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HPC’s Growing Demands

Bidirectional Growth: Applications <—> Clusters

Both gain complexity
 More time to develop and use
* More domains of expertise required
* More edge cases
 More variance

Developers require strong tools
*  Support dynamic, asynchronous, heterogeneous, load-balanced execution
Kokkos, Darma-VT (Virtual Transport)
*  Support automatic, asynchronous, data-aware resilience
Kokkos Resilience, Fenix




Co-designing Runtimes & Resilience

» Historical checkpoint patterns

System freezes execution, checkpoints everything
App developer finds good inflection points, checkpoints minimal data

* Developers already telling runtimes how to handle data/compute
* New pattern: resilience tools also interact with runtimes

Developer give high-level requests to tool

Tool works out safe checkpoint times, data placement, data usage, etc.

from runtime
What information should runtimes expose?
What promises can resilience tools demand/fulfill?




Automating Task-based Resilience

* Kokkos Resilience - https://github.com/kokkos/kokkos-resilience
* Automated checkpoint/recovery for (MPIl+)Kokkos
« User defines resilient regions via lambda

* Kokkos Resilience detects Kokkos::Views copied into resilient region
« Can C/R on device memory spaces!

* Ongoing work on soft failure recovery

 Darma Virtual Transport (VT) - https://github.com/DARMA-tasking/vt

* Asynchronous, migratable actor pattern
*  Actors hold application data, which moves with them
* Actors are elements of collections
» Hierarchical, causal epochs manage control flow
«  Enforce order between generic units of work
«  “Wait for this message, but also any follow-up messages it sends, and so on”



https://github.com/kokkos/kokkos-resilience
https://github.com/DARMA-tasking/vt

Study: 3D Jacobi lterative solver

while(!done){
Compute iteration
(broadcast)

Placing loop contents in an epoch captures ALL asynchronous tasks

3D stencil application, decomposed into 3D VT Collection

Main thread iterates a work loop to spawn tasks

related to that work!

Send ghosts
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What does Kokkos Resilience need from VT7?

* How to serialize data?
» Existing serialize functions for migrations
- Extend serializer to support specializing for checkpointing

Where is data located?

* Messages addressed to elements, but handled by us
* Track migrations

*  What are the control-flow boundaries for checkpointing?
» Define epochs around each iteration, try to minimally block on them

* When is data modified?
« Message tracking? Element dereferences?




Kokkos Resilience Workflow

Target
ctx = make context(“config.json”);
For(i):
ctx->checkpoint("main”, i, [&|
jacobi.broadcast(dolteration);

1);




Target Workflow

Y Target
* Keep it simple ctx = make context(“config.json”);
» Config file for portability For(i):

Checkpoint frequency, directory, ctx->checkpoint(“main”, i, [&){

etc. jacobi.broadcast(dolteration);
 C/R based on loop iterator 1);

 Autodetect variables
Extend from Kokkos::View copy-hooks
Track modifications

* Change no code within checkpoint region




Current Workflow

Current
ctx = make context(“config.json”);
For(i):
ctx->checkpoint(“main”, i, [&[{
jacobi.broadcast(dolteration);

1;




Current Workflow

Pre-register objects for typing
during recovery

Current
ctx = make context(“config.json”);
ctx->register(jacobi);
For(i):
ctx->checkpoint("main”, i, [&|{
jacobi.broadcast(dolteration);

1;




Current Workflow

* Pre-register objects for typing
during recovery

* Register again upon modification

At collection or element
granularity

* Remarkably close to ideal!

Current
ctx = make context(“config.json”);
ctx->register(jacobi);
For(i):
ctx->checkpoint("main”, i, [&|{
jacobi.broadcast(dolteration);
ctx->register(jacobi);

1;




Lots of Features — less time

* Practice talk went way over time!

