

Sandia
National
Laboratories

Exceptional service in the national interest

The Promise of Neuromorphic Computing

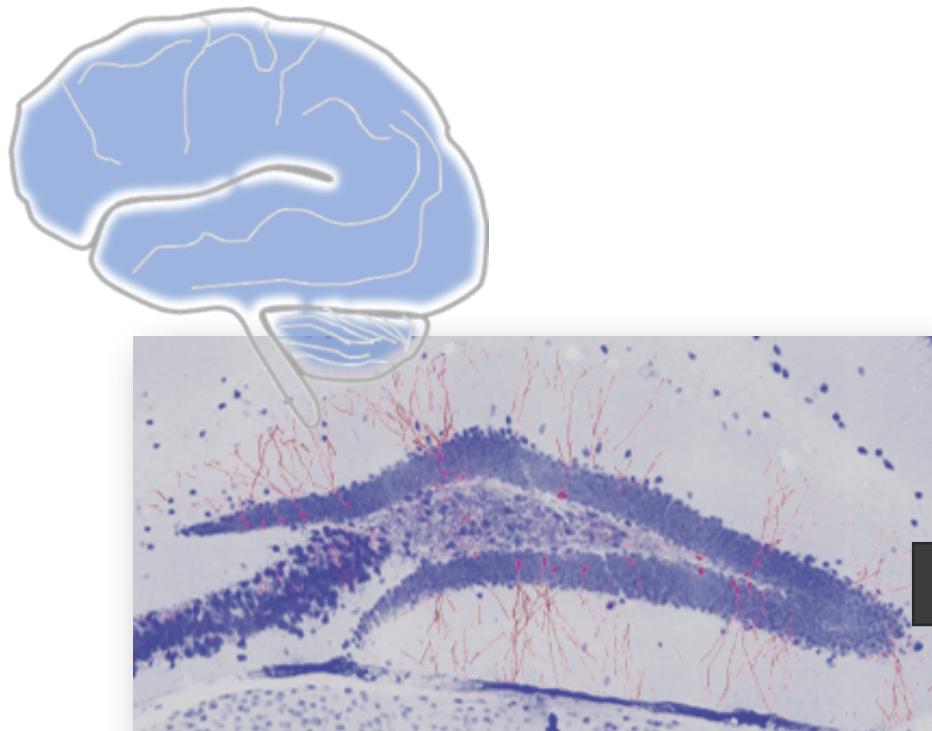
Rob Hoekstra

June 26, 2023

So why the brain?

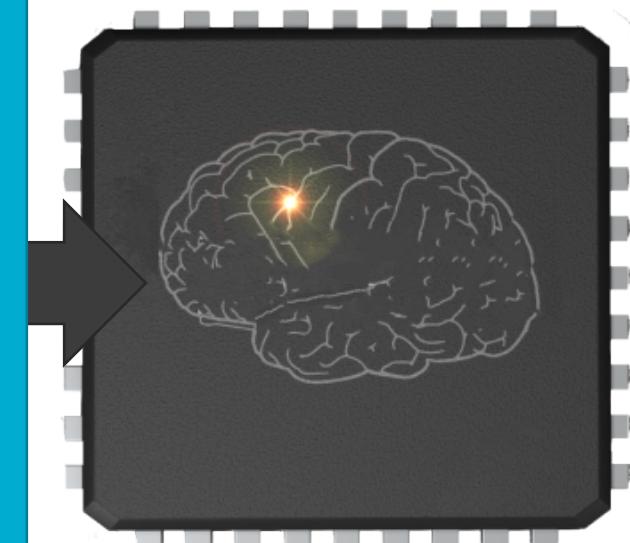
- Energy efficient
- Operationally fast considering slow components
- Data efficient
- Diverse applications
- Robustness

What is the brain good at?



Realized Features of Brain Inspiration in Neuromorphic Hardware

- Event-driven communication
- Graph based connectivity
- Processing in Memory
- In situ learning
- Analog computation
- Post-Moore's Law Devices
- Ubiquitous stochasticity

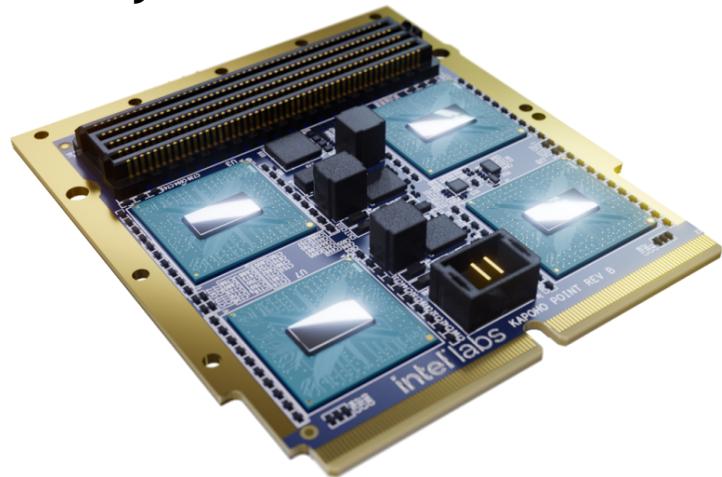


Where are we today in neuromorphic computing?

Realized Features of Brain Inspiration in Neuromorphic Hardware

- Event-driven communication
- Graph based connectivity
- Processing in Memory
- In situ learning
- Analog computation
- Post-Moore's Law Devices
- Ubiquitous stochasticity

Today

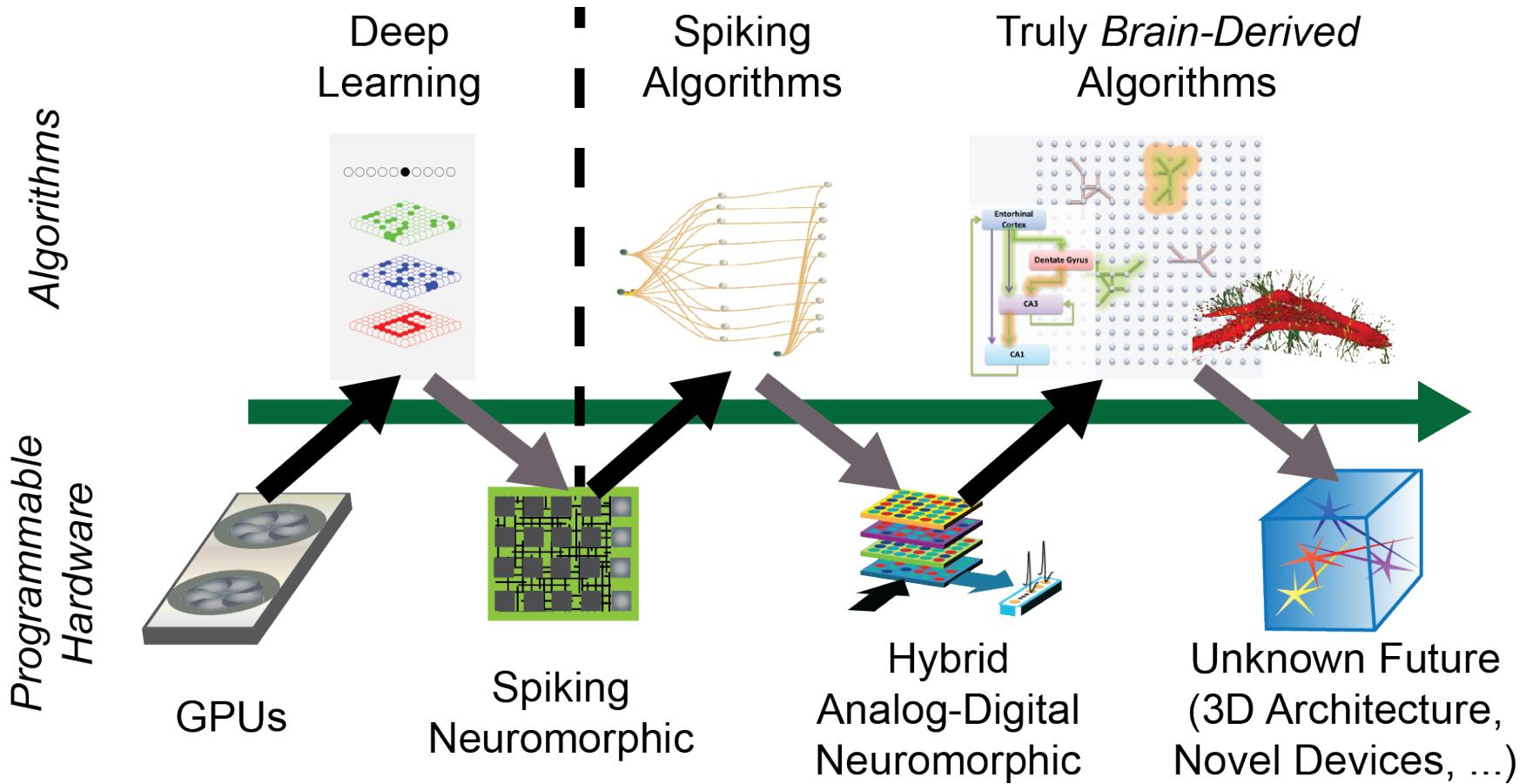


Intel Loihi 2

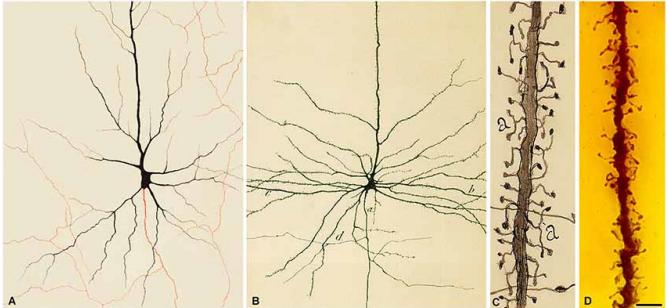
*Millions of CMOS neurons
Billions of CMOS synapses
~ 1 Watt power*

One example (of many...)

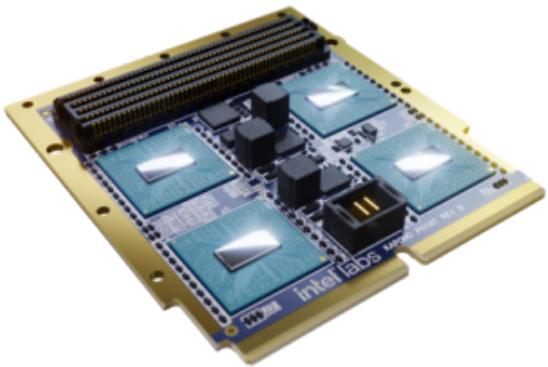
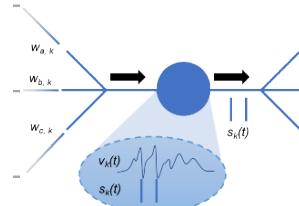
Towards novel future architectures



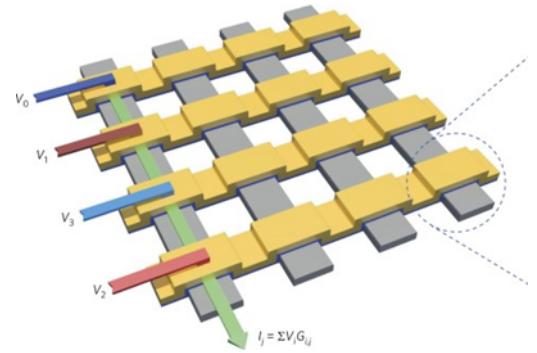
Fundamental science question: what is the scale of neuromorphic computing needed?



>10¹¹ neurons
>10¹⁵ synapses
High complexity
Highly efficient
Slow



>10⁵ neurons
>10⁸ synapses
Low complexity
Moderately efficient
Fast



$$I = \sum V_i G_{ij}$$

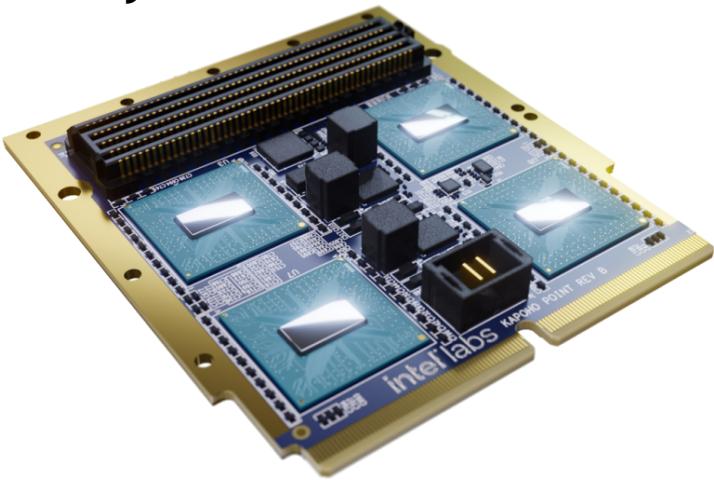
~10² neurons
~10⁴ synapses
Very low complexity
Highly efficient
Fast?

