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So why the brain?

Ø Energy efficient

Ø Operationally fast considering 
slow components

Ø Data efficient

Ø Diverse applications

Ø Robustness



Realized Features of Brain 
Inspiration in 

Neuromorphic Hardware

• Event-driven communication 

• Graph based connectivity

• Processing in Memory

• In situ learning 

• Analog computation

• Post-Moore’s Law Devices

• Ubiquitous stochasticity

What is the brain good at?
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Neuromorphic Hardware
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Intel Loihi 2
Millions of CMOS neurons
Billions of CMOS synapses
~ 1 Watt power

Today

Where are we today in neuromorphic computing?

One example (of many…)



Towards novel future architectures

Aimone JB, Advanced Intelligent Systems, 2023



Fundamental science question: what is the scale of 
neuromorphic computing needed?

>1011 neurons
>1015 synapses
High complexity
Highly efficient
Slow

>105 neurons
>108 synapses
Low complexity
Moderately efficient
Fast

I=V/R

~102 neurons
~104 synapses
Very low complexity 
Highly efficient
Fast?



Realized Features of Brain 
Inspiration in 

Neuromorphic Hardware

• Event-driven communication 

• Graph based connectivity

• Processing in Memory

• In situ learning 

• Analog computation

• Post-Moore’s Law Devices

• Ubiquitous stochasticity

Intel Loihi 2
Millions of CMOS neurons
Billions of CMOS synapses
~ 1 Watt power

Today

Tomorrow

Zidan et al., 2018

Post-Moore Devices 
(ECRAM, Memristors, MTJs, 
optical, organic, etc)

Scale to human sizes?

Where are we today in neuromorphic computing? And where 
might we be in the future?



Sandia hosts some of the world’s largest CMOS-based neuromorphic 
systems
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Spiking neuromorphic today: Overview

9

Computational Primitives: 
Spiking Neurons (vertices / nodes)
Synapses (connections / edges)

Programmable as arbitrary graphs
• Edges: Directed and weighted
• Nodes: Threshold gate logic + time 
• Artificial neural networks are a special 

case
• Programmability, theoretical, 

analysis and software are open 
research questions

Neural Logic Core
~103 – 104 neurons 

105
 -106 edges

Neural Chip
~101 - 102 cores
104

 -106 neurons

Neural System
~102 - 104 chips
106

 -109 neurons



Neuromorphic hardware jumped ahead of the rest of the stack
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Neuromorphic hardware has been built 
with a “if we build it, neuroscientists will 
come” hope

We need

v Driving Applications

v Systems Interface

v Software and Programming Paradigm

v Theoretical Framework



Neuromorphic Hardware

Artificial Neural Networks

A quick aside: most neuromorphic hardware is not designed for 
current artificial neural networks
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Spiking neurons

Continuous neurons Linear algebra-like networks

Arbitrary connectivity

• Continual learning 
integrated into 
operation

• Inherently temporal 
• Dynamical tasks?

• Distinct training 
and inference 
modes

• Time is largely 
avoided

• Computer vision 
and natural 
language 
processing



Specialized General PurposeTruly General Purpose Application Specific

Could neuromorphic be generalized to more algorithms just as 
GPUs have been?

12



Separating the “can do” from the “should do”

13

Possibly good on NMC, but there 
may be alternatives

• Deep learning / conventional 
artificial neural networks

• Parallel data processing 
(background and change 
detection, convolutions, etc)

• Linear algebra (MVM, cross-
correlations, L1-norm, etc)

• Classic machine learning (SVMs, k-
nearest neighbors, clustering)

Can implement on NMC, but only 
to avoid I/O

• Arithmetic (adding, subtraction, 
multiplication, etc.)

• Data filtering
• Sorting
• Data conversions
• …

Should implement on NMC once 
systems reach scale

• Algorithms the brain actually uses 
(* we don’t have these yet…)

• Random walks / Discrete Time 
Monte Carlo

• Some Graph Algorithms (Dynamic 
programming, Djikstra, triangle 
counting,  graph cut, etc)

• Some neural networks



Neuromorphic computing can impact a broad range of applications

14

Spiking 
Scientific 

Computing



Today’s spiking NMC shows energy advantage over conventional 
approaches on Monte Carlo simulations
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Leaky Integrate and Fire Neuron

Smith et al., Nature Electronics 2022

Spiking 
Scientific 

Computing



Neuromorphic computing advantage appears to be when an 
algorithm can split task across computational graph with sparse 
communication

Monte Carlo simulations
Discrete Time Markov Chains

Dynamic programming

Graph neural networks

…

16

Spiking 
Scientific 

Computing



We can identify a neuromorphic advantage for simulating random 
walks 

17

We define a neuromorphic advantage as an 
algorithm that shows a demonstrable advantage 

in terms of one resource (e.g., energy) while 
exhibiting comparable scaling in other resources 

(e.g., time). 

