
statistical approach is to choose a sample size and monitoring technique that alarms when the 
fraction defective increases to an unacceptably high level, but does not alarm when the process is at 
nominal. The nominal (acceptable) fraction defective is used, and an increased fraction defective 
(unacceptable) is assumed as part of the control chart design. The control chart recommended for 
this problem is the Bernoulli Cumulative Sum (CUSUM) control chart.  
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1. INTRODUCTION 
 
The primary goal of a shelf life plan is to quickly detect a change that would threaten the 
component’s ability to deliver the desired output within specifications over its required stockpile life. 
In this report a statistical framework is outlined for establishing a shelf-life program for components 
whose performance is measured by a binary response variable, usually ‘pass’ or ‘fail.’ The approach 
applies to both single measurement devices and repeated measurement devices, although additional 
process control charts may be useful in the case of repeated measurements. Shelf life plans for 
monitoring variables data were previously developed in Crowder (2017).  
 
A type of deviation from nominal that will be modeled in this report is a step-change or gradual 
increase in fraction defective. This is a fraction defective that starts at nominal or better but 
instantaneously or gradually increases to an unacceptably high level as the component ages. Possible 
causes include wear out, corrosion, or other aging phenomena that may induce a catastrophic failure. 
A control chart of shelf life data should produce an alarm so that this condition can be mitigated 
before the component threatens a significant portion of the stockpile. An example of a gradual 
change model is in Figure 1 below. 

 

 
Figure 1. Gradual Increase in Fraction Defective 
 
In this figure 𝑝0 is the nominal fraction defective and 𝑝1 is the minimum unacceptable fraction 
defective. 
 
The report is divided into three additional sections. An overview of the Bernoulli CUSUM (BC) is 
presented first, along with a simulated example of its use. In the following section, general 
recommendations are made for designing a BC control chart to monitor fraction defective, assuming 
a step-change or gradual increase in fraction defective. Properties of the BC chart in terms of its run 
length distribution are presented as part of the design. Finally, recommendations are made 
(Appendix B) for designing a BC chart to monitor data from a shelf-life program at Sandia Labs. 



 

9 

2. AN OVERVIEW OF THE BERNOULLI CUSUM 
 
In probability and statistics, a Bernoulli Process is a sequence of independent binary random variables 
𝑋1, 𝑋2, 𝑋3, . . ., that each take on the value 0 or 1. The random variable 𝑋𝑡 takes on the value 1 with 

probability 𝑝 and takes on the value 0 with probability (1 − 𝑝). In manufacturing, we can think of a 
sequence of manufactured parts as being assigned the value 1 if the part is defective, and the value 0 
if the part functions properly. Then 𝑝 represents the manufactured fraction defective. It is of interest 
to monitor the fraction defective and provide timely feedback to process engineers if the fraction 
defective is believed to have increased.  
  
The BC control chart is a statistical process monitoring technique used to detect changes in the 
fraction defective 𝑝, from a nominal value 𝑝0 to an unacceptable level 𝑝1. It “cumulates” the number 
of defects that occur in a manufacturing window and provides an ongoing test of whether the 
fraction defective has increased. The Bernoulli CUSUM chart has appeared in the recent statistical 
process control literature (see Reynolds and Stoumbos (1999), Szarka (2011), Szarka and 
Woodall(2011), and Crowder (2017)), used primarily for high quality, high volume processes. A 
challenge has been to use the chart for high quality processes with somewhat lower volume. 
Several control charts, including the traditional p-chart, can be used to monitor processes with 
binary data. The p-chart monitors the fraction defective in successive samples, with a minimum 
recommendation of 25 to 50 parts per sample. Other control charts suggested for this problem 
include the Binomial CUSUM, applied to the number of failures per sample, and the Geometric 
CUSUM, applied to the number of good parts between failures.  
 
A primary advantage of the BC is that the plotted statistic is calculated after the inspection of each 
part. Because of this property, it has the best statistical properties in terms of detecting increases in 
fraction defective for high quality processes (Szarka, 2011). By “best statistical properties” it is meant 
that this type of control chart will detect increases in fraction defective more quickly than competing 
control charts. 
 