Where are we today in neuromorphic computing? And where might we be in the future?

Realized Features of Brain Inspiration in Neuromorphic Hardware

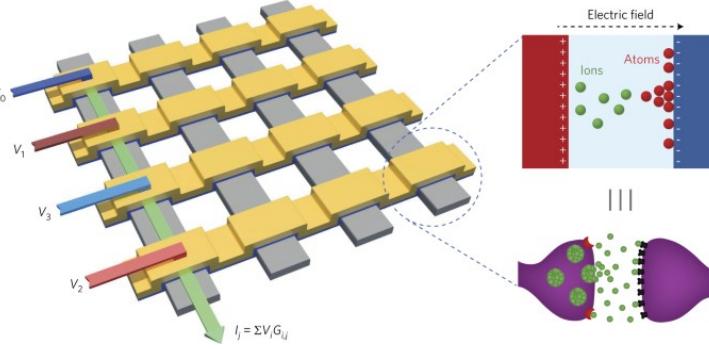
- Event-driven communication
- Graph based connectivity
- Processing in Memory
- In situ learning
- Analog computation
- Post-Moore's Law Devices
- Ubiquitous stochasticity

Today



Intel Loihi 2
Millions of CMOS neurons
Billions of CMOS synapses
~ 1 Watt power

Tomorrow

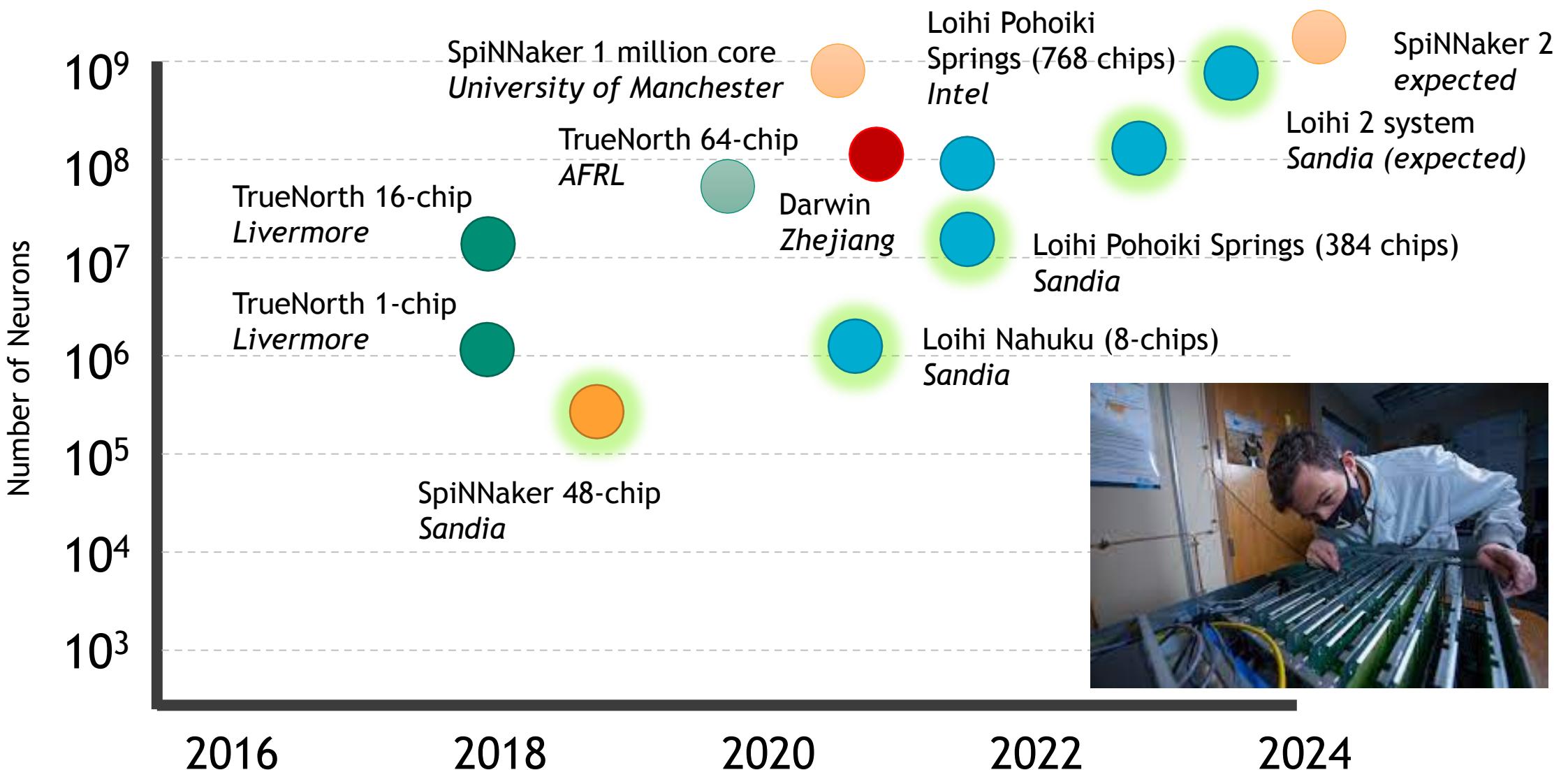


Zidan et al., 2018

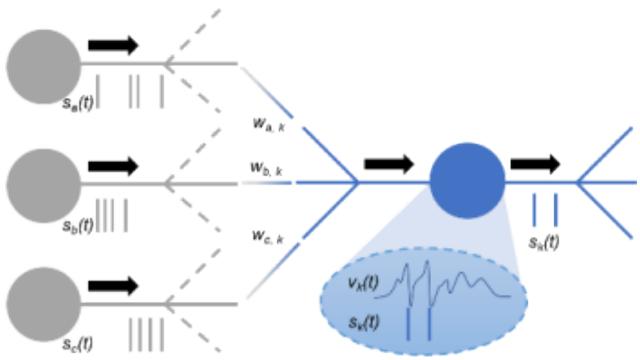
Post-Moore Devices
(ECRAM, Memristors, MTJs, optical, organic, etc)

Scale to human sizes?

Sandia hosts some of the world's largest CMOS-based neuromorphic systems



Spiking neuromorphic today: Overview

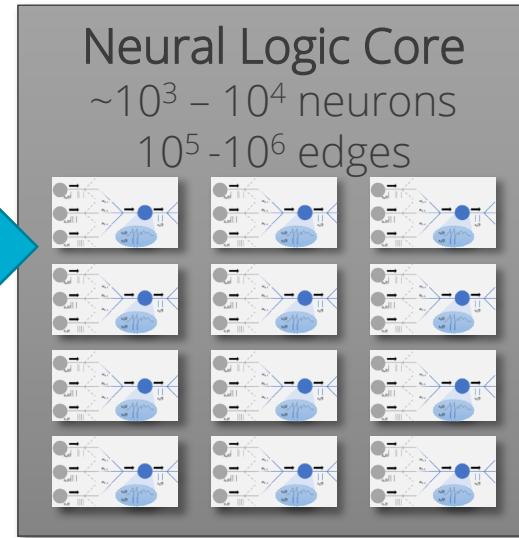
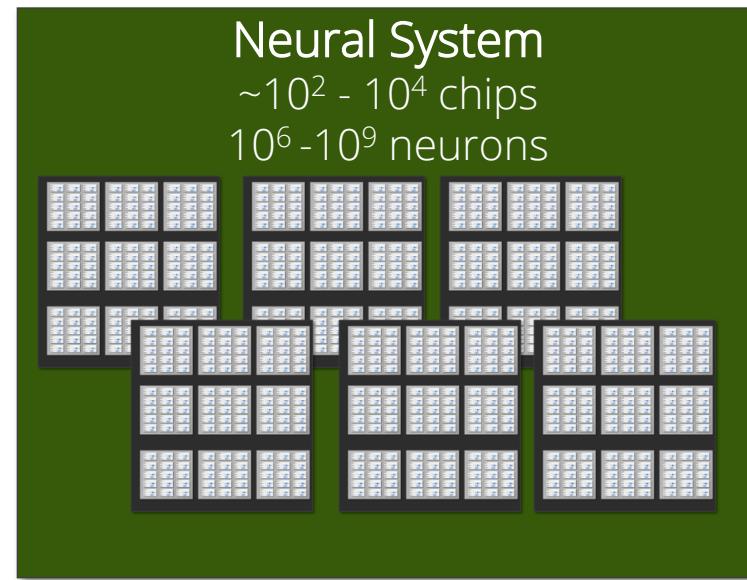
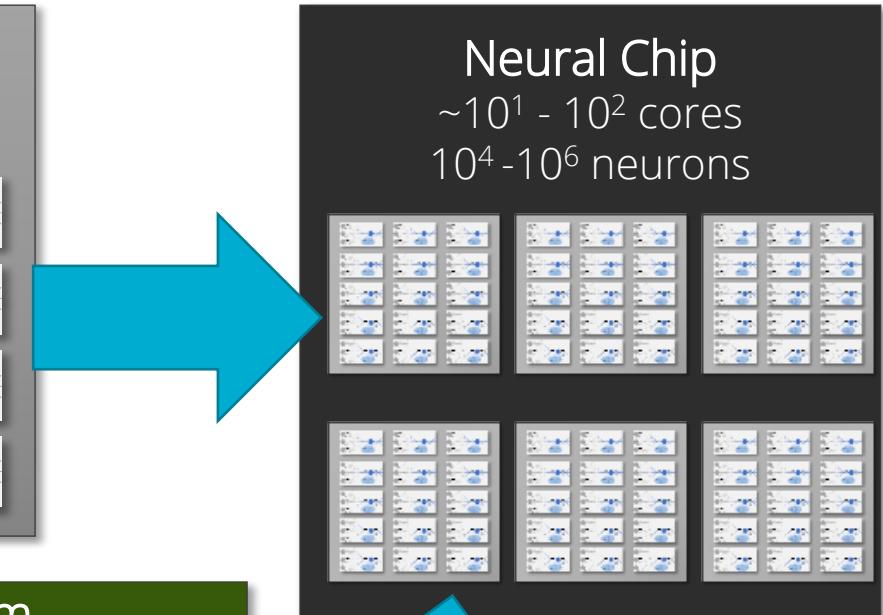


Computational Primitives:

