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HPC’s Growing Demands

• Bidirectional Growth: Applications  Clusters
• Both gain complexity

• More time to develop and use
• More domains of expertise required
• More edge cases
• More variance

• Developers require strong tools
• Support dynamic, asynchronous, heterogeneous, load-balanced execution

• Kokkos, Darma-VT (Virtual Transport)
• Support automatic, asynchronous, data-aware resilience

• Kokkos Resilience, Fenix
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Co-designing Runtimes & Resilience

• Historical checkpoint patterns
• System freezes execution, checkpoints everything
• App developer finds good inflection points, checkpoints minimal data

• Developers already telling runtimes how to handle data/compute
• New pattern: resilience tools also interact with runtimes

• Developer give high-level requests to tool
• Tool works out safe checkpoint times, data placement, data usage, etc. 

from runtime
• What information should runtimes expose?
• What promises can resilience tools demand/fulfill?
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Automating Task-based Resilience

• Kokkos Resilience - https://github.com/kokkos/kokkos-resilience 
• Automated checkpoint/recovery for (MPI+)Kokkos
• User defines resilient regions via lambda
• Kokkos Resilience detects Kokkos::Views copied into resilient region

• Can C/R on device memory spaces!
• Ongoing work on soft failure recovery

• Darma Virtual Transport (VT) - https://github.com/DARMA-tasking/vt 
• Asynchronous, migratable actor pattern

• Actors hold application data, which moves with them
• Actors are elements of collections

• Hierarchical, causal epochs manage control flow
• Enforce order between generic units of work
• “Wait for this message, but also any follow-up messages it sends, and so on”
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Study: 3D Jacobi Iterative solver

• 3D stencil application, decomposed into 3D VT Collection
• Main thread iterates a work loop to spawn tasks  

while(!done){

}

• Placing loop contents in an epoch captures ALL asynchronous tasks 
related to that work!

Compute iteration 
(broadcast) Send ghosts
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What does Kokkos Resilience need from VT?

• How to serialize data?
• Existing serialize functions for migrations
• Extend serializer to support specializing for checkpointing

• Where is data located?
• Messages addressed to elements, but handled by us
• Track migrations

• What are the control-flow boundaries for checkpointing?
• Define epochs around each iteration, try to minimally block on them

• When is data modified?
• Message tracking? Element dereferences?
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Kokkos Resilience Workflow

Target
ctx = make_context(“config.json”);
For(i):
    ctx->checkpoint(“main”, i, [&]{
        jacobi.broadcast(doIteration);
    });
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Target Workflow

Target
ctx = make_context(“config.json”);
For(i):
    ctx->checkpoint(“main”, i, [&]{
        jacobi.broadcast(doIteration);
    });

• Keep it simple
• Config file for portability

• Checkpoint frequency, directory, 
etc.

• C/R based on loop iterator
• Autodetect variables

• Extend from Kokkos::View copy-hooks
• Track modifications

• Change no code within checkpoint region
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Current
ctx = make_context(“config.json”);

Current Workflow

For(i):
    ctx->checkpoint(“main”, i, [&]{
        jacobi.broadcast(doIteration);
    });
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Current
ctx = make_context(“config.json”);

Current Workflow

ctx->register(jacobi);
For(i):
    ctx->checkpoint(“main”, i, [&]{
        jacobi.broadcast(doIteration);
    });

• Pre-register objects for typing 
during recovery
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Current
ctx = make_context(“config.json”);

Current Workflow

ctx->register(jacobi);
For(i):
    ctx->checkpoint(“main”, i, [&]{
        jacobi.broadcast(doIteration);

    });

• Pre-register objects for typing 
during recovery

        ctx->register(jacobi);

• Register again upon modification
• At collection or element 

granularity

• Remarkably close to ideal!
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Lots of Features – less time

• Practice talk went way over time!
• Automatically track elements as they migrate

• Recover elements to different distributions than checkpointed to
• Automatically track dynamically inserted elements
• Register non-local elements

• Register from sending side
• Avoid touching another library’s code

• Register at element or collection granularity
• Optimize messaging for managing collection checkpoint consistency

• Deregister elements
• Today’s focus: Asynchronous checkpointing
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Defining a Checkpoint Region

Application Asynchrony Spectrum
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• Epochs enforce iteration 
order

• Checkpoint between 
iterations

• Individual elements may 
be ready sooner than 
others!