The upper one-sided Bernoulli CUSUM statistics, 𝐵𝑡 , 𝑡 = 1, 2, 3, . . .,  are 
 

𝐵𝑡 = 𝑚𝑎𝑥 (0, 𝐵𝑡−1 + (𝑋𝑡 − 𝑟)),                                                               (1)                                                       
 
where 𝐵0 = 0 and 𝑟 is a small constant greater than zero but less than one. The 𝑋𝑡’𝑠 represent the 
random Bernoulli sequence of 0’s and 1’s. The BC produces an alarm if 𝐵𝑡 ≥ 𝐻, a threshold value 
that is chosen, along with 𝑟, as part of the CUSUM design. The Likelihood Ratio Test for testing a 
simple hypothesis of 𝑝0 vs. 𝑝1 leads to the Bernoulli CUSUM statistic as optimal.  Reynolds and 
Stoumbos (1999) discuss this relationship and recommend choice of 𝑟.    
 
The measure of performance often used to evaluate the Bernoulli CUSUM is the Average Run 
Length (ARL), defined as the expected number of parts tested until the threshold 𝐻 is exceeded. A 
signal on the BC chart provides a warning that the process fraction defective may have increased.  
An investigation of the process would follow any such alarm.  Because the Run Length distribution 
is highly skewed, we will instead use the Median Run Length (MRL) as the primary measure of 
performance.  This same measure helps determine the best possible design for the CUSUM chart 
regarding choice of 𝐻 and 𝑟.  
 

http://en.wikipedia.org/wiki/Probability
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Random_variable
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An example of how the Bernoulli CUSUM works is given in the Figure 2 below.   
 

 
 

Figure 2 – Example Bernoulli CUSUM Control Chart with (𝐻, 𝑟)=(1.0, 0.04). 
 

This example uses simulated data with an initial defect rate of 𝑝0 = 0.01 for the first 100 parts 
followed by a defect rate of 𝑝1 = 0.06 for the second 100 parts. The control limit is 𝐻 = 1.0 and the 
reference value is 𝑟 = 0.04. The plotted Bernoulli CUSUM value is zero until the first defect occurs 
at part number 62, where the CUSUM increases to the value (1 − 0.04) = 0.96 (applying Equation 
1). From that point forward, the CUSUM decreases by 0.04 for each part that passes until it returns 
to zero. With two failures at part numbers 123 and 132, the CUSUM signals because two failures 
have occurred in a relatively small window of parts. With 𝐻 =1.0 and 𝑟 =0.04, the CUSUM will 
signal whenever 2 failures occur within a window of 1/ 𝑟 = 25 parts. In Figure 2, the BC chart has 
been plotted beyond the signal at observation 132. In practice, this alarm would be reported to the 
surveillance team for further investigation. 
  
Advantages of the Bernoulli CUSUM compared to other control charts used for binary data: 
 

1. The method has been shown to detect increases in the process fraction defective faster than 
competing methods, measured by Median Run Length. It is used to answer the question: 
Has the fraction defective increased? 

2. The method has the advantage of testing for an increase in fraction defective after each part. 
There is no need to accumulate parts before testing for an increase. 

3. The method provides a “moving window” of current process performance. 
4. The method applies to process manufacturing data, product acceptance data, and shelf-life 

data. The ordering of the individual data values must, of course, be meaningful. 
5. The method is relatively easy to explain and implement, and standard statistical packages can 

be used to plot the Bernoulli CUSUM. 
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The advantages listed above have led to the development of the Bernoulli CUSUM for monitoring 
the production of high reliability, high consequence electrical components. We discuss this 
application below. The goal is that the BC will provide an early indication of an increase in fraction 
defective during product acceptance testing or shelf-life testing. In the next section a strategy is 
presented for design of a Bernoulli CUSUM control chart. 
 

3. DESIGN  OF THE BERNOULLI CUSUM 

The measure of performance often used to evaluate the Bernoulli CUSUM is the Average Run 
Length (ARL), defined as the expected number of parts tested until the threshold 𝐻 is exceeded. A 
signal on the BC chart provides an alarm that the process fraction defective may have increased. An 
investigation of the process would follow any such alarm. 
   
