
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Exploiting the overlapping challenges of
distributed AMT and Resilience

Matthew Whitlock, Nic Morales, Keita Teranishi

Supporting automated resilience

Platform for Advanced Scientific Computing, 2023

Presented for the Performance in I/O and Fault Tolerance for Scientific Applications Minisymposium
Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC (NTESS), a wholly
owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration (DOE/NNSA) under contract DE-
NA0003525. This written work is authored by an employee of NTESS. The employee, not NTESS, owns the right, title and interest in and to the written work and is
responsible for its contents. Any subjective views or opinions that might be expressed in the written work do not necessarily represent the views of the U.S.
Government. The publisher acknowledges that the U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the
published form of this written work or allow others to do so, for U.S. Government purposes. The DOE will provide public access to results of federally sponsored
research in accordance with the DOE Public Access Plan.

SAND2023-05432CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do
not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract
DE-NA0003525.

HPC’s Growing Demands

• Bidirectional Growth: Applications  Clusters
• Both gain complexity

• More time to develop and use
• More domains of expertise required
• More edge cases
• More variance

• Developers require strong tools
• Support dynamic, asynchronous, heterogeneous, load-balanced execution

• Kokkos, Darma-VT (Virtual Transport)
• Support automatic, asynchronous, data-aware resilience

• Kokkos Resilience, Fenix

2

Co-designing Runtimes & Resilience

• Historical checkpoint patterns
• System freezes execution, checkpoints everything
• App developer finds good inflection points, checkpoints minimal data

• Developers already telling runtimes how to handle data/compute
• New pattern: resilience tools also interact with runtimes

• Developer give high-level requests to tool
• Tool works out safe checkpoint times, data placement, data usage, etc.

from runtime
• What information should runtimes expose?
• What promises can resilience tools demand/fulfill?

3

Automating Task-based Resilience

• Kokkos Resilience - https://github.com/kokkos/kokkos-resilience
• Automated checkpoint/recovery for (MPI+)Kokkos
• User defines resilient regions via lambda
• Kokkos Resilience detects Kokkos::Views copied into resilient region

• Can C/R on device memory spaces!
• Ongoing work on soft failure recovery

• Darma Virtual Transport (VT) - https://github.com/DARMA-tasking/vt
• Asynchronous, migratable actor pattern

• Actors hold application data, which moves with them
• Actors are elements of collections

• Hierarchical, causal epochs manage control flow
• Enforce order between generic units of work
• “Wait for this message, but also any follow-up messages it sends, and so on”

4

https://github.com/kokkos/kokkos-resilience
https://github.com/DARMA-tasking/vt

Study: 3D Jacobi Iterative solver

• 3D stencil application, decomposed into 3D VT Collection
• Main thread iterates a work loop to spawn tasks

while(!done){

}

• Placing loop contents in an epoch captures ALL asynchronous tasks
related to that work!

Compute iteration
(broadcast) Send ghosts

5

What does Kokkos Resilience need from VT?

• How to serialize data?
• Existing serialize functions for migrations
• Extend serializer to support specializing for checkpointing

• Where is data located?
• Messages addressed to elements, but handled by us
• Track migrations

• What are the control-flow boundaries for checkpointing?
• Define epochs around each iteration, try to minimally block on them

• When is data modified?
• Message tracking? Element dereferences?

6

Kokkos Resilience Workflow

Target
ctx = make_context(“config.json”);
For(i):
 ctx->checkpoint(“main”, i, [&]{
 jacobi.broadcast(doIteration);
 });

7

Target Workflow

Target
ctx = make_context(“config.json”);
For(i):
 ctx->checkpoint(“main”, i, [&]{
 jacobi.broadcast(doIteration);
 });

• Keep it simple
• Config file for portability

• Checkpoint frequency, directory,
etc.

• C/R based on loop iterator
• Autodetect variables

• Extend from Kokkos::View copy-hooks
• Track modifications

• Change no code within checkpoint region

8

Current
ctx = make_context(“config.json”);

Current Workflow

For(i):
 ctx->checkpoint(“main”, i, [&]{
 jacobi.broadcast(doIteration);
 });

9

Current
ctx = make_context(“config.json”);

Current Workflow

ctx->register(jacobi);
For(i):
 ctx->checkpoint(“main”, i, [&]{
 jacobi.broadcast(doIteration);
 });

• Pre-register objects for typing
during recovery

10

Current
ctx = make_context(“config.json”);

Current Workflow

ctx->register(jacobi);
For(i):
 ctx->checkpoint(“main”, i, [&]{
 jacobi.broadcast(doIteration);

 });

• Pre-register objects for typing
during recovery

 ctx->register(jacobi);

• Register again upon modification
• At collection or element

granularity

• Remarkably close to ideal!

11

Lots of Features – less time

• Practice talk went way over time!
• Automatically track elements as they migrate

• Recover elements to different distributions than checkpointed to
• Automatically track dynamically inserted elements
• Register non-local elements

• Register from sending side
• Avoid touching another library’s code

• Register at element or collection granularity
• Optimize messaging for managing collection checkpoint consistency

• Deregister elements
• Today’s focus: Asynchronous checkpointing

12

Defining a Checkpoint Region

Application Asynchrony Spectrum

W X Y

W X Y Z

In-Order

Z W X Y

W X Y Z

Inter-Iteration

Z W X Y

W X Y Z

Intra-Iteration

Z

W

X

Iterationless

Z

Y??
?

