SAND2023-05432C

his paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do|

not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia
National

aploiting the overlapping challenges of
distributed AMT and Resilience

Supporting automated resilience

Matthew Whitlock, Nic Morales, Keita Teranishi

Platform for Advanced Scientific Computing, 2023

Presented for the Performance in I/O and Fault Tolerance for Scientific Applications Minisymposium

Sandia National Laboratories is a multi-mission IaboratorxJ managed and operated by National Technology & Engineering Solutions of Sandia, LLC (NTESS), a wholly
owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear ecur_|t¥]Ad_m|n|s ration (DO_E/NNSA% under contract DE-
NA0003525. This written work is authored by an employee of NTESS. The employée, not NTESS, owns the right, title and interest in and to the written work and is
responsible for its contents. Any subjective views or ogmlons that might be expressed in the written work do not necessarily represent the views of the U.S.
Government. ThetpL_thsher acknowledges that the U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the
published form of this written work or alfow others to do so, for U.S. Government purposes. The DOE will provide public access to results of federally sponsored

research in accordance with the DOE Public Access Plan.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholl
owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract ing Solutions of Sandia LLC, a wholly

5. .
ownea subsidiary or Honeywell International Inc. 1or the U.S. Department of Energy's Natonal Nuclear Security Administration under contract DE-NA0003525.

HPC’s Growing Demands

Bidirectional Growth: Applications <—> Clusters

Both gain complexity
 More time to develop and use
* More domains of expertise required
* More edge cases
 More variance

Developers require strong tools
* Support dynamic, asynchronous, heterogeneous, load-balanced execution
Kokkos, Darma-VT (Virtual Transport)
* Support automatic, asynchronous, data-aware resilience
Kokkos Resilience, Fenix

Co-designing Runtimes & Resilience

» Historical checkpoint patterns

System freezes execution, checkpoints everything
App developer finds good inflection points, checkpoints minimal data

* Developers already telling runtimes how to handle data/compute
* New pattern: resilience tools also interact with runtimes

Developer give high-level requests to tool

Tool works out safe checkpoint times, data placement, data usage, etc.

from runtime
What information should runtimes expose?
What promises can resilience tools demand/fulfill?

Automating Task-based Resilience

* Kokkos Resilience - https://github.com/kokkos/kokkos-resilience
* Automated checkpoint/recovery for (MPIl+)Kokkos
« User defines resilient regions via lambda

* Kokkos Resilience detects Kokkos::Views copied into resilient region
« Can C/R on device memory spaces!

* Ongoing work on soft failure recovery

 Darma Virtual Transport (VT) - https://github.com/DARMA-tasking/vt

* Asynchronous, migratable actor pattern
* Actors hold application data, which moves with them
* Actors are elements of collections
» Hierarchical, causal epochs manage control flow
« Enforce order between generic units of work
« “Wait for this message, but also any follow-up messages it sends, and so on”

https://github.com/kokkos/kokkos-resilience
https://github.com/DARMA-tasking/vt

Study: 3D Jacobi lterative solver

while(!done){
Compute iteration
(broadcast)

Placing loop contents in an epoch captures ALL asynchronous tasks

3D stencil application, decomposed into 3D VT Collection

Main thread iterates a work loop to spawn tasks

related to that work!

Send ghosts

i1

What does Kokkos Resilience need from VT7?

* How to serialize data?
» Existing serialize functions for migrations
- Extend serializer to support specializing for checkpointing

Where is data located?

* Messages addressed to elements, but handled by us
* Track migrations

* What are the control-flow boundaries for checkpointing?
» Define epochs around each iteration, try to minimally block on them

* When is data modified?
« Message tracking? Element dereferences?

Kokkos Resilience Workflow

Target
ctx = make context(“config.json”);
For(i):
ctx->checkpoint("main”, i, [&|
jacobi.broadcast(dolteration);

1);

Target Workflow

Y Target
* Keep it simple ctx = make context(“config.json”);
» Config file for portability For(i):

Checkpoint frequency, directory, ctx->checkpoint(“main”, i, [&){

etc. jacobi.broadcast(dolteration);
 C/R based on loop iterator 1);

 Autodetect variables
Extend from Kokkos::View copy-hooks
Track modifications

* Change no code within checkpoint region

Current Workflow

Current
ctx = make context(“config.json”);
For(i):
ctx->checkpoint(“main”, i, [&[{
jacobi.broadcast(dolteration);

1;

Current Workflow

Pre-register objects for typing
during recovery

Current
ctx = make context(“config.json”);
ctx->register(jacobi);
For(i):
ctx->checkpoint("main”, i, [&|{
jacobi.broadcast(dolteration);

1;

Current Workflow

* Pre-register objects for typing
during recovery

* Register again upon modification

At collection or element
granularity

* Remarkably close to ideal!

Current
ctx = make context(“config.json”);
ctx->register(jacobi);
For(i):
ctx->checkpoint("main”, i, [&|{
jacobi.broadcast(dolteration);
ctx->register(jacobi);

1;

Lots of Features — less time

* Practice talk went way over time!