Because the Run Length distribution is highly skewed, however, we will instead use the Median Run 
Length (MRL) as the primary measure of performance.  This measure is used to determine the 
“best” design for the CUSUM chart in terms of choice of 𝐻 and 𝑟. Given a nominal value 𝑝0 and an 
unacceptable value 𝑝1, the recommended design of the Bernoulli CUSUM is given by the following 
steps: 
 

1. As a preliminary choice for 𝑟, use the expression 
 

𝑟 =
−𝑙𝑜𝑔(

1 − 𝑝1
1 − 𝑝0

)

𝑙𝑜𝑔(
𝑝1(1 − 𝑝0)
𝑝0(1 − 𝑝1)

)
.                                                                        (2) 

 
This value is recommended by Reynolds and Stoumbos (1999). This choice is based on the 
representation of the CUSUM chart as the optimal outcome of a sequential probability ratio test 
(SPRT), testing 𝑝0 vs. 𝑝1. The reference value must satisfy 0.0 < 𝑟 < 1.0, but it will typically be close 
to zero. 
 
2. Choose the control limit 𝐻. This value affects both the false alarm rate and the number of parts 
tested until an increase in fraction defective is detected. A reasonable approach is to choose 𝐻 so 
that the Median Run Length (MRL) is large enough to avoid any false alarms over the life of use of 
the BC when the fraction defective remains at nominal (𝑝 = 𝑝0).  
 
3. For the choice of (𝐻, 𝑟) determined from Steps 1 and 2, evaluate the MRL for values of the 
fraction defective that are greater than nominal (𝑝 > 𝑝0). The MRL when the fraction defective 
exceeds nominal is the “time to detection” of an unacceptable fraction defective. Additional choices 
of (𝐻, 𝑟) can easily be explored via simulation or by using tabled values of MRLs (see Appendix 
A).These tables show sensitivity to small changes in both 𝐻 and 𝑟. 
 
Tables of MRLs in Appendix A were generated via simulation for values of 𝐻 and 𝑟 with ranges   
1.0 ≤ 𝐻 ≤ 3.0 and 0.01 ≤ 𝑟 ≤ 0.04. These tables can be used to identify a starting point for (𝐻, 𝑟) 
using the steps above. Percentiles of the Run Length Distribution can used for a more detailed 
analysis of the BC performance, and to make probability statements regarding possible outcomes.  
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An example of how to use these tables in a sensitivity analysis is given next. In this example the 
values of 𝐻 being compared are 𝐻 = 1.0 and 𝐻 = 1.4. The vales of the reference 𝑟 being compared 
are 𝑟 = 0.01 and 𝑟 = 0.04.     
 
Table 1. Median Run Lengths for various (𝐻, 𝑟) combinations 
 

 
 
This table shows that the MRLs increase as 𝐻 increases with 𝑟 fixed, for the smallest values of 𝑝,  
and decrease as 𝑟 decreases with 𝐻 fixed, for 𝑝 ≤ 0.05. The control limit 𝐻 can be adjusted to 

produce a desired MRL for the nominal case, and the value 𝑟 can be used to find the minimum 
MRL for a given value of 𝑝 greater than nominal. These tables can be supplemented with additional 
percentiles of the run length distribution.  
 
For the special case (𝐻, 𝑟) = (1.0, 0.04), the full run length distributions (with 5th, 50th, and 95th 
percentiles identified) appear below for 𝑝 = 0.01 (Figure 3) and 𝑝 = 0.06 (Figure 4). 
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Figure 3 - Run Length Distribution with 𝑝 = 0.01. 

 

 
Figure 4 - Run Length Distribution with 𝑝 = 0.06. 

 

These histograms, each based on 10,000 simulations, show skewness in the run length distributions 
for 𝑝 = 0.01 and 𝑝 = 0.06. In these cases, the 50th percentile provides the best estimate of central 
tendency, and the 5th and 95th percentiles provide a 90% probability interval for Run Length 
outcomes. For the Run Length distribution with 𝑝 = 0.01, these values (Figure 3) are interpreted to 
mean that 50% of the time the chart will signal within approximately 410 observations, and 95% of 
the time the chart will signal within approximately 1700 observations. This can be interpreted as the 
false alarm rate. For the Run Length distribution with 𝑝 = 0.06, these values (Figure 4) are 
interpreted to mean that 50% of the time the chart will signal within approximately 30 observations, 
and 95% of the time the chart will signal within approximately 100 observations. This can be 
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interpreted as the time (number of parts) to detection when the fraction defective is unacceptably 
high. 
 