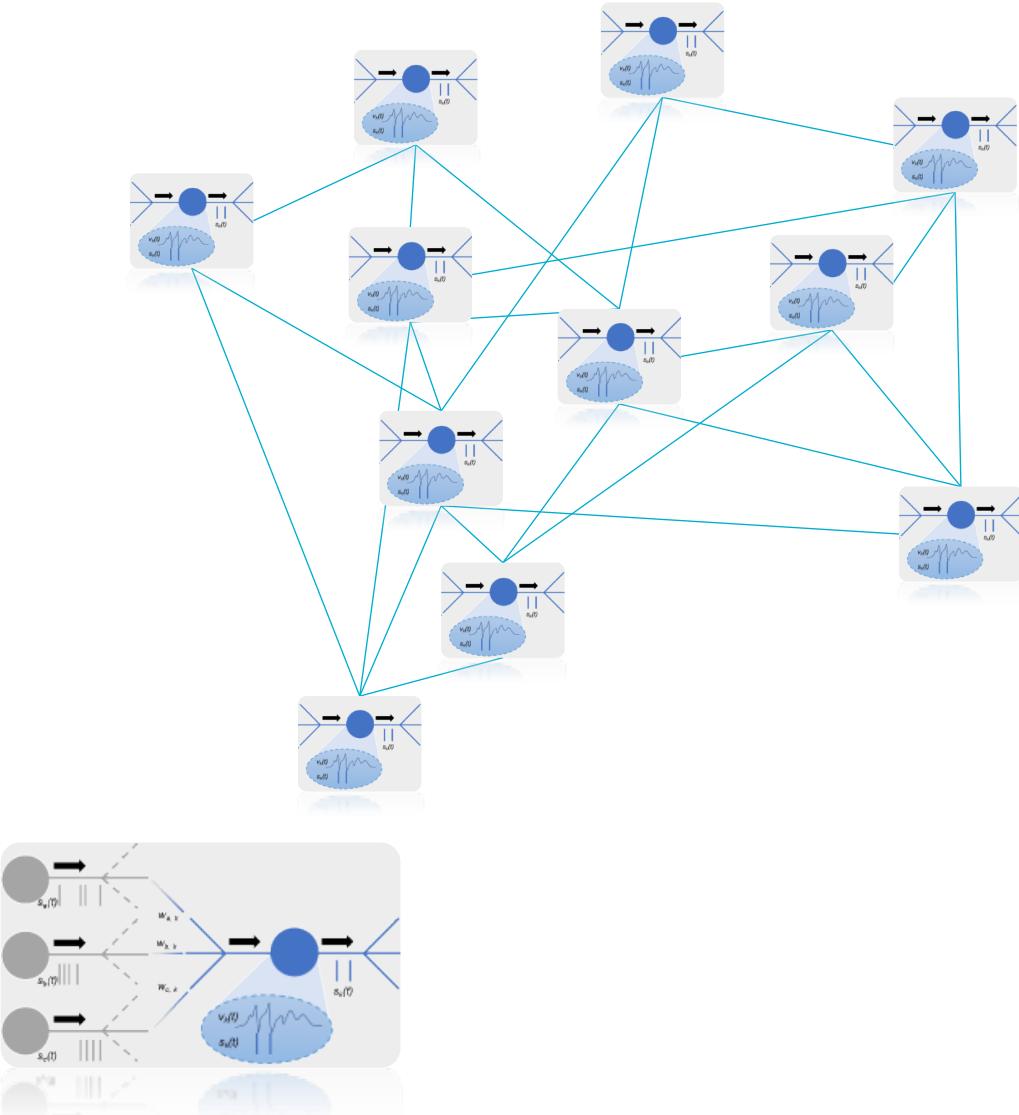
Spiking Neurons (vertices / nodes)
Synapses (connections / edges)

Programmable as arbitrary graphs

- Edges: Directed and weighted
- Nodes: Threshold gate logic + time
- *Artificial neural networks are a special case*
- Programmability, theoretical, analysis and software are open research questions



Neuromorphic hardware jumped ahead of the rest of the stack



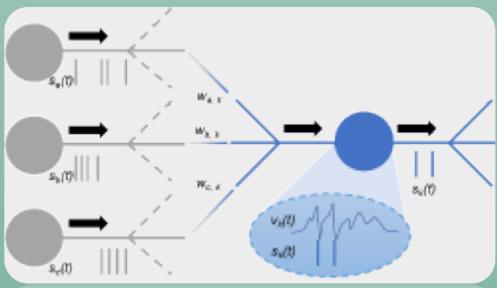
Neuromorphic hardware has been built with a “if we build it, neuroscientists will come” hope

We need

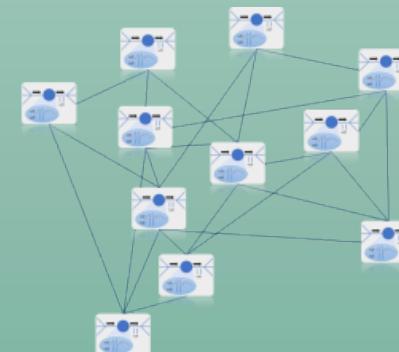
- ❖ Driving Applications
- ❖ Systems Interface
- ❖ Software and Programming Paradigm
- ❖ Theoretical Framework

A quick aside: most neuromorphic hardware is *not* designed for current artificial neural networks

Neuromorphic Hardware



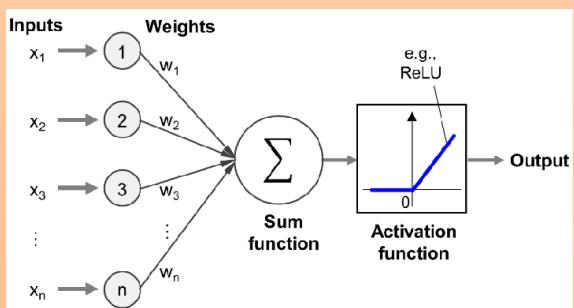
Spiking neurons



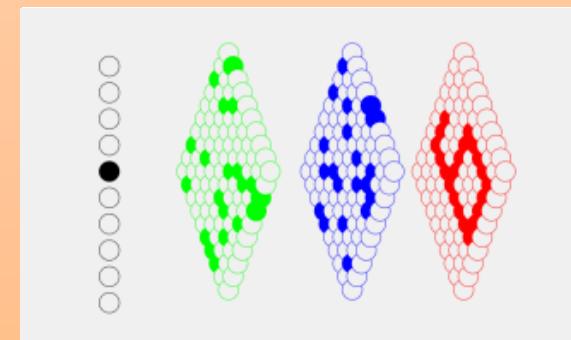
Arbitrary connectivity

- Continual learning integrated into operation
- Inherently temporal
- Dynamical tasks?

Artificial Neural Networks



Continuous neurons

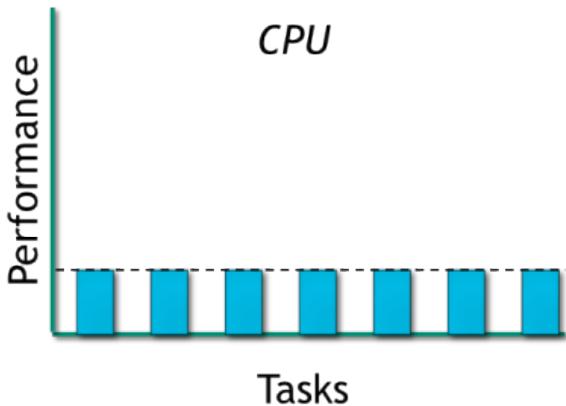


Linear algebra-like networks

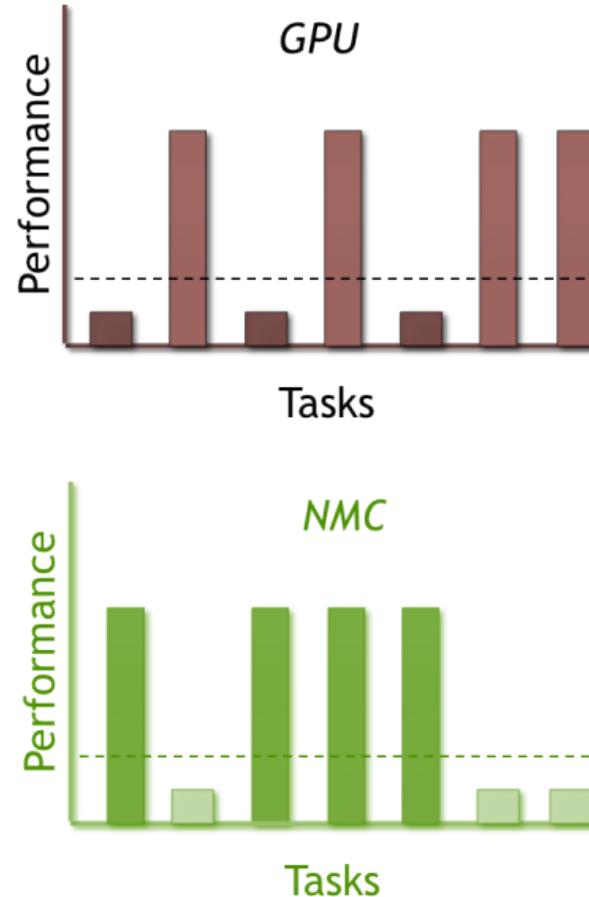
- Distinct training and inference modes
- Time is largely avoided
- Computer vision and natural language

Could neuromorphic be generalized to more algorithms just as GPUs have been?

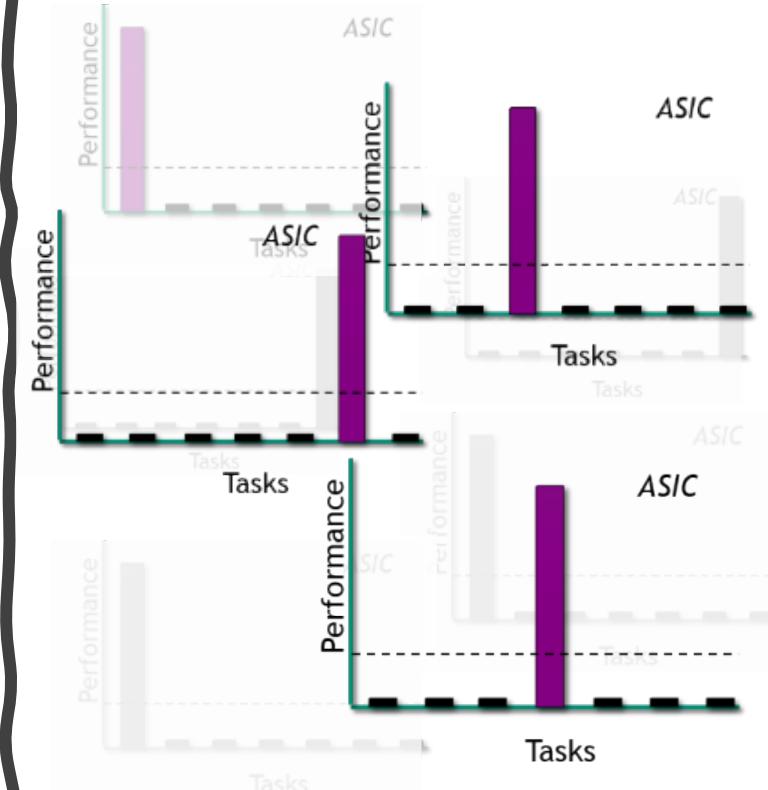
Truly General Purpose



Specialized General Purpose



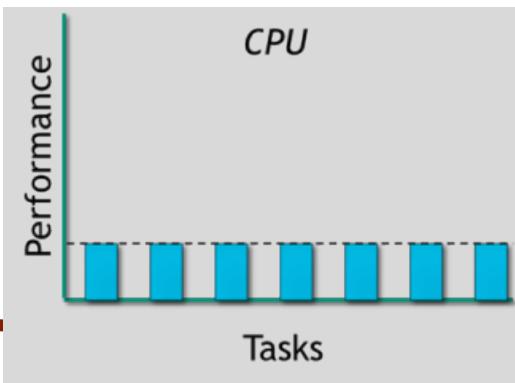
Application Specific



Separating the “can do” from the “should do”

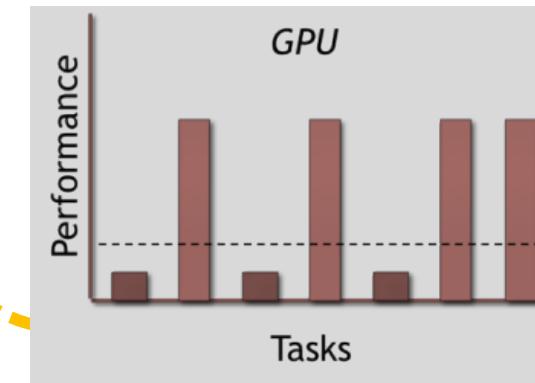
Can implement on NMC, but only to avoid I/O

- Arithmetic (adding, subtraction, multiplication, etc.)
- Data filtering
- Sorting
- Data conversions
- ...