Smith et al., Nature Electronics 2022

Spiking 
Scientific 

Computing



Math: What PDEs can these stochastic processes be useful for?
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Class of Partial Integro-Differential Equations:

Stochastic Process:

Solution to initial value problem (u(0,x)=g(x)): Monte Carlo Approximates This Expectation

NMC Hardware Simulates This Stochastic Process

Smith et al., Nature Electronics 2022

Spiking 
Scientific 

Computing



Neural MC algorithm can run wide range of stochastic processes

19Smith et al., Nature Electronics 2022

Diffusion

Drift Absorption
 / Decay

Jump 
processes

Spiking 
Scientific 

Computing



Some more applied examples
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Ø Boltzmann state transition
Ø Particle can exist in 2 states (+1 or -1) or 

be absorbed.  
Ø Implement as simple stochastic process 

on TrueNorth 

Smith et al., Nature Electronics 2022

Spiking 
Scientific 

Computing



Some more applied examples

21

Ø 1D particle transport
Ø Particle moves in 2D, only track 1D.  
Ø At point x=0, particle reflects in random 

direction
Ø Track velocity in x-dimension and angle
Ø Implemented on Loihi 

Smith et al., Nature Electronics 2022

Spiking 
Scientific 

Computing



Monte Carlo advantage comes from benefits of spiking
… still limited by CMOS
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Broad Applications
Monte Carlo simulations

Discrete Time Markov Chains

Graph Analytics
Graph neural networks
…
Limitations
Stochastic sampling
Neuron and synapse scaling 
Configurability of neurons
On chip / off chip 
communicationSpiking 

Scientific 
Computing



Today’s large scale neuromorphic systems are on Pareto Frontier of 
computing

Broad class of algorithms fit this tradeoff
oMonte Carlo / Probabilistic
oGraph analytics
oArtificial intelligence
oOptimization

Architectural advantage
oEvent-driven processing
oMassive parallelism

Limitations
oStill CMOS devices
oArchitecture is a one time benefit

not an extension to Moore’s Law

Operations per second

Operations 
per Joule

CPUs
GPUs

Loihi
SpiNNaker

TrueNorth

Neuromorphic
Von Neumann

If we’re honest; who will pick energy 
efficiency over speed?

Spiking 
Scientific 

Computing



Today’s large scale neuromorphic systems are on Pareto Frontier of 
computing

Broad class of algorithms fit this tradeoff
oMonte Carlo / Probabilistic
oGraph analytics
oArtificial intelligence
oOptimization

Architectural advantage
oEvent-driven processing
oMassive parallelism

Limitations
oStill CMOS devices
oArchitecture is a one time benefit

not an extension to Moore’s Law

Operations per second

Operations 
per Joule

CPUs
GPUs

Loihi
SpiNNaker

TrueNorth

Neuromorphic
Von Neumann

Spiking 
Scientific 

Computing Opportunity for Brain-Inspired Materials, Devices & Algorithms
Increasing processing (density, speed, capabilities, etc) while preserving 

energy advantage and jump neuromorphic over Pareto Frontier
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Brain 
Inspiration



Aimone, CACM 2019 26

Brain 
Inspiration



Aimone, CACM 2019 27

Brain 
Inspiration



AI systems are slowly starting to incorporate brain-like plasticity

28

Brain 
Inspiration



A concrete future direction: Brain-inspired 
systems may need to embrace stochasticity

29



Has the tremendous success of deterministic computing left 
probabilistic applications behind?

30

~20 W
~1015 synaptic events / second
Fully stochastic 

~400 W
~1013-1014 FLOPS
Fully deterministic

Which approach is best to 
interpret a clear input?

Moore’s 
Law Wins!



Has the tremendous success of deterministic computing left 
probabilistic applications behind?

31

~20 W
~1015 synaptic events / second
Fully stochastic 

~400 W
~1013-1014 FLOPS
Fully deterministic

Which approach is best to 
interpret an ambiguous 

input?