4. BERNOULLI CUSUM TO MONITOR PRODUCTION PERFORMANCE 
 

The Bernoulli CUSUM was used to monitor the production of a high-reliability, high-consequence 
electronic part manufactured within the Nuclear Security Enterprise (NSE). The design of an 
appropriate BC chart for this problem, following the steps above, is described in this section.  
 
The part requires some manual operator assembly, so a nominal value of 𝑝0= 0.005 is considered 
the lowest reasonably attainable fraction defective.  Production personnel perform 100% inspection 
and the most common failure mode is high voltage breakdown (HVB). A single part is very 
expensive, so timely feedback regarding any increase in fraction defective is critical. False alarms are 
also costly, so a median run length when 𝑝= 0.005 is desired to be at least 8000 parts. It is desired 
that the BC control signals quickly whenever the fraction defective is at or exceeds 𝑝1= 0.05. 
 
Step 1. The preliminary choice for 𝑟 is (using expression (2)) 
 

𝑟 =
−𝑙𝑜𝑔(

1 − 0.05
1 − 0.005

)

𝑙𝑜𝑔(
0.05(1 − 0.005)
0.005(1 − 0.05)

)
.             

 
             

=  
−𝑙𝑜𝑔(

0.95
0.995

)

𝑙𝑜𝑔(
0.05(0.995)
0.005(0.95)

)
                  

 
 
            ≅  0.02.  
 
Step 2. The proposed Bernoulli CUSUM design strategy results in the following condition: 
 
                                             Subject to MRL ≥ 8000 when 𝑝0= 0.005, 

 
choose the best overall combination of (𝐻, 𝑟) when 𝑝1= 0.05. 
 
When the process is operating at fraction defective 𝑝0 or lower, it is desirable to have a large MRL, 
to minimize false alarms. The median run length when 𝑝0= 0.005 is therefore required to be 8000 or 
greater. The value 𝑝1 is the minimum unacceptable fraction defective and must be detected quickly. 
When the process is operating at this level or greater, it is desirable to have a small MRL.    
 
Expression (2) was used to provide the starting reference value 𝑟 = 0.02. Monte Carlo simulation 
with searches were then used to identify various combinations of (𝐻, 𝑟) for 0.005 ≤ 𝑝 ≤ 0.05 that 
produce an MRL of approximately 8000 when 𝑝0= 0.005 (Table 2). It should be noted that the MRL 
values that appear in Table 2 are approximate, each based on 10,000 simulations. 
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Table 2. Combinations of (𝐻, 𝑟) that Produce a Nominal MRL of Approximately 8000. 

 
 

From this table we can see that MRLs greatly vary for each combination of (𝐻, 𝑟) when the fraction 
defective is greater than 𝑝0= 0.005. Larger 𝐻 values result in quicker detection when 𝑝 = 0.01 or 
0.02, but slower detection when 𝑝 = 0.03, 0.04 or 0.05. Since we are more interested in quicker 
detection when 𝑝 = 0.01 or 0.02, the recommended choice is to use (𝐻, 𝑟) = (3.0, 0.0105). This 
combination of (𝐻, 𝑟) will produce a signal on the Bernoulli CUSUM chart if there are 4 or more 
failures within 1/0.0105 ≅ 95 or fewer parts. Table 3 gives the 5th, 25th, 50th, 75th and 95th percentiles 
of the Run Length distribution for this BC chart.   
 

Table 3. Percentiles of Run Length Distribution of Bernoulli CUSUM with (𝐻, 𝑟) = (3.0, 0.0105) 
 

 
 

In the row of Table 3 with fraction defective 𝑝= 0.01, the MRL (50th percentile) is 881, the 5th 
percentile is 172 and the 95th percentile is 3500. These extreme percentiles provide a “best case” and 
“worst case” number of parts that will be needed to detect an increase in fraction defective to 𝑝= 
0.01.  To lower these numbers, the MRL when 𝑝= 0.005 would also have to be lowered, resulting in 
an increased false alarm rate.  The choice of (𝐻, 𝑟) = (3.0, 0.0105) is an attempt to balance the desire 
to quickly detect an increase in fraction defective with the desire to keep the false alarm rate low.  
 
