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BACKGROUND: PROBLEM STATEMENT
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• There are several locations in wind sites 
and turbines where network traffic could 
be analyzed
• Provide high-fidelity information about 

adversary actions

• This source of data is rarely inspected on 
wind system. Commercial tools:

• Not tailored to the wind environments

• Rarely incorporate deep-packet 
inspection

• Lack cyber-physical analysis 
technologies



BACKGROUND: POTENTIAL MALICOUS ACTIVITIES
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• Reduced power production
• Brake actuation
• Wind / yaw-heading misalignment

• Causing damage
• Overheating
• Mechanical stress
• Catastrophic failure

• Grid-level impacts
• Entire wind plant shuts down unexpected
• Entire wind plant produces more power 

(real or reactive) than authorized

Image created with AI image generator “DALL-E”



BACKGROUND: NETWORK INTRUSION DETECTION
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• What is a NIDS?
• It is a security technology that monitors network traffic for potential security threats and 

intrusions
• It analyzes network packets, identifies suspicious patterns, and generates alerts

• NIDS Functionality
• Real-time monitoring and analysis of network traffic
• Detection and identification of potential threats by using signatures, rules, and/or behavioral 

analysis
• Generating alerts to security administrators and reports for post-incident analysis

• NIDS Benefits in Wind Networks
• Early detection of network attacks and intrusions
• Protection of critical wind network infrastructure 
• Prevention of unauthorized access and data breaches 



BACKGROUND: NETWORK INTRUSION DETECTION
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Image from: https://www.businessprocessincubator.com/content/securing-the-
internet-of-things-with-intrusion-detection-systems/



OBJECTIVES

Our new research effort is called “Machine Learning-Based Intrusion Detection 
Systems (IDS) for Wind Networks”, funded by DOE Wind Energy Technology Office

• Perform Machine Learning (ML)-based cybersecurity classification on wind 
packets

• Aim to accurately identifying instances of suspicious wind network activity and 
raising alerts

Several state-of-the-art ML models will be studied
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• Principal Component 
Analysis (PCA)

• Autoencoders (AE)

• Support Vector Machines 
(SVMs)

• Random Forest
• Gradient Boosting

• Offline Deep 
Reinforcement Learning



NIDS PLACEMENT
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Site level: Traffic to all turbines 
and the site controller is 

captured using a SPAN port 

Switch at the wind turbine: See 
data associated with bird, bat, 

lightning, boat, aircraft, etc. 
detection systems

OT Control Network: Turbine 
protocols such as EtherCAT, 

Modbus, or S7 protocol

Greater 
Data 

Granularity

More 
Difficult for  
Adversary 
To Evade 
Detection

Less 
Expensive

Easier 
Deployment

Wider 
Visibility



ML-BASED INTRUSION DETECTION SYSTEMS FOR WIND NETWORKS
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• Need for representative captured traffic/datasets
• Performing classification operations with ML in such a complex scenario includes the construction 

of a balanced and representative dataset
• Capture traffic from wind networks under both normal operation and simulated attack scenarios

• Data generation
• Long-term data of normal operations: Wind turbine operations for a range of weather and 

operational conditions [“Normal” Dataset]
• Malicious data: [“Abnormal” Dataset]
• (a) Place the systems in unnatural or intentionally bad states, e.g., pitching a single blade
• (b) Send attack data on the networks, e.g., denial of service attacks, brute force attacks, etc.

• Cyber-Physical Features
• Cyber: RTT, IP and MAC addresses, packet length, packet protocol, and others.
• Physical: voltage, current, temperature, pressure
• Multimodal data



ML-BASED INTRUSION DETECTION SYSTEMS FOR WIND NETWORKS
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Data Preprocessing
[Clean, Handle missing 

data, Scaling]

Data Fusion & Feature 
Extraction

[Autoencoders, PCA for multi-
modal data – Combine non-

linear features]

Classifier Offline Training
[SVM, RF, GB, ODRL]

Online Launch of Trained 
Classifier

[Analysis of incoming data, 
threat detection]

Recurrent Training

ML Pipeline



ML-BASED INTRUSION DETECTION SYSTEMS FOR WIND NETWORKS
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• Data Fusion & Feature Extraction
• The predictive performance of classifiers is influenced by 

the number of input features utilized

• Combine and integrate cyber-physical data to generate a 
lower-dimensional feature subspace

• PCA: Identifies the most informative features by 
transforming them into a new set of uncorrelated variables

• Autoencoder: Type of ANN that learns to encode and 
decode data, effectively compressing it 



ML-BASED INTRUSION DETECTION SYSTEMS FOR WIND NETWORKS
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• Classifier Offline Training
• SVMs: Find an optimal hyperplane in a high-dimensional 

feature space to separate different classes
• RF: Ensemble learning algorithm that combines multiple 

decision trees for classification
• GB: Ensemble learning technique that combines weak 

predictive models and optimizes loss function using 
gradient descent

• ODRL: Sequential decision-making paradigm that learns 
only from pre-existing data without requiring any 
additional online interaction with the environment

• Recurrent Training
• Distribution shift of the input data can cause the 

performance of the model to degrade
• Warm-start re-training ensures the deployment integrity



COSTS AND BENEFITS

Benefits of using a ML-based IDS for Wind 
Networks

• Improved accuracy
• Detect complex patterns and anomalies 

in network traffic

• Adaptability
• Learn from new types of attacks or 

network behaviors
• Evolving system

• Scalability
• Can handle large volumes of wind 

network traffic

Cost of using a ML-based IDS for Wind 
Networks

• Training difficulties
• Large training datasets required
• Over/Under-fitting dangers 

• Data distribution shift
• Wind networks can experience changes in 

network traffic patterns
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CONCLUSION

• Several locations in wind sites and turbines where network traffic could be analyzed to 
provide high-fidelity information on adversary actions. 

• Commercial tools are 
• not tailored to wind environments
• do not provide adequate deep-packet inspection (DPI) capabilities for some wind protocols
• lack cyber-physical analysis technologies

• Machine Learning-based Network-Based Intrusion Detection Systems (NIDS) for the 
wind industry will identify real-time threats attempting to exploit wind site and turbine 
vulnerabilities. 
• Approach will provide asset owners the ability to identify malicious actions within the network and 

prioritize mitigations based on the current threat posture
• Stay tuned for cyber-physical, deep packet inspection IDS results from 

the labs shortly!
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