• Epochs enforce iteration
order

• Checkpoint between
iterations

• Individual elements may
be ready sooner than
others!

• Epochs enforce task
order

• Checkpoint between
any tasks

• Epochs are definable
• Checkpoint must

prevent updates from
future epochs

• Our focus

• Epochs only definable
with application help

• Most apps define
epochs for load
balancing

• Or also checkpoint
active messages

13

Resilience Control Flow

5 6 7 8

4 5 6 7

4 5 6 7 8

Ideal Control-Flow

Iteration progress

El
em

en
t t

im
el

in
e

5 6 7 8

4 5 6 7

4 5 6 7 8

W/O App changes

Iteration progress

El
em

en
t t

im
el

in
e

5 6 7 8

4 5 6 7

4 5 6 7 8

Minor App changes

Iteration progress

El
em

en
t t

im
el

in
e

Checkpoints

These
boundaries may
be very fuzzy!

• Serialize when
previous epoch ends

• Serializer passive
waits until element
ready

• Staggered file writes!
• Fill (some of) the

empty space we
created

14

Checkpoint Entry Conditions

• Checkpointing iteration N
• Required: all context state updates initiated (register, etc.)
• Promised: initiated context updates globally completed
• Promised: iteration (N – x) completed

• User configurable x maximum “offset” iterations
• Ensure enough time has passed for updates to begin
• Currently, must block at N-x until completed

• Else scheduler runs our calls after all N have finished
• Quirk of VT, or the app?

15

Checkpoint Exit Conditions

• Checkpointing iteration N
• Promised: All modified elements have finished serializing their data
• Promised: iteration N completed

• Usually lines up with the above
• Constraint means non-proxy data is consistent

• Can layer with VT’s load-balancer constraints, if desired timing lines
up

16

Initial tests
Hardware:
• 32 nodes

• 2 sockets per node
• 1 rank per socket
• 28 threads (Kokkos OpenMP)

• Ceph filesystem
• Infiniband network
Measurement:
• Time application main loop only
• Reported times are average of 2

Application:
• Jacobi 3D iterative solver, run for 1000

iterations.
• 150 iterations per checkpoint
• 150 iterations per load-balancer phase

• Disable actual load balancing,
minimize variables, simulate workloads
w/ inherent imbalance

• 1GB checkpoint data per node

17

• Three checkpoint modes:
• Async: allow 149 iterations offset in

starting vs ending serialization
• Async-10: allow 10 iterations offset
• Sync: no offset allowed
• None: no checkpointing

• Testing against # elements per rank
(i.e. available asynchrony)

• Same data, broken into smaller
chunks

• VT depends on having enough
elements per rank, hiding message
latency

Initial results

18

• Resilience loses scalability vs #
elements slightly faster than
base app

• Synchronization points are more
expensive

• More communication
• Neither is an inherent cost, we

can optimize!

• Checkpoint costs can be very
low!

Initial results

19

• Large range of costs for
checkpointing the same data

• Even in synchronous case
• Granularity of writes?

• Async: competing factors
• Availability of time for “hiding”

checkpointing
• Cost of synchronization

• When you synchronize can have
big impacts

• Not always very predictable

Initial results – Overhead only

20

Future Work

• Remove extra wait from async version
• Allow asynchrony in exiting checkpoints

• Must still orchestrate our required data state actually existing
• Lock individual elements in/out of epochs?

• Asynchronous file writes + asynchronous checkpoints
• Elements asynchronously checkpoint to memory when ready
• VeloC server handles backing up to disk

• Utilize VT Registry to pull type info from checkpoint
• Recover data without needing pre-registration!

• Track element updates (messages, user dereferences)
• Determine modified data automatically

• Larger test apps
• NimbleSM, distBVH

21

Future research directions

• Delay checkpoints until after load balancer when overloaded?
• Distribute cost of file writes to element recipients
• How do we decide it’s worth it?

• Checkpointing message/scheduler state?
• Arbitrary tasks makes this difficult
• VT manages to write tasks to messages

• Online process recovery
• Fenix/ULFM, recover without job teardown/restart
• How well can we avoid restarting every element?

22

Backup slides

23

Kokkos Resilience

• Automated checkpoint/recovery for (MPI+)Kokkos
• User defines resilient regions via lambda
• Add ViewHooks to Kokkos (available now in Kokkos 4!)

• Template views with constructor callback hooks
• Kokkos Resilience detects data copied into resilient region

• Ignores const views!
• Can C/R on device memory spaces!

• Ongoing: Automated soft-error recovery
• Replicated execution spaces N-way duplicate work, gathers output

consensus
• Manage CPU/GPU with same API!

• https://github.com/kokkos/kokkos-resilience
24

https://github.com/kokkos/kokkos-resilience

Darma Virtual Transport (VT)

• Active messaging runtime, layering over MPI
• Abstract the node/rank/worker concept into migratable virtual entities

• Dynamically load balanced

• Actor-based pattern
• Messages addressed to virtual entity, which owns some data
• Messages define their handlers, potentially modifying the entity’s data

• Nested, transitive, causal epochs manage control-flow
• https://github.com/DARMA-tasking/vt

25