• Epochs enforce task 
order

• Checkpoint between 
any tasks

• Epochs are definable
• Checkpoint must 

prevent updates from 
future epochs

• Our focus

• Epochs only definable 
with application help

• Most apps define 
epochs for load 
balancing

• Or also checkpoint 
active messages
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Resilience Control Flow
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Checkpoints

These 
boundaries may 
be very fuzzy!

• Serialize when 
previous epoch ends

• Serializer passive 
waits until element 
ready

• Staggered file writes!
• Fill (some of) the 

empty space we 
created
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Checkpoint Entry Conditions

• Checkpointing iteration N
• Required: all context state updates initiated (register, etc.)
• Promised: initiated context updates globally completed
• Promised: iteration (N – x) completed

• User configurable x maximum “offset” iterations
• Ensure enough time has passed for updates to begin
• Currently, must block at N-x until completed

• Else scheduler runs our calls after all N have finished
• Quirk of VT, or the app?
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Checkpoint Exit Conditions

• Checkpointing iteration N
• Promised: All modified elements have finished serializing their data
• Promised: iteration N completed

• Usually lines up with the above
• Constraint means non-proxy data is consistent

• Can layer with VT’s load-balancer constraints, if desired timing lines 
up
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Initial tests
Hardware:
• 32 nodes

• 2 sockets per node
• 1 rank per socket
• 28 threads (Kokkos OpenMP)

• Ceph filesystem
• Infiniband network
Measurement:
• Time application main loop only
• Reported times are average of 2

Application:
• Jacobi 3D iterative solver, run for 1000 

iterations.
• 150 iterations per checkpoint
• 150 iterations per load-balancer phase

• Disable actual load balancing, 
minimize variables, simulate workloads 
w/ inherent imbalance

• 1GB checkpoint data per node
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• Three checkpoint modes:
• Async: allow 149 iterations offset in 

starting vs ending serialization
• Async-10: allow 10 iterations offset
• Sync: no offset allowed
• None: no checkpointing

• Testing against # elements per rank 
(i.e. available asynchrony)

• Same data, broken into smaller 
chunks

• VT depends on having enough 
elements per rank, hiding message 
latency

Initial results
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• Resilience loses scalability vs # 
elements slightly faster than 
base app

• Synchronization points are more 
expensive

• More communication
• Neither is an inherent cost, we 

can optimize!

• Checkpoint costs can be very 
low!

Initial results
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• Large range of costs for 
checkpointing the same data

• Even in synchronous case
• Granularity of writes?

• Async: competing factors
• Availability of time for “hiding” 

checkpointing
• Cost of synchronization

• When you synchronize can have 
big impacts

• Not always very predictable

Initial results – Overhead only
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Future Work

• Remove extra wait from async version
• Allow asynchrony in exiting checkpoints

• Must still orchestrate our required data state actually existing
• Lock individual elements in/out of epochs?

• Asynchronous file writes + asynchronous checkpoints
• Elements asynchronously checkpoint to memory when ready
• VeloC server handles backing up to disk

• Utilize VT Registry to pull type info from checkpoint
• Recover data without needing pre-registration!

• Track element updates (messages, user dereferences)
• Determine modified data automatically

• Larger test apps
• NimbleSM, distBVH
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Future research directions

• Delay checkpoints until after load balancer when overloaded?
• Distribute cost of file writes to element recipients
• How do we decide it’s worth it?

• Checkpointing message/scheduler state?
• Arbitrary tasks makes this difficult
• VT manages to write tasks to messages

• Online process recovery
• Fenix/ULFM, recover without job teardown/restart
• How well can we avoid restarting every element?
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Backup slides
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Kokkos Resilience

• Automated checkpoint/recovery for (MPI+)Kokkos
• User defines resilient regions via lambda
• Add ViewHooks to Kokkos (available now in Kokkos 4!)

• Template views with constructor callback hooks
• Kokkos Resilience detects data copied into resilient region

• Ignores const views!
• Can C/R on device memory spaces!

• Ongoing: Automated soft-error recovery
• Replicated execution spaces N-way duplicate work, gathers output 

consensus
• Manage CPU/GPU with same API!

• https://github.com/kokkos/kokkos-resilience 
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Darma Virtual Transport (VT)

• Active messaging runtime, layering over MPI
• Abstract the node/rank/worker concept into migratable virtual entities

• Dynamically load balanced

• Actor-based pattern
• Messages addressed to virtual entity, which owns some data
• Messages define their handlers, potentially modifying the entity’s data

• Nested, transitive, causal epochs manage control-flow
• https://github.com/DARMA-tasking/vt
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