A retrospective analysis of electronic part pass/fail data was performed using this Bernoulli CUSUM 
design. The plot of the resulting BC chart appears below. 
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Figure 5 - Bernoulli CUSUM of Electronic Part Pass/Fail Data 
 

This analysis suggests a process problem occurred around part number 1800 when 4 failures 
occurred within a window of 61 parts (fraction defective is 𝑝 = 0.066) The analysis also indicated, 
however, that the problem did not persist, with an overall fraction defective of 𝑝 = 0.002, well below 
the nominal target. The Bernoulli CUSUM chart with these parameters was implemented to monitor 
ongoing production and is presently in use. 

 
Appendix A below presents tables of Median Run Lengths for various choices of Bernoulli CUSUM 
parameters (𝐻, 𝑟). Appendix B outlines the design of a  Bernoulli CUSUM chart to use in a shelf-life 
program when only binary data are available.  
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APPENDIX A. TABLES OF MRLS FOR THE BERNOULLI CUSUM CHART 

The range of values in these tables should be sufficient to design a Bernoulli CUSUM chart for 
shelf-life programs typically used within the NSE. If additional combinations of (𝐻, 𝑟) need to be 
investigated, the user can do so via simulation using the author’s Matlab script (Appendix C) that is 
available.  
 
Table A1. Median Run Lengths for 𝐻 = 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0 with 𝑟 = 0.01. 

 

 
 

 
Table A2. Median Run Lengths for 𝐻 = 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0 with 𝑟 = 0.02. 
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Table A3. Median Run Lengths for 𝐻 = 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0 with 𝑟 = 0.03. 
 

 
 
 
Table A4. Median Run Lengths for 𝐻 = 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0 with 𝑟 = 0.04. 
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Table A5. Median Run Lengths for 𝐻 = 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0 with 𝑟 = 0.05. 
 

 
 
In Appendix B, an example is presented to illustrate the design of a shelf-life program using the 
values tabled above.  
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APPENDIX B. DESIGN OF A BERNOULLI CUSUM FOR A SHELF-LIFE 
PROGRAM 

Suppose that a shelf-life plan is to be developed for a component that is required to be in the 
stockpile for twenty years. Suppose further that the component’s reliability requirement is             
𝑅 = 0.99 (𝑝0 =  0.01), and the minimum acceptable reliability is 𝑅 = 0.95 (𝑝1 =  0.05). The 
Bernoulli CUSUM chart should thus be designed to rarely signal when the fraction defective is     
𝑝 =  0.01, but quickly signal when the fraction defective increases to 𝑝 ≥  0.05.  
 
The Median Run Length (MRL) will again be used as the primary measure of performance, and it 
will be used to determine the best BC chart design in terms of (𝐻, 𝑟). The design of the Bernoulli 
CUSUM follows the steps outlined above. 
 
1.   As a preliminary choice, set the control limit reference value equal to 
 

𝑟 =
−𝑙𝑜𝑔(

1 − 𝑝1
1 − 𝑝0

)

𝑙𝑜𝑔(
𝑝1(1 − 𝑝0)
𝑝0(1 − 𝑝1)

)
.                                                                      (B1) 

 
Substituting 𝑝0 =  0.01 and 𝑝1 =  0.05 into (B1) results in 𝑟 ≅ 0.025. The tables in Appendix A do 
not include 𝑟 = 0.025 as an exact choice, so the focus is instead on 𝑟 = 0.02 and 𝑟 = 0.03. 
 

2. Choose the control limit 𝐻. This value helps determine the false alarm rate, the number of parts 
that are tested until the BC signals under nominal conditions. A reasonable approach is to choose 
the nominal MRL to be larger than the total number of parts that could be tested during the entire 
shelf life program. The following table was constructed from subsets of tables in Appendix A, using             
𝑟 = 0.02 and 0.03 with 𝐻 = 1.0, 1.2, and 1.4.  
 
Table B1. Possible Choices of (𝐻, 𝑟) for Bernoulli CUSUM chart. 
 