* Automatically track elements as they migrate
* Recover elements to different distributions than checkpointed to

* Automatically track dynamically inserted elements

* Register non-local elements
* Register from sending side
* Avoid touching another library’s code

» Register at element or collection granularity
* Optimize messaging for managing collection checkpoint consistency

» Deregister elements
 Today’s focus: Asynchronous checkpointing

Defining a Checkpoint Region

aaan

T

In-Order

* Epochs enforce task
order

* Checkpoint between
any tasks

Application Asynchrony Spectrum

Inter-lteration

ol
W

Intra-lteration

Iterationless
* Epochs only definable

* Epochs enforce iteration * Epochs are definable

order _ with application help
« Checkpoint between + (Chee el mus * Most apps define
iterations prevent updates from epochs for load

balancing

* Or also checkpoint
active messages

* Individual elements may future epochs

be ready sooner than

othere! e Qur focus

|i|1|13

Resilience Control Flow

Ideal Control-Flow W/O App changes

))
24 5 6 7 8 24 5 6 78
= £
C C
£ £
L) o :
Checkpoint Iteratiop progress Iteration progress
Minor App changes - Serialize when
previous epoch ends
UL « Serializer passive
boundaries may 4 < 6 / 8 : .
waits until element
be very fuzzy!
ready

« Staggered file writes!
6 * Fill (some of) the

empty space we
lteration progress created

~
oo

Element timeline
.O'I E

Checkpoint Entry Conditions

« Checkpointing iteration N
* Required: all context state updates initiated (register, etc.)
* Promised: initiated context updates globally completed

* Promised: iteration (N — x) completed
« User configurable x maximum “offset” iterations
* Ensure enough time has passed for updates to begin

* Currently, must block at N-x until completed
Else scheduler runs our calls after all N have finished
Quirk of VT, or the app?

Checkpoint Exit Conditions

« Checkpointing iteration N
* Promised: All modified elements have finished serializing their data

* Promised: iteration N completed
Usually lines up with the above
Constraint means non-proxy data is consistent

* Can layer with VT's load-balancer constraints, if desired timing lines
up

Initial tests

Hardware:

32 nodes

2 sockets per node
1 rank per socket
28 threads (Kokkos OpenMP)

Ceph filesystem
Infiniband network

Measurement:

Time application main loop only
Reported times are average of 2

Application:
« Jacobi 3D iterative solver, run for 1000
iterations.

150 iterations per checkpoint

150 iterations per load-balancer phase

Disable actual load balancing,
minimize variables, simulate workloads
w/ inherent imbalance

1GB checkpoint data per node

Initial results

Three checkpoint modes:

* Async: allow 149 iterations offset in
starting vs ending serialization

* Async-10: allow 10 iterations offset
* Sync: no offset allowed
* None: no checkpointing

ution time (s)

Testing against # elements per rank ¢
(i.e. available asynchrony)

« Same data, broken into smaller
chunks

* VT depends on having enough
elements per rank, hiding message
latency

180 -

160 -

140 -

120 -

100 -

80 -

60 -

Execution Time by Task Decomposition

—— Async
— Async-10
— Sync
—— None

21 22 23 2 25 26
Overdecomposition Factor

Initial results

* Resilience loses scalability vs #

elements slightly faster than 180 -
base app

* Synchronization points are more
expensive

e More communication
 Neither is an inherent cost, we

Execution time (s)

can optimize! 80 -

* Checkpoint costs can be very 60 -

low!

51

Execution Time by Task Decomposition

—— Async
— Async-10
— Sync
—— None

22 23 2 25 26
Overdecomposition Factor

Initial results — Overhead only

« Large range of costs for
checkpointing the same data
* Even in synchronous case
« Granularity of writes?

* Async: competing factors
* Availability of time for “hiding”
checkpointing
* Cost of synchronization

Overhead Time (s)

* When you synchronize can have
big impacts
* Not always very predictable

12 -

=
o
1

(00]
|

(e)]
1

Checkpoint Overhead by Task Decomposition

— Async
— Async-10
—— Sync

Overdecomposition Factor

Future Work

Remove extra wait from async version

Allow asynchrony in exiting checkpoints
« Must still orchestrate our required data state actually existing
* Lock individual elements in/out of epochs?

Asynchronous file writes + asynchronous checkpoints
* Elements asynchronously checkpoint to memory when ready
* VeloC server handles backing up to disk

Utilize VT Registry to pull type info from checkpoint
* Recover data without needing pre-registration!

Track element updates (messages, user dereferences)
* Determine modified data automatically

Larger test apps
* NimbleSM, distBVH

Future research directions

Delay checkpoints until after load balancer when overloaded?
« Distribute cost of file writes to element recipients
How do we decide it's worth it?

Checkpointing message/scheduler state?
* Arbitrary tasks makes this difficult
* VT manages to write tasks to messages

Online process recovery
* Fenix/ULFM, recover without job teardown/restart
 How well can we avoid restarting every element?

Backup slides

Kokkos Resilience

» Automated checkpoint/recovery for (MPl+)Kokkos

« User defines resilient regions via lambda

» Add ViewHooks to Kokkos (available now in Kokkos 4!)
Template views with constructor callback hooks

» Kokkos Resilience detects data copied into resilient region
Ignores const views!
Can C/R on device memory spaces!

* Ongoing: Automated soft-error recovery

* Replicated execution spaces N-way duplicate work, gathers output
CONSEeNsuUs

« Manage CPU/GPU with same AP!I!
« https://github.com/kokkos/kokkos-resilience

https://github.com/kokkos/kokkos-resilience

Darma Virtual Transport (VT)

* Active messaging runtime, layering over MPI

Abstract the node/rank/worker concept into migratable virtual entities
Dynamically load balanced

Actor-based pattern
Messages addressed to virtual entity, which owns some data
Messages define their handlers, potentially modifying the entity’s data

* Nested, transitive, causal epochs manage control-flow
https://github.com/DARMA-tasking/vt