Artificial Intelligence

• Bayesian neural 
networks are 
appealing yet often 
computationally 
intractable

Modeling and Simulation

• Modeling uncertainties is critical in the use of even fully deterministic 
simulations

• Many applications are inherently stochastic in their physics and are best 
modeled using probabilistic methods

Computing applications face challenges in uncertainty

32



CO-designed Improved Neural Foundations Leveraging Inherent 
Physics Stochasticity (COINFLIPS)

• Office of Science Co-Design in 
Microelectronics program
• Co-funded through ASCR and BES, 

participation by NP, HEP, and FES

33

To enable new generations of energy-efficient 
computing systems over the next decade, a 
complete reconceptualization of the science 
and technology underlying the 
microelectronics co-design approach is 
needed to integrate emerging devices, materials, 
interconnects, and non-linear phenomena with 
the needs of scientific computing applications.



CO-designed Improved Neural Foundations Leveraging Inherent 
Physics Stochasticity (COINFLIPS)

• Office of Science Co-Design in 
Microelectronics program
• Co-funded through ASCR and BES, 

participation by NP, HEP, and FES

• ~COINFLIPS is partnering with a 
growing number of organizations

o Andy Kent @ New York University
o Jean Anne Incorvia @ University of Texas Austin
o Katie Schuman @ University of Tennessee
o Prasanna Date @ Oak Ridge National Laboratory
o Les Bland @ Temple University

3434



We are benefitting from 70 years of 
microelectronics that embrace 
deterministic components to solve 
deterministic problems

COINFLIPS sees an opportunity to embrace 
stochastic computing to solve uncertainty 
problems



Today’s computers emulate uncertainty by using pseudo-random 
number generation

“Any one who considers arithmetical 
methods of producing random digits 
is, of course, in a state of sin.”

John von Neumann, 1951
70 years later… 
• Pseudo-RNGs can be quite effective, and 

do offer some advantages in verification, 
etc.

• But they are expensive, and when they 
go wrong the implications can be 
disastrous 



COINFLIPS aims to integrate true random number generators  using 
stochastic devices into neuromorphic architectures

Improved Random Number Generation 
(Type, Quantity, Quality)

Neuromorphic architecture that integrates 
ubiquitous stochastic devices with computing and 

memory

Sample a random number from 
the exact distribution we require

And sample that number where it 
is needed within the computation

COINFLIPS aims to improve both speed and energy 
of probabilistic computing applications

37



Evaluate opportunity of a probabilistic computing paradigm

38

Today

COINFLIPS



Evaluate opportunity of a probabilistic computing paradigm

39

Today

Future?

Step 1: Draw suitable uniform RNs from hardware
COINFLIPS



Evaluate opportunity of a probabilistic computing paradigm
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Today

Future?

Step 2: Draw suitable model-specific RNs from hardware
COINFLIPS



Evaluate opportunity of a probabilistic computing paradigm
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Today

Future?

Step 3: Integrate hardware-enabled random sampling into computationCOINFLIPS



Mapping Coinflips to Arbitrary Distributions

42

Probabilistic 
Neural Theory 

and Algorithms

…

Many devices 
flipping at one 
time

Naively, we can expand a binary tree with probabilities 
to describe any distribution

Simulation…



Summary: Probabilistic computing is perhaps an ideal target for 
exploring potential for microelectronics co-design

• All aspects of microelectronics (from 
materials to applications) have something 
to contribute
• Can show benefits from innovation at all scales

• Stochastic devices 
+ neuromorphic parallelism 

= broad application impact 
• Both Mod-Sim and AI stand to benefit

• Opportunity to consider important aspects 
of computing up front
• Address issues such as I/O, programmability, and 

theory from the onset, as opposed to after-the-fact

43



Backup: Neuroscience and stochastic computation
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There is a long history of viewing neuroscience through a stochastic 
computation perspective. Most of this history is independent of envisioned 
computing applications

“Independent sources of quantal variability at 
single glutamatergic synapses”  Franks KM, 
Stevens CF, Sejnowski TJ J. Neurosci. 2003

“Hippocampal Reactivation of Random 
Trajectories Resembling Brownian 
Diffusion”  Stella F et al., Neuron. 2017

“Neural Dynamics as Sampling: A model of 
stochastic computation …”  Buesing L et 
al., PLOS Computational Biology. 2011



Has the tremendous success of deterministic computing left 
probabilistic applications behind?

Stochasticity reveals contrast in 
computing approaches
• Modern microelectronics spends 

tremendous resources in 
enforcing determinism

• The brain embraces and controls 
stochasticity across spatial and 
time scales

Developing probabilistic computing to 
address probabilistic applications
• COINFLIPS is combining 

stochastic devices with 
neuromorphic architectures

• Co-design is proving invaluable 
in developing this novel 
paradigm for microelectronics

45

~20 W
~1015 synaptic events / second
Fully stochastic 

~400 W
~1013-1014 FLOPS
Fully deterministic

Which approach is best 
to interpret an 

ambiguous input?



Thanks
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