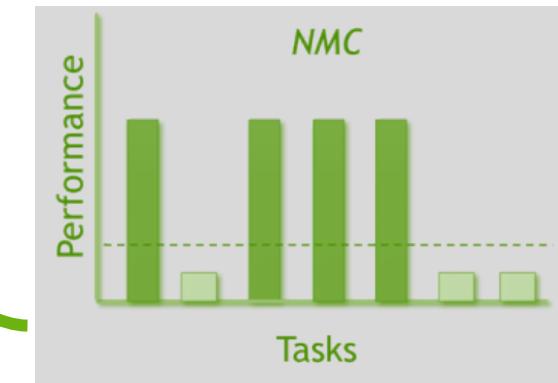
Possibly good on NMC, but there may be alternatives

- Deep learning / conventional artificial neural networks
- Parallel data processing (background and change detection, convolutions, etc)
- Linear algebra (MVM, cross-correlations, L1-norm, etc)
- Classic machine learning (SVMs, k-nearest neighbors, clustering)



Should implement on NMC once systems reach scale

- Algorithms the brain actually uses (* *we don't have these yet...*)
- Random walks / Discrete Time Monte Carlo
- *Some* Graph Algorithms (Dynamic programming, Djikstra, triangle counting, graph cut, etc)
- *Some* neural networks



Neuromorphic computing can impact a broad range of applications

≡ IOPscience

Neuromorphic Computing and Engineering

ACCEPTED MANUSCRIPT • OPEN ACCESS

A review of non-cognitive applications for neuromorphic computing

James Aimone¹ , Prasanna Date², Gabriel Fonseca-Guerra³, Kathleen Hamilton²,
Kyle Henke⁴, Bill Kay⁵, Garrett Kenyon⁴, Shruti Kulkarni², Susan Mniszewski⁶,
Maryam Parsa⁷, Sumedh Risbud³ , Catherine Schuman⁸ , William Severa¹ and
J. Darby Smith¹ [— Hide full author list](#)

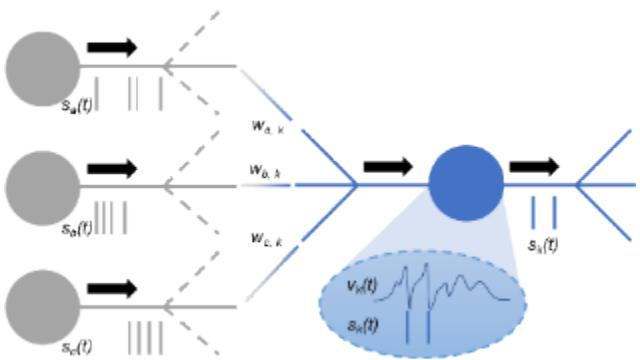
Accepted Manuscript online 10 August 2022 • © 2022 The Author(s). Published by IOP Publishing Ltd

64 Total downloads

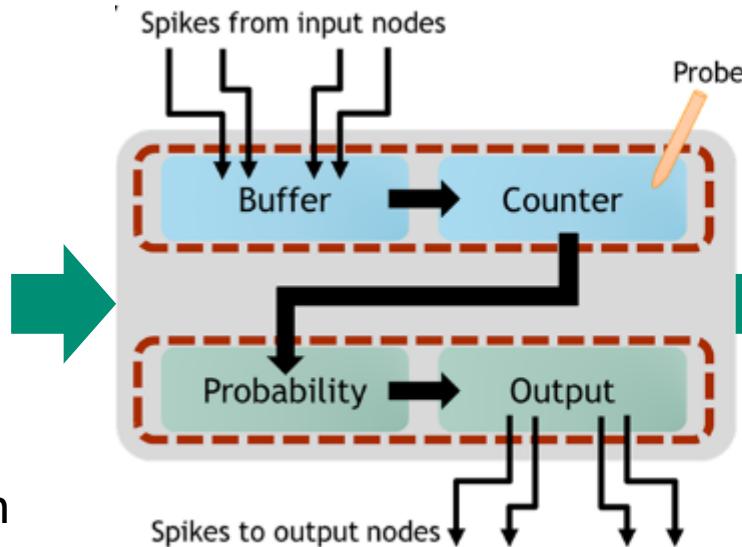
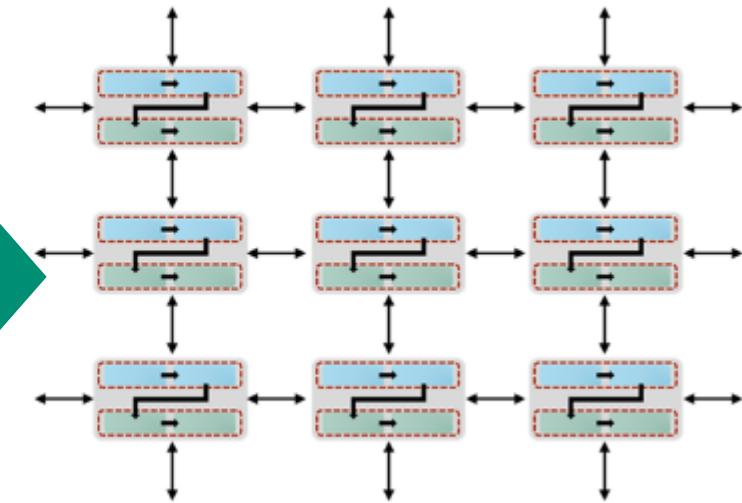
[Turn on MathJax](#)

Share this article

Today's spiking NMC shows energy advantage over conventional approaches on Monte Carlo simulations



Leaky Integrate and Fire Neuron



nature
electronics

ARTICLES

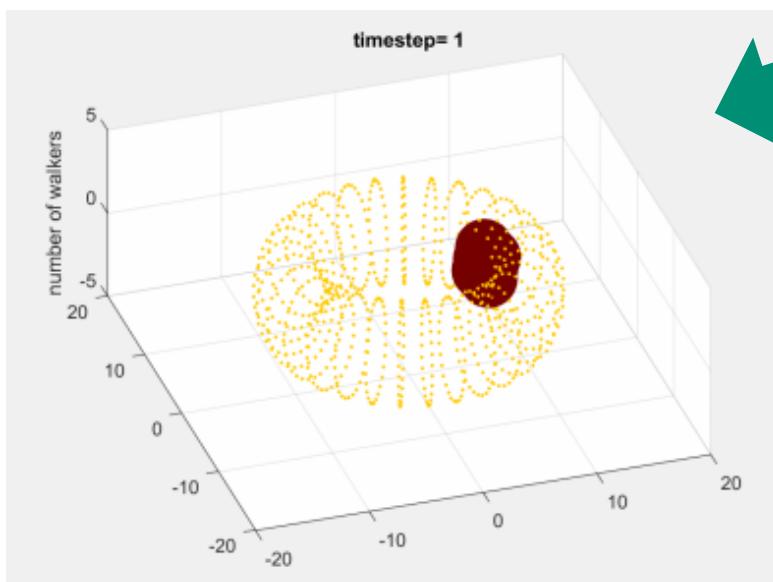
<https://doi.org/10.1038/s41928-023-02957-7>

Check for updates

Neuromorphic scaling advantages for energy-efficient random walk computations

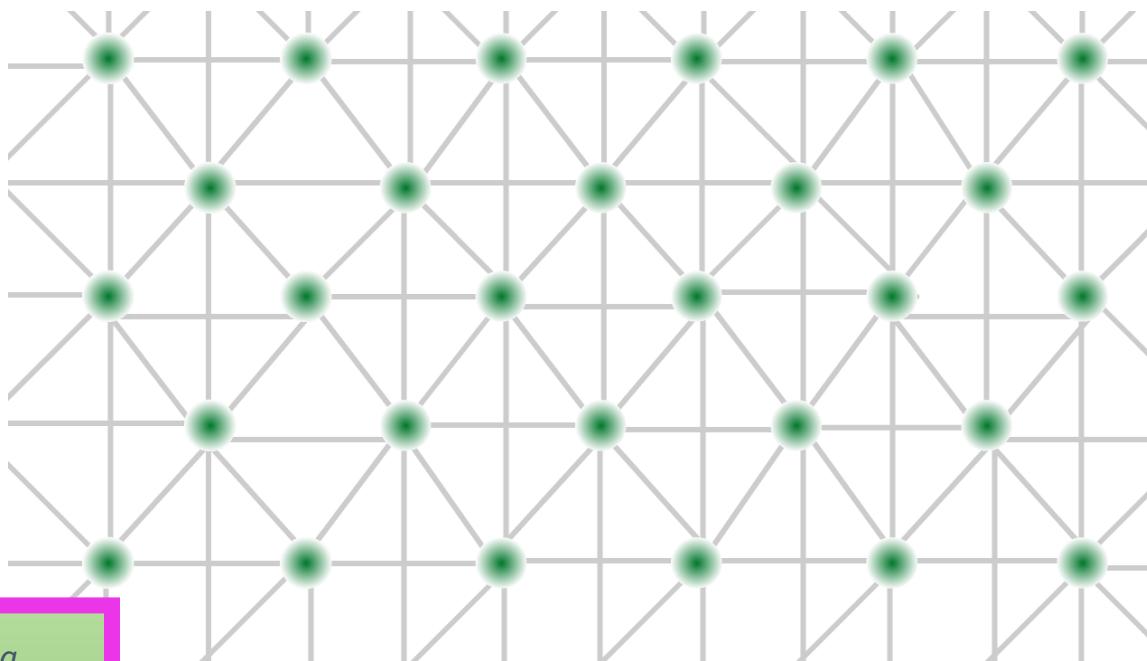
J. Darby Smith, Aaron J. Hill, Leah E. Reeder, Brian C. Franka, Richard B. Lehoczky, William Severa and James B. Aimone

Neuromorphic computing, which aims to replicate the computational structure and architecture of the brain in synthetic hardware, has typically focused on artificial intelligence applications. What is less explored is whether such brain-inspired hardware can provide value beyond cognitive tasks. Here we show that the high degree of parallelism and configurability of spiking neuromorphic architectures makes them well suited to implement random walks via discrete-time Markov chains. These random walks are used to approximate the solution of a range of mathematical, physical and biological problems, including financial and computing tasks. Using IBM's TrueNorth and Intel's Loihi neuromorphic computing platforms, we show that our neuromorphic computing algorithm for generating random walk approximations of diffusion offers advantages in energy-efficient computation compared with conventional approaches. We also show that our neuromorphic computing algorithm can be extended to more sophisticated jump-diffusion processes that are useful in a range of applications, including financial economics, particle physics and machine learning.



Spiking
Scientific
Computing

Neuromorphic computing advantage appears to be when an algorithm can split task across computational graph with sparse communication



Spiking
Scientific
Computing

Monte Carlo simulations
Discrete Time Markov Chains

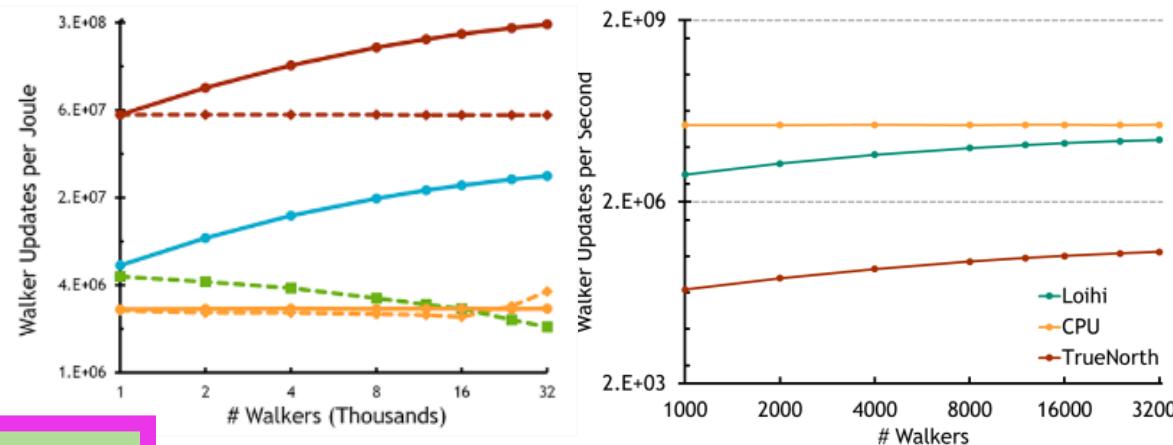
Dynamic programming

Graph neural networks

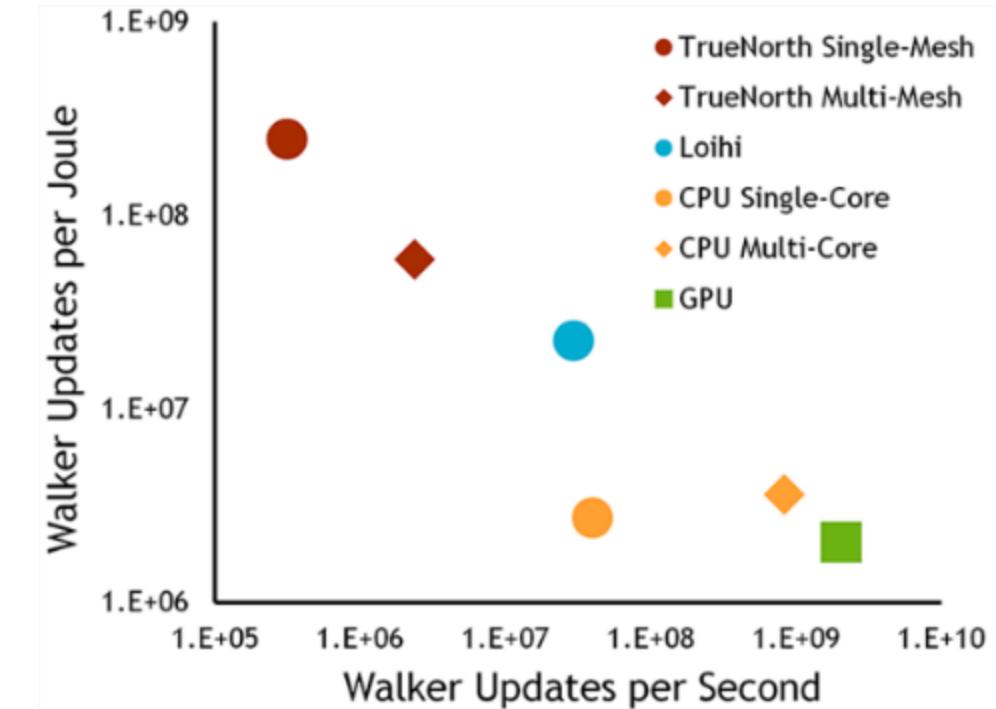
...