 
  
3. For the choices of (𝐻, 𝑟) determined from Steps 1 and 2, compare the MRLs for values of 𝑝 that 
are greater than nominal. These are the median number of “parts tested until detection” of an 
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increase in fraction defective. Table B1 shows that the number of parts to detection is approximately 
the same for all choices in the table whenever 𝑝 ≥  0.05. The choice (𝐻, 𝑟) = (1.0, 0.02) has the 
quickest detection of any choice, but it also has the smallest MRL when 𝑝 =  0.01. This means it has 
the highest likelihood of a false alarm over the life of the program. A reasonable compromise 
between detection and false alarm rates is (𝐻, 𝑟) = (1.2, 0.03). Percentiles of the Run Length 
distribution could also be used for a more detailed comparison of the options in the table. If it is 
decided that (𝐻, 𝑟) = (1.2, 0.03) gives acceptable performance for all values of 0.01 ≤ 𝑝 ≤ 0.10, it 
would be taken as the final choice. 
 
The number of parts to test should then be based on how quickly the increase in fraction defective 
must be detected. Table B1 shows that the median number of measurements to detect an increase in 
fraction defective from 𝑝 =  0.01 to 𝑝 =  0.05 is approximately 35. If detection within a few years is 
necessary, then the same 35 parts would be tested annually. The median number of measurements to 
detect an increase in fraction defective from 𝑝 = 0.01 to 𝑝 = 0.10 is 17. If detection within a few 
years is necessary, then the same 17 parts would be tested annually. Choice of sample size thus 
becomes a compromise between cost of parts plus testing and cost of delaying detection. This 
number could be rounded to 20 to be close to the so-called “90/10” stockpile surveillance sampling 
number of 22 parts. A rule of thumb recommendation is thus to test 20 parts each year to 
quickly detect a 10% or worse problem. 
 
An implicit assumption is that the probability of failure does not increase simply as the result of 
testing. The type of failure mechanisms that would be detected with this approach are those 
associated with manufacturing defects that are precipitated by aging, but not by repeated testing.  
 
Several cautions must be made, however, with respect to control charting with repeated 
measurements from a limited number of samples. 
 

1. Process changes made during production can result in changes in performance and the 
appearance of sub-populations. A small sample of components measured repeatedly over 
time is less likely to be representative of the entire population and such changes may not be 
reflected in the shelf life parts. 

2. Repeated measurements may degrade the performance of the component over time. 
3. The small sample size cannot accommodate the potential need for experimental parts 

outside the shelf life study. 
4. Fewer parts will be available for reliability estimation. This problem may be compounded by 

the desire to reduce testing quantities in the future. 
 
The parts taken for the shelf life program should be collected during each production year to make 
them as representative as possible.   
 
For single measurement devices, the total sample size would be the number chosen using Steps 1-3 
above, times the number of years allotted to testing. For example, if testing in a 30-year program is 
to be done on years 5, 10, 15, 20, and 25, and 30, the rule of thumb requirement would be (6 x 20)= 
120 parts to quickly detect 𝑝1 ≥  0.10 and (6 x 35)= 210 parts to quickly detect 𝑝1 ≥  0.05.  
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Table B2 below is a simulated outcome of testing the same 20 parts each year, when the underlying 
fraction defective remains constant at 𝑝 = 0.01. It is assumed that a failed unit is not re-tested. 
Failures are denoted by the red number ‘1,’ and successes are denoted by ‘0.’ 
 
Table B2. Simulated Outcome of Twenty Parts Each Tested Annually for Twenty Years 

 
The resulting BC Chart, with (𝐻, 𝑟) = (1.2, 0.03) appears below. Note from Table B1 that the “false 
alarm” rate is 1 in 390. The false alarm in this chart appears at part number 334, consistent with the 
estimated median. 
 