* Automatically track elements as they migrate
* Recover elements to different distributions than checkpointed to

* Automatically track dynamically inserted elements

* Register non-local elements
* Register from sending side
* Avoid touching another library’s code

» Register at element or collection granularity
*  Optimize messaging for managing collection checkpoint consistency

» Deregister elements
 Today’s focus: Asynchronous checkpointing




Defining a Checkpoint Region
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Resilience Control Flow

Ideal Control-Flow W/O App changes
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Checkpoint Entry Conditions

« Checkpointing iteration N
* Required: all context state updates initiated (register, etc.)
* Promised: initiated context updates globally completed

* Promised: iteration (N — x) completed
« User configurable x maximum “offset” iterations
* Ensure enough time has passed for updates to begin

* Currently, must block at N-x until completed
Else scheduler runs our calls after all N have finished
Quirk of VT, or the app?




Checkpoint Exit Conditions

« Checkpointing iteration N
*  Promised: All modified elements have finished serializing their data

* Promised: iteration N completed
Usually lines up with the above
Constraint means non-proxy data is consistent

* Can layer with VT's load-balancer constraints, if desired timing lines
up




Initial tests

Hardware:

32 nodes

2 sockets per node
1 rank per socket
28 threads (Kokkos OpenMP)

Ceph filesystem
Infiniband network

Measurement:

Time application main loop only
Reported times are average of 2

Application:
« Jacobi 3D iterative solver, run for 1000
iterations.

150 iterations per checkpoint

150 iterations per load-balancer phase

Disable actual load balancing,
minimize variables, simulate workloads
w/ inherent imbalance

1GB checkpoint data per node




Initial results

Three checkpoint modes:

* Async: allow 149 iterations offset in
starting vs ending serialization

* Async-10: allow 10 iterations offset
* Sync: no offset allowed
* None: no checkpointing

ution time (s)

Testing against # elements per rank ¢
(i.e. available asynchrony)

« Same data, broken into smaller
chunks

* VT depends on having enough
elements per rank, hiding message
latency
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Initial results

* Resilience loses scalability vs #

elements slightly faster than 180 -
base app

* Synchronization points are more
expensive

e  More communication
 Neither is an inherent cost, we

Execution time (s)

can optimize! 80 -

* Checkpoint costs can be very 60 -

low!

51
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Initial results — Overhead only

« Large range of costs for
checkpointing the same data
* Even in synchronous case
« Granularity of writes?

* Async: competing factors
* Availability of time for “hiding”
checkpointing
* Cost of synchronization

Overhead Time (s)

*  When you synchronize can have
big impacts
* Not always very predictable
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Future Work

Remove extra wait from async version

Allow asynchrony in exiting checkpoints
«  Must still orchestrate our required data state actually existing
* Lock individual elements in/out of epochs?

Asynchronous file writes + asynchronous checkpoints
*  Elements asynchronously checkpoint to memory when ready
*  VeloC server handles backing up to disk

Utilize VT Registry to pull type info from checkpoint
* Recover data without needing pre-registration!

Track element updates (messages, user dereferences)
*  Determine modified data automatically

Larger test apps
*  NimbleSM, distBVH




Future research directions

Delay checkpoints until after load balancer when overloaded?
« Distribute cost of file writes to element recipients
How do we decide it's worth it?

Checkpointing message/scheduler state?
* Arbitrary tasks makes this difficult
* VT manages to write tasks to messages

Online process recovery
* Fenix/ULFM, recover without job teardown/restart
 How well can we avoid restarting every element?




Backup slides




Kokkos Resilience

» Automated checkpoint/recovery for (MPl+)Kokkos

« User defines resilient regions via lambda

» Add ViewHooks to Kokkos (available now in Kokkos 4!)
Template views with constructor callback hooks

» Kokkos Resilience detects data copied into resilient region
Ignores const views!
Can C/R on device memory spaces!

* Ongoing: Automated soft-error recovery

* Replicated execution spaces N-way duplicate work, gathers output
CONSEeNsuUs

«  Manage CPU/GPU with same AP!I!
« https://github.com/kokkos/kokkos-resilience



https://github.com/kokkos/kokkos-resilience

Darma Virtual Transport (VT)

* Active messaging runtime, layering over MPI

Abstract the node/rank/worker concept into migratable virtual entities
Dynamically load balanced

Actor-based pattern
Messages addressed to virtual entity, which owns some data
Messages define their handlers, potentially modifying the entity’s data

* Nested, transitive, causal epochs manage control-flow
https://github.com/DARMA-tasking/vt