We can identify a neuromorphic advantage for simulating random walks

We define a *neuromorphic advantage* as an algorithm that shows a demonstrable **advantage** in terms of one resource (e.g., energy) while exhibiting comparable **scaling** in other resources (e.g., time).



Spiking
Scientific
Computing



Math: What PDEs can these stochastic processes be useful for?

Class of Partial Integro-Differential Equations:

$$\begin{aligned} \frac{\partial}{\partial t} u(t, \mathbf{x}) = & \frac{1}{2} \sum_{i,j} (\mathbf{a} \mathbf{a}^\top)_{i,j}(t, \mathbf{x}) \frac{\partial^2}{\partial x_i \partial x_j} u(t, \mathbf{x}) + \sum_i b_i(t, \mathbf{x}) \frac{\partial}{\partial x_i} u(t, \mathbf{x}) \\ & + \lambda(t, \mathbf{x}) \int u(t, \mathbf{x} + \mathbf{h}(t, \mathbf{x}, q) - u(t, \mathbf{x}) \phi_Q(q; t, \mathbf{x}) dq \\ & + c(t, \mathbf{x}) u(t, \mathbf{x}) + f(t, \mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^d, t \in [0, \infty). \end{aligned}$$

Stochastic Process:

NMC Hardware Simulates This Stochastic Process

$$d\mathbf{X}(t) = \mathbf{b}(t, \mathbf{X}(t)) dt + \mathbf{a}(t, \mathbf{X}(t)) d\mathbf{W}(t) + \mathbf{h}(t, \mathbf{X}(t), q) dP(t; Q, \mathbf{X}(t)) .$$

Spiking
Scientific
Computing

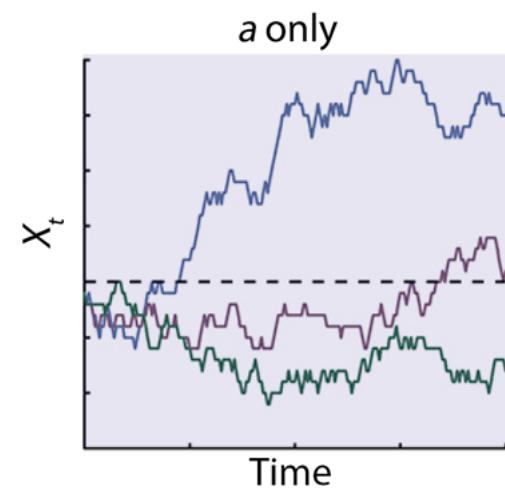
Solution to initial value problem ($u(0, \mathbf{x}) = g(\mathbf{x})$):

$$u(t, \mathbf{x}) = \mathbb{E} g(\mathbf{X}(t)) \exp \left(\int_0^t c(s, \mathbf{X}(s)) ds \right) + \int_0^t f(s, \mathbf{X}(s)) \exp \left(\int_0^s c(\ell, \mathbf{X}(\ell)) d\ell \right) ds \quad \mathbf{X}(0) = \mathbf{x} .$$

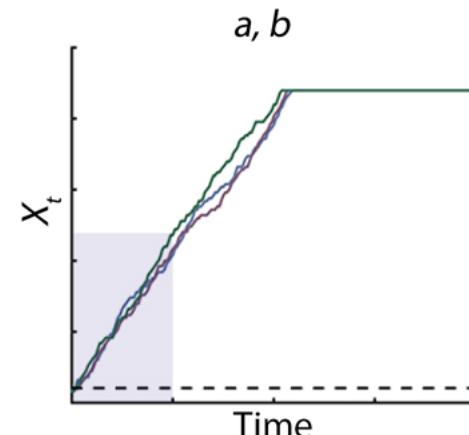
Monte Carlo Approximates This Expectation

Neural MC algorithm can run wide range of stochastic processes

Diffusion



Drift

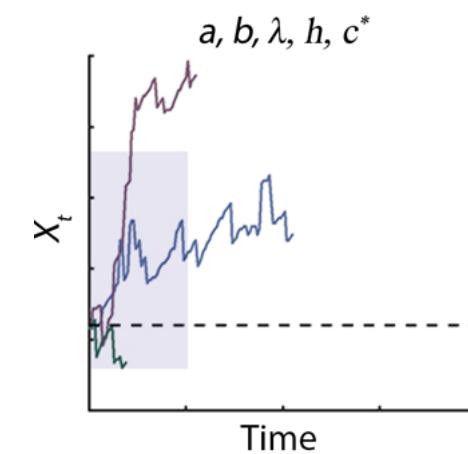


Spiking
Scientific
Computing

Jump
processes

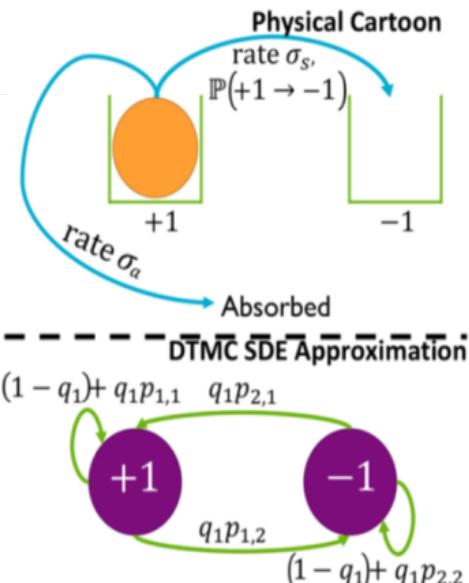
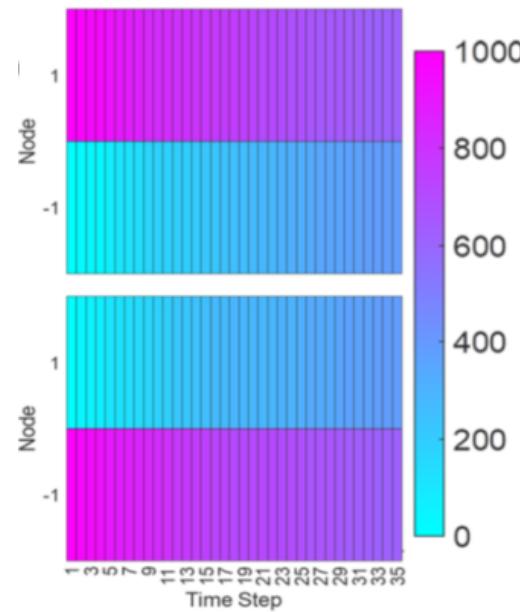
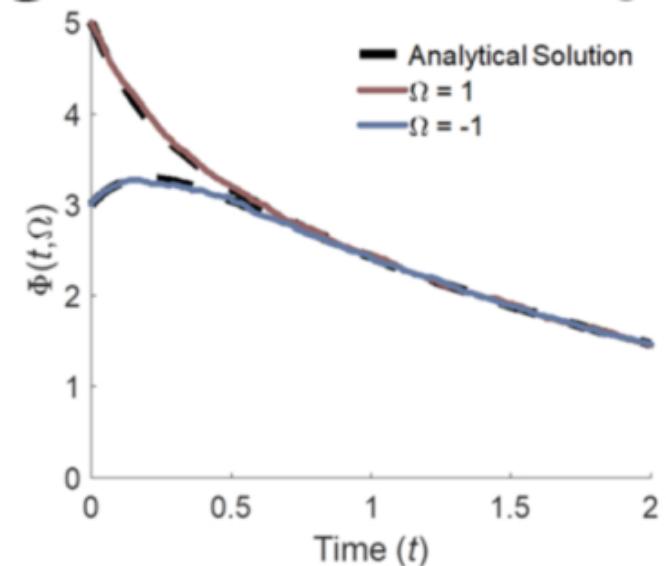
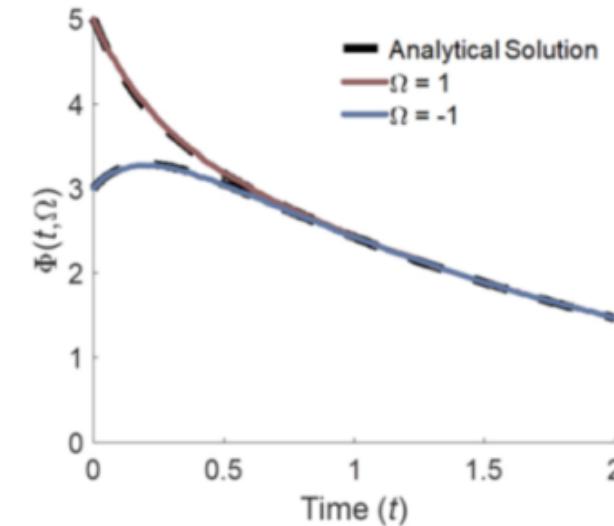


Absorption
/ Decay



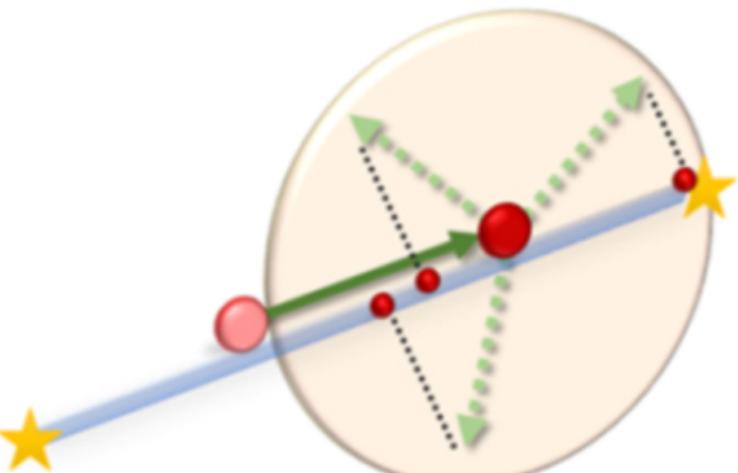
Some more applied examples

- Boltzmann state transition
- Particle can exist in 2 states (+1 or -1) or be absorbed.
- Implement as simple stochastic process on TrueNorth