Yr\Part 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 1 0 0 0 0  0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0  0 0 0 0  0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0  0 0 0 0  0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0  0 0 0 0  0 0 0 0 0 0 0 0 0 

12 0 0 0 0 0  0 0 0 0  0 0 0 0 0 0 0 0 0 

13 0 0 0 0 0  0 0 0 0  0 0 0 0 0 0 0 0 0 

14 0 1 0 0 0  0 0 0 0  0 0 0 0 0 0 0 0 0 

15 0  0 0 0  0 0 0 0  0 0 0 0 0 0 0 0 0 

16 0  0 0 0  0 0 0 0  0 0 0 0 0 0 0 0 0 

17 0  0 0 0  0 0 0 0  0 0 0 0 0 0 0 0 0 

18 0  0 0 0  0 0 0 0  0 0 0 0 0 1 0 0 0 

19 0  0 0 0  0 0 0 0  0 0 0 0 0  1 0 0 

20 0  0 0 0  0 0 0 0  0 0 0 0 0   0 0 
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Figure B1. Bernoulli CUSUM Chart of Simulated Part Data with (𝐻, 𝑟) = (1.2, 0.03). 
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APPENDIX C. MATLAB SCRIPT FOR EVALUATING RUN LENGTH PERCENTILES 

 

% 
% This program evaluates the run length distribution for the Bernoulli 
% CUSUM Control Chart used to detect changes in fraction defective. 
%  
clear all; 
% Reference value (set to ref=0.02) 
ref=0.02; 
% Upper Control Limit (H) (set to UCL= 2.0) 
UCL=2.0; 
fprintf('%4.2f %5.4f \n',UCL,ref); 
% Set the number of Simulated Runs (set to b=10,000) 
b=10000; 
% Enter the fraction defective (fd) values (0.01 to 0.10 by 0.01) 
fd(1)=0.01;fd(2)=0.02;fd(3)=0.03;fd(4)=0.04;fd(5)=0.05; 
fd(6)=0.06;fd(7)=0.07;fd(8)=0.08;fd(9)=0.09;fd(10)=0.10; 
% 
for i1=1:10 
 p=fd(i1); 
for i=1:b   
 % Initialize B_CUSUM (set to 0.0); Value chosen is a "head start" 
 B_CUSUM=0.0; 
 K=1; 
 while B_CUSUM<UCL 
 % Compute next value of the CUSUM 
    X=binornd(1,p); 
    B_CUSUM=max(0.0,B_CUSUM +(X-ref)); 
    K=K+1; 
 end 
 Run(i)=K-1; 
end 
% Compute the Average, 5th, 25th, 50th, 75th, and 95th percentiles 
% of the Run Length Distribution 
RL_Ave=mean(Run); 
RL_5th=prctile(Run,5); 
RL_25th=prctile(Run,25); 
RL_50th=prctile(Run,50); 
RL_75th=prctile(Run,75); 
RL_95th=prctile(Run,95); 
run_length(i1,1)=p;run_length(i1,2)=RL_Ave;run_length(i1,3)=RL_5th; 
run_length(i1,4)=RL_25th;run_length(i1,5)=RL_50th; 
run_length(i1,6)=RL_75th;run_length(i1,7)=RL_95th; 
% Print the Average, 5th, 25th, 50th, 75th, and 95th percentiles 
% of the Run Length Distribution 
fprintf('%4.3f %8.2f %8.2f %8.2f %8.2f %8.2f %8.2f \n',p,RL_Ave,RL_5th,... 
RL_25th,RL_50th,RL_75th,RL_95th); 
end 
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Output from above Matlab script: 

 

2.00 0.0200  

0.010  1379.23   114.00   428.00   960.50  1912.00  4048.50  

0.020   292.56    42.00   107.00   214.50   394.00   808.00  

0.030   143.92    28.00    60.00   108.00   191.00   383.50  

0.040    92.89    21.00    43.00    73.00   121.00   233.50  

0.050    68.44    18.00    35.00    55.00    89.00   165.00  

0.060    54.33    15.00    29.00    44.00    70.00   127.00  

0.070    44.85    13.00    25.00    38.00    56.00   101.00  

0.080    38.66    11.00    22.00    33.00    48.00    86.00  

0.090    34.23    10.00    20.00    30.00    43.00    74.00  

0.100    30.31     9.00    18.00    27.00    39.00    63.00 

 

The first line of output gives the values of 𝐻 and 𝑟. Successive lines of the output give the values of 
𝑝, ARL, 5th, 25th, 50th, 75th, and 95th percentiles of the run length distribution.  
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