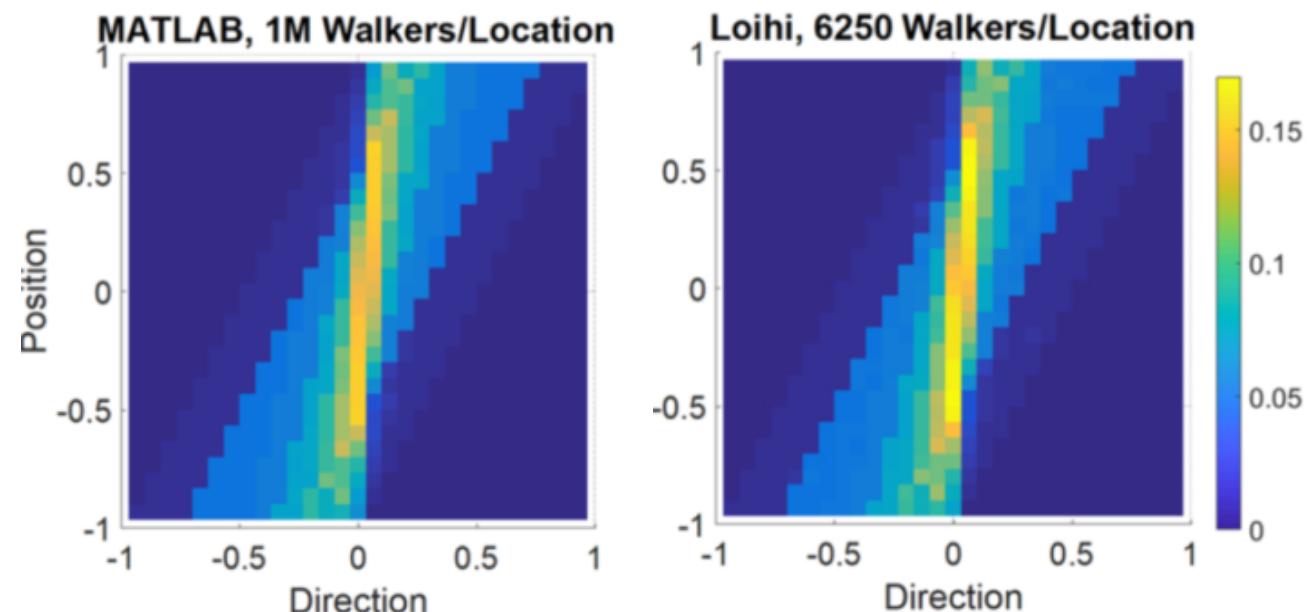
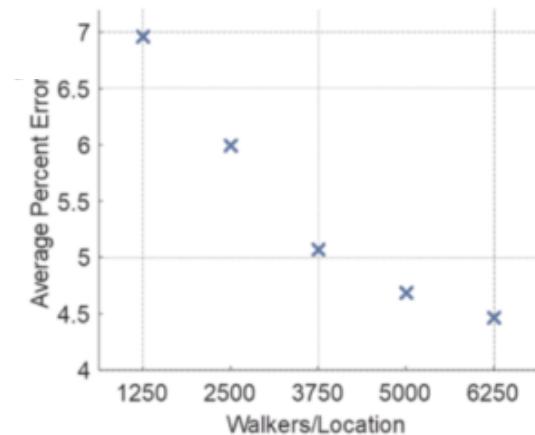


Some more applied examples

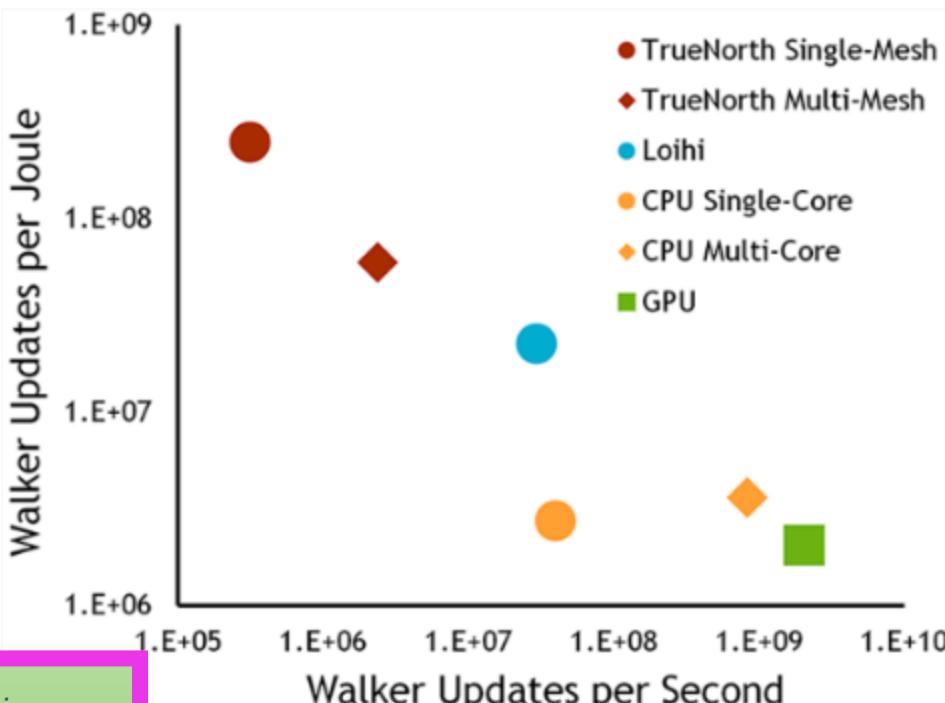
- 1D particle transport
- Particle moves in 2D, only track 1D.
- At point $x=0$, particle reflects in random direction
- Track velocity in x -dimension and angle
- Implemented on Loihi



Spiking
Scientific
Computing



Monte Carlo advantage comes from benefits of *spiking* ... still limited by CMOS



Spiking
Scientific
Computing

Broad Applications

Monte Carlo simulations
Discrete Time Markov Chains

Graph Analytics

Graph neural networks

...

Limitations

Stochastic sampling

Neuron and synapse scaling

Configurability of neurons

On chip / off chip
communication

Today's large scale neuromorphic systems are on *Pareto Frontier* of computing

Broad class of algorithms fit this tradeoff

- Monte Carlo / Probabilistic
- Graph analytics
- Artificial intelligence
- Optimization

Architectural advantage

- Event-driven processing
- Massive parallelism

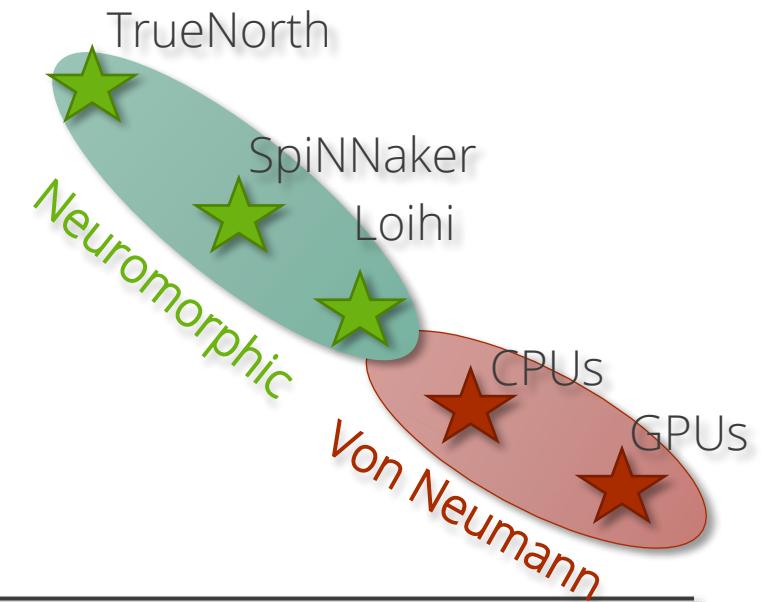
Limitations

- Still CMOS devices
- Architecture is a one time benefit
not an extension to Moore's Law

Spiking
Scientific
Computing

Operations
per Joule

If we're honest; who will pick energy efficiency over speed?



Operations per second

Today's large scale neuromorphic systems are on *Pareto Frontier* of computing

Broad class of algorithms fit this tradeoff

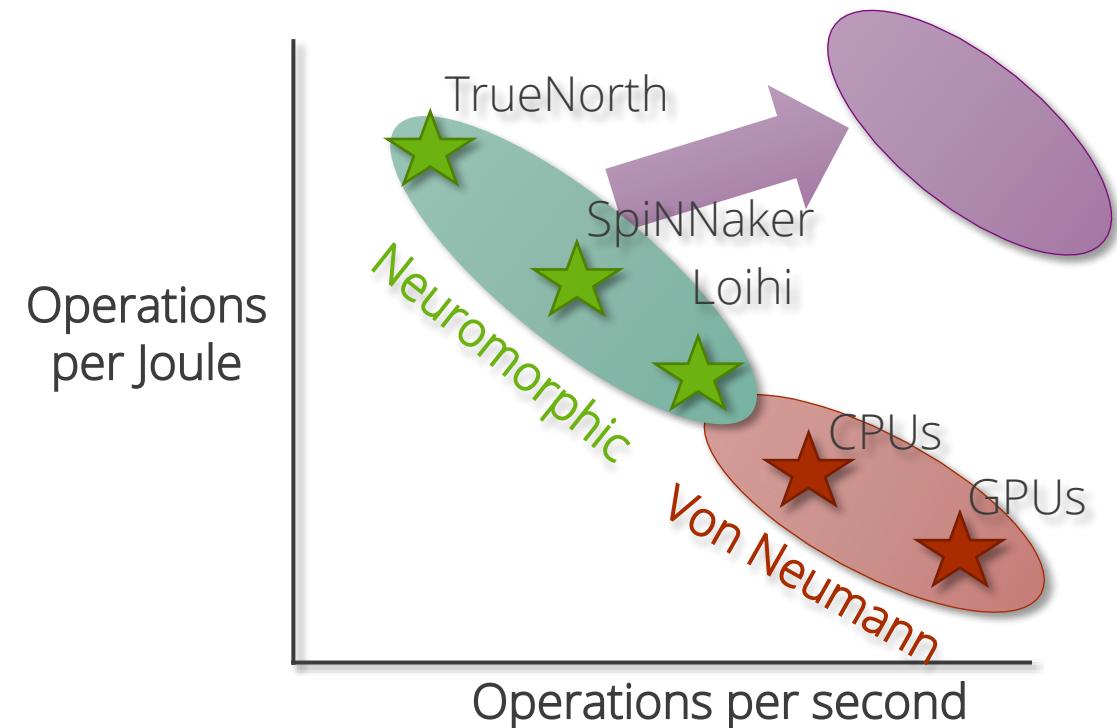
- Monte Carlo / Probabilistic
- Graph analytics
- Artificial intelligence
- Optimization

Architectural advantage

- Event-driven processing
- Massive parallelism

Limitations

- Still CMOS devices
- Architecture is a one time benefit
not an extension to Moore's Law



Spiking
Scientific
Computing

Opportunity for Brain-Inspired Materials, Devices & Algorithms
Increasing processing (density, speed, capabilities, etc) while preserving
energy advantage and jump neuromorphic over Pareto Frontier

review articles

DOI:10.1145/3231580

Advances in neurotechnologies are reigniting opportunities to bring neural computation insights into broader computing applications.

BY JAMES B. AIMONE

Neural Algorithms and Computing Beyond Moore's Law

THE IMPENDING DEMISE of Moore's Law has begun to broadly impact the computing research community.³⁸ Moore's Law has driven the computing industry for many decades, with nearly every aspect of society benefiting from the advance of improved computing processors, sensors, and controllers. Behind these products has been a considerable research industry, with billions of dollars invested in fields ranging from computer science to electrical engineering. Fundamentally, however, the exponential growth in computing described by Moore's Law was driven by advances in materials science.^{30,37} From the start, the power of the computer has been limited by the density of transistors. Progressive advances in how to manipulate silicon through advancing lithography methods and new design tools have kept advancing

computing in spite of perceived limitations of the dominant fabrication processes of the time.³⁷

There is strong evidence that this time is indeed different, and Moore's Law is soon to be over for good.^{3,8} Already, Dennard scaling, Moore's Law's lesser known but equally important parallel, appears to have ended.¹¹ Dennard's scaling refers to the property that the reduction of transistor size came with an equivalent reduction of required power.⁷ This has real consequences—even though Moore's Law has continued over the last decade, with feature sizes going from ~65nm to ~10nm; the ability to speed up processors for a constant power cost has stopped. Today's common CPUs are limited to about 4GHz due to heat generation, which is roughly the same as they were 10 years ago. While Moore's Law enables more CPU cores on a chip (and has enabled high power systems such as GPUs to continue advancing), there is increasing appreciation that feature sizes cannot fall much further, with perhaps two or three further generations remaining prior to ending.

Multiple solutions have been presented for technological extension of Moore's Law,^{1,2,3,8,9,10} but there are two main challenges that must be addressed. For the first time, it is not immediately evident that future materials

» key insights

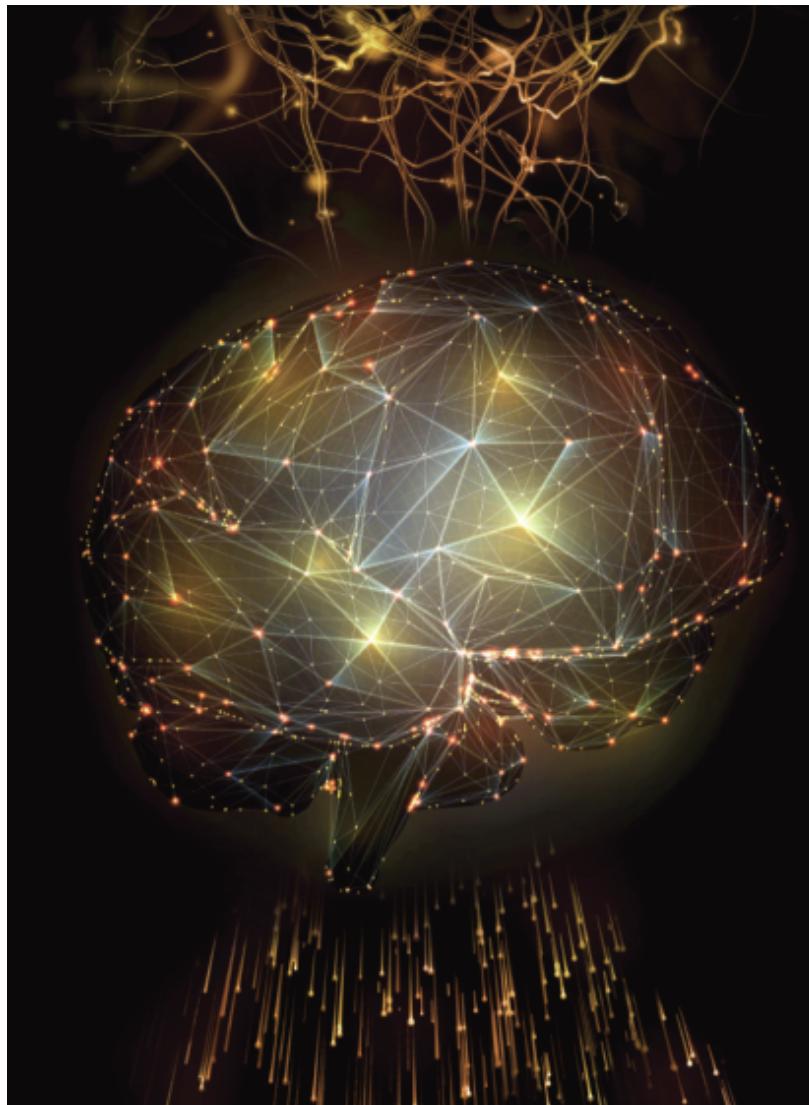
■ While Moore's Law is slowing down, neuroscience is experiencing a revolution, with new technologies allowing us to have more insights into the brain's behavior than ever before and thus positioning the neuroscience field to provide a long-term source of inspiration for novel computing solutions.

■ Extending the reach of brain-inspiration into computing will not only make current AI methods better, but looking beyond the brain's sensory systems can also expand the reach of AI into new applications.

■ Realizing the full potential of brain-inspired computing requires increased collaborations and sharing of knowledge between the neuroscience, computer science, and neuromorphic hardware communities.

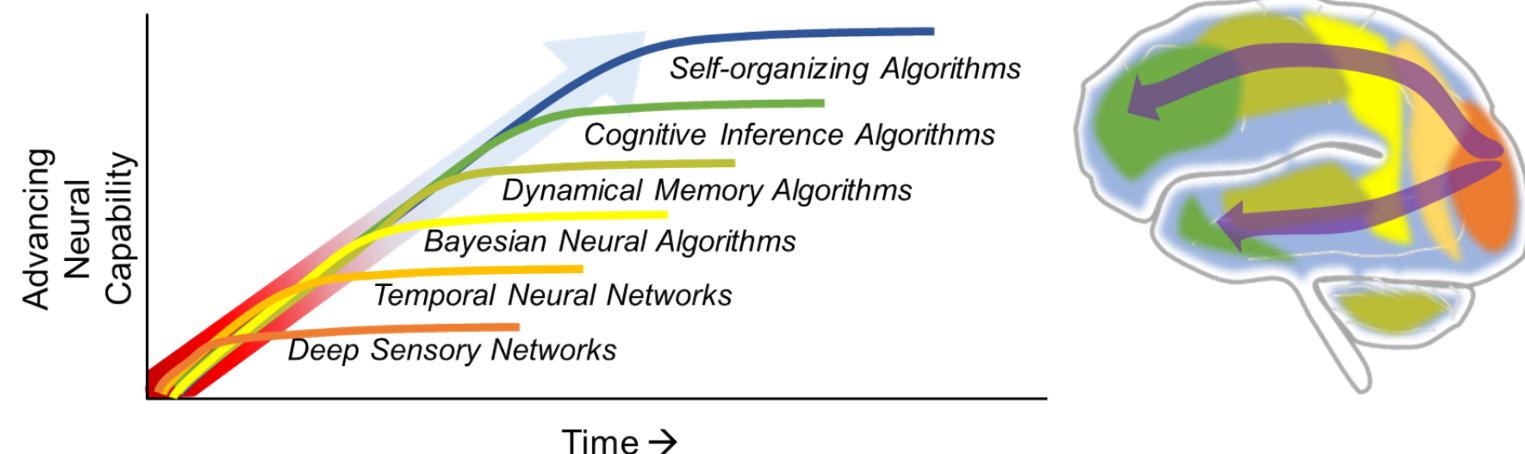
Brain
Inspiration

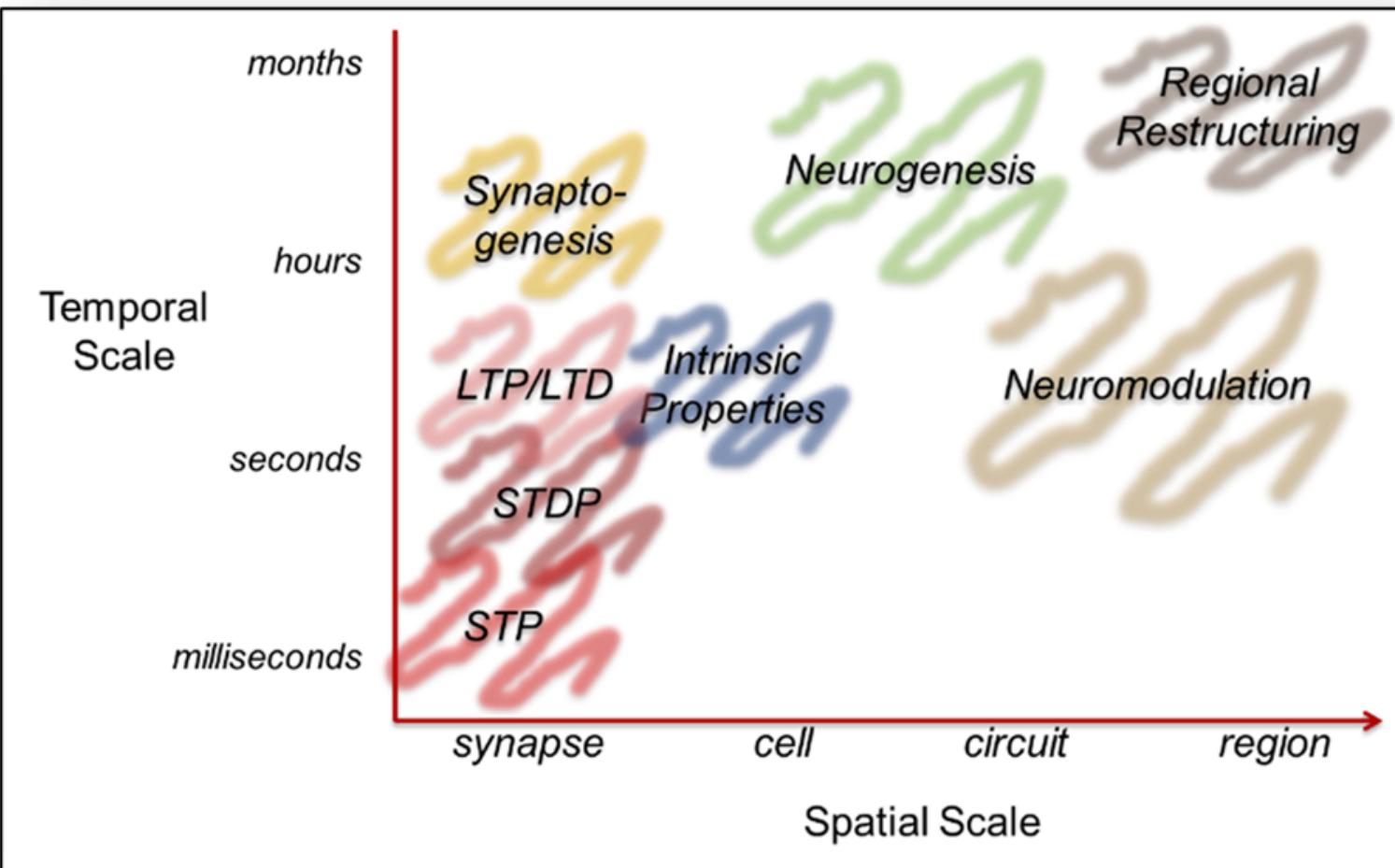
110 COMMUNICATIONS OF THE ACM | APRIL 2018 | VOL. 61 | NO. 4



Brain
Inspiration

Algorithm Class	Current Algorithms	Inspiration	Application
Deep Vision Processing	Deep Convolutional Networks (VGG, AlexNet, GoogleNet, etc.), HMax, Neocognitron	Hierarchy of sensory nuclei and early sensory cortices	Static feature extraction (e.g., images) & pattern classification
Temporal Neural Networks	Deep Recurrent Networks (long short-term memory), Hopfield Networks	Local recurrence of most biological neural circuits, especially higher sensory cortices	Dynamic feature extraction (e.g., videos, audio) & classification
Bayesian Neural Algorithms	Predictive Coding, Hierarchical Temporal Memory	Substantial reciprocal feedback between "higher" and "lower" sensory cortices	Inference across spatial and temporal scales
Dynamical Memory and Control Algorithms	Liquid State Machines, Echo State Networks, Neural Engineering Framework	Continual dynamics of hippocampus, cerebellum, and prefrontal and motor cortices	Online learning content-addressable memory & adaptive motor control
Cognitive Inference Algorithms	Reinforcement learning (e.g., Q-learning)	Integration of multiple modalities and memory into prefrontal cortex, which provides top-down influence on sensory processing	Context and experience dependent information processing and decision making
Self-organizing Algorithms	Neurogenesis Deep Learning	Initial development and continuous refinement of neural circuits to specific input and outputs	Automated neural algorithm development for unknown input and output transformations





AI systems are slowly starting to incorporate brain-like plasticity

Biological underpinnings for lifelong learning machines

Dhireesa Kudithipudi^{1,2}, Mario Aguilar-Simon³, Jonathan Babb³, Maxim Bazhenov⁴, Douglas Blackiston^{5,6}, Josh Bongard⁷, Andrew P. Brna^{8,9}, Suraj Chakravarthi Raja¹⁰, Nick Cheney¹¹, Jeff Clune¹², Anurag Daram¹³, Stefano Fusi¹⁴, Peter Helfer¹⁵, Leslie Kay¹⁶, Nicholas Kett¹², Zsolt Kira¹¹, Soheil Kolouri¹⁴, Jeffrey L. Krichmar¹⁷, Sam Kriegman^{18,19}, Michael Levin¹⁹, Sandeep Madireddy¹⁹, Santosh Manick²⁰, Ali Marjaninejad²¹, Bruce McNaughton²², Risto Miikkulainen²³, Zaneta Navratilova²⁵, Tej Pandit²⁴, Alice Parker²⁶, Praveen K. Pillai²⁷, Sebastian Risi¹¹, Terrence J. Sejnowski¹⁹, Andrea Soltoggio²⁸, Nicholas Soares¹², Andreas S. Tolias²², Dario Urbina-Meléndez²⁸, Francisco J. Valero-Cuevas²⁹, Gido M. van den Ven²², Joshua T. Vogelstein²³, Felix Wang³⁴, Ron Weiss³⁵, Angel Yanguas-Gil²⁶, Xinyun Zou¹⁸ and Hava Siegelmann²⁵

Biological organisms learn from interactions with their environment throughout their lifetime. For artificial systems to successfully act and adapt in the real world, it is desirable to similarly be able to learn on a continual basis. This challenge is known as lifelong learning, and remains to a large extent unsolved. In this Perspective article, we identify a set of key capabilities that artificial systems must have to learn throughout their lifetime, and discuss the biological mechanisms that are natural and non-natural, that help explain how organisms solve these challenges, and present examples of biologically inspired models and biologically plausible mechanisms that have been applied to artificial systems in the quest towards development of lifelong learning machines. We discuss opportunities to further our understanding and advance the state of the art in lifelong learning, aiming to bridge the gap between natural and artificial intelligence.

Learning is a defining ability of biological systems, whereby experience leads to behavioral adaptations that improve performance. The past couple of decades have witnessed astonishing advances in the field of machine learning. Nevertheless, a new generation of applications—self-driving cars and trucks, autonomous drones, delivery robots, intelligent handheld and wearable devices, and others that we have yet imagined—will require a new type of machine learning that can learn throughout its lifetime. Such machines will need to acquire new skills without compromising old ones, adapt to changes, and apply previously learned knowledge to new tasks—all while conserving limited resources such as computing power, memory and energy. These capabilities are collectively known as lifelong learning.

In contrast to the current generation of intelligent machines, animal species ranging from invertebrates to humans are able to learn continually throughout their lifetime. Neuroscientists and other biologists have proposed several mechanisms to explain this ability, and machine learning researchers have attempted to emulate them in artificial systems, with varying degrees of success. In this Perspective article, we examine our current understanding of how

biological organisms learn continually and review the state of the art in biologically inspired AI models. We describe a variety of biological mechanisms, both natural and non-natural, that can improve our ability to create highly functioning lifelong learning machines. It should be noted that there is also a body of artificial intelligence (AI) research that tackles the lifelong learning problem from a less clearly biological perspective. This can be broadly organized into two main categories: (1) ‘incremental’ approaches that reuse past tasks for replay, ‘architectural’ which expand the model parameters^{1–11}; and ‘regularization-based’ approaches, which penalize changes to parameters important to past tasks^{12–14} or use ‘meta-learning’. Such models, which are not directly inspired by a biological mechanism, fall outside the scope of this Perspective.

In this Perspective, we (1) identify a set of key features of lifelong learning; (2) provide an overview of biological mechanisms that are believed to be involved in realizing these features; and (3) review research in which analogous mechanisms have been implemented in machine learning models with the aim of realizing lifelong learning capabilities in artificial systems. We conclude with a look at future challenges and opportunities.

¹University of Texas at San Antonio, San Antonio, TX, USA. ²Intelligent Systems Laboratory, Tel Aviv Scientific, RTR, NC, USA. ³Massachusetts Institute of Technology, Boston, MA, USA. ⁴University of California at San Diego, La Jolla, CA, USA. ⁵Allen Discovery Center, Tufts University, Medford, MA, USA. ⁶Wyss Institute, Harvard University, Cambridge, MA, USA. ⁷University of Vermont, Burlington, VT, USA. ⁸University of Southern California, Los Angeles, CA, USA. ⁹University of British Columbia, Vancouver, BC, Canada. ¹⁰Columbia University, New York, NY, USA. ¹¹University of Chicago, Chicago, IL, USA. ¹²Yale University, New Haven, CT, USA. ¹³Georgia Institute of Technology, Atlanta, GA, USA. ¹⁴Wandsworth College, London, UK. ¹⁵University of California, Irvine, CA, USA. ¹⁶USC National Laboratory for Behavioral Science, Los Angeles, CA, USA. ¹⁷The University of Texas at Austin, Austin, TX, USA. ¹⁸UCL, University of Copenhagen, Copenhagen, Denmark. ¹⁹Salk Institute for Biological Studies, La Jolla, CA, USA. ²⁰Loughborough University, Loughborough, UK. ²¹Rochester Institute of Technology, Rochester, NY, USA. ²²Raymond College of Medicine, Houston, TX, USA. ²³Johns Hopkins University, Baltimore, MD, USA. ²⁴Sandia National Laboratories, Albuquerque, NM, USA. ²⁵University of Massachusetts, Amherst, MA, USA. ²⁶mpo@utexas.edu

NATURE MACHINE INTELLIGENCE | VOL 4 | MARCH 2022 | 196–210 | www.nature.com/naturemachineintelligence/

Brain
Inspiration

Biologically inspired mechanisms	Key features					
	Transfer and adaptation	Overcoming catastrophic forgetting	Exploiting task similarity	Task-agnostic learning	Noise tolerance	Resource efficiency and sustainability
Neurogenesis		169–174	234	161		174,201,202
Episodic replay		54,175,176,179,180		54,176	176,177	53,54,175,176,179,180,203
Metaplasticity		67,89,181–185		7,181,185,198		89,181–183,198
Neuromodulation	70,78,84–86,88,89,157,159,160	78,79,84,89,164	89	78,159	78,158,199	89
Context-dependent perception and gating	78,79,158,161–167	78,168	79,162–166	70,161	158,162,163	
Hierarchical distributed systems			188–191		113,191,200	191
Cognition outside the brain			195–197			
Reconfigurable organisms	139		139,147		139,147	139,147
Multisensory integration			152,155,192,193		113,162	

A concrete future direction: Brain-inspired systems may need to embrace stochasticity

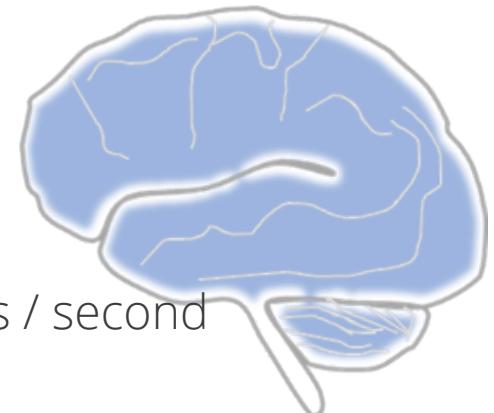
Has the tremendous success of deterministic computing left probabilistic applications behind?

Which approach is best to interpret a clear input?

~400 W
~ 10^{13} - 10^{14} FLOPS
Fully deterministic



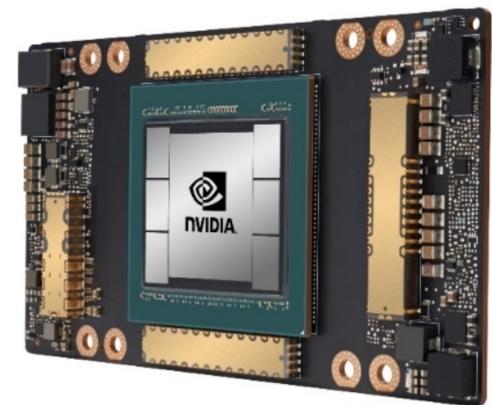
~20 W
~ 10^{15} synaptic events / second
Fully stochastic



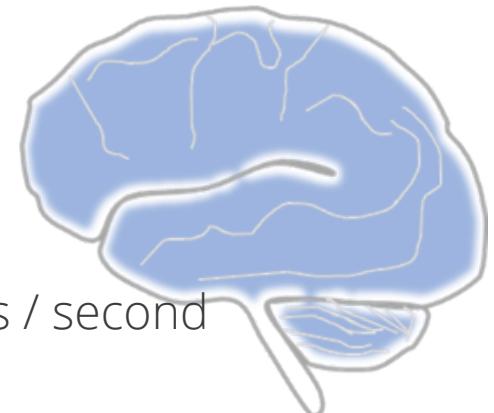
Has the tremendous success of deterministic computing left probabilistic applications behind?

Which approach is best to interpret an ambiguous input?

~400 W
~ 10^{13} - 10^{14} FLOPS
Fully deterministic



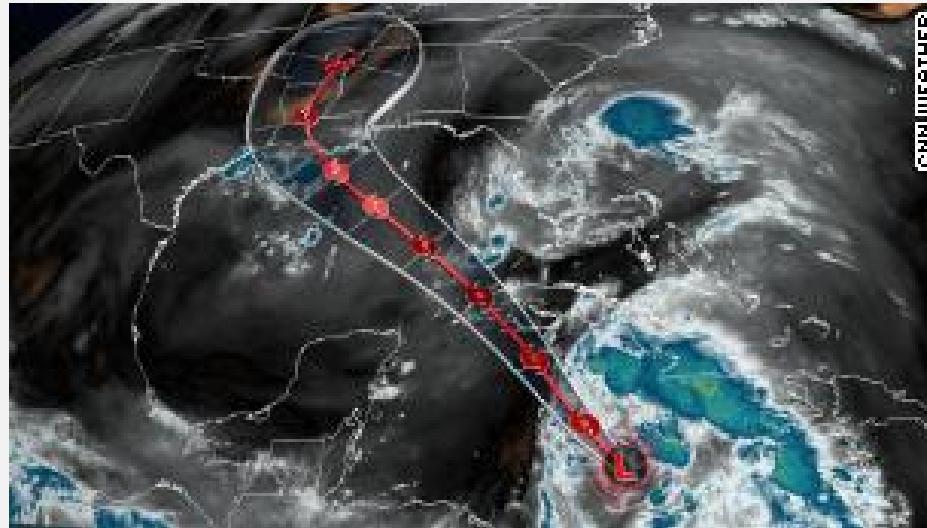
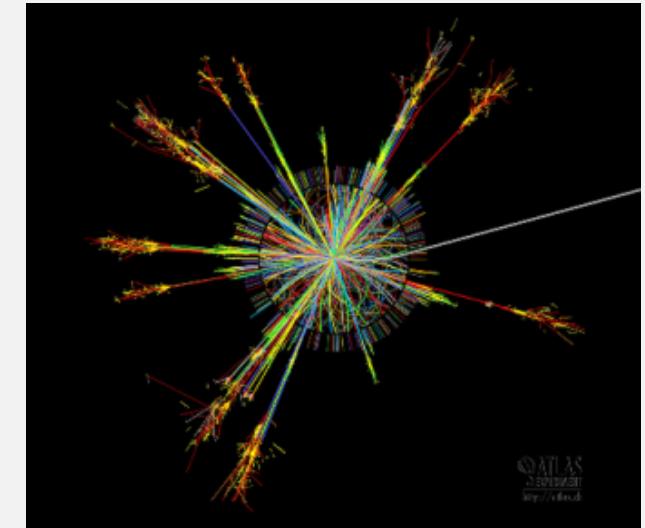
~20 W
~ 10^{15} synaptic events / second
Fully stochastic



Computing applications face challenges in uncertainty

Artificial Intelligence

- Bayesian neural networks are appealing yet often computationally intractable

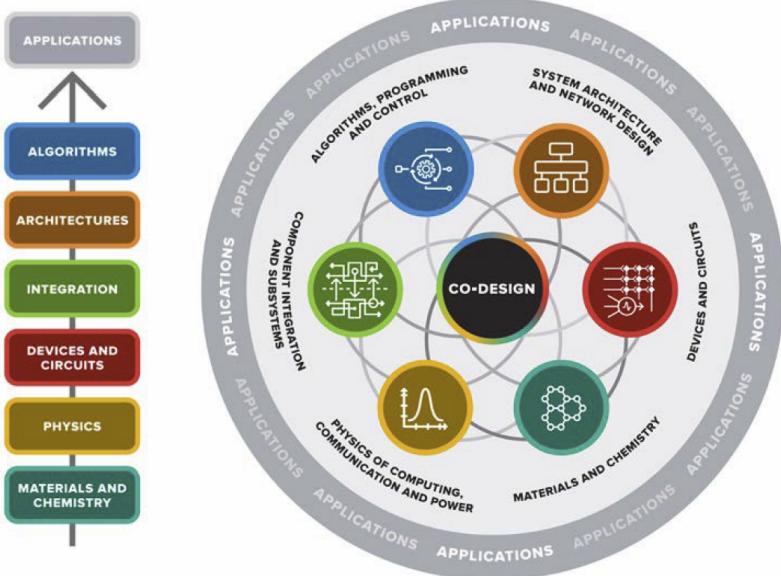


Modeling and Simulation

- Modeling uncertainties is critical in the use of even fully deterministic simulations
- Many applications are inherently stochastic in their physics and are best modeled using probabilistic methods

CO-designed Improved Neural Foundations Leveraging Inherent Physics Stochasticity (COINFLIPS)

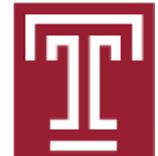
- Office of Science Co-Design in Microelectronics program
 - Co-funded through ASCR and BES, participation by NP, HEP, and FES



Office of
Science

Sandia
National
Laboratories

OAK RIDGE
National Laboratory



To enable new generations of energy-efficient computing systems over the next decade, a complete reconceptualization of the science and technology underlying the microelectronics co-design approach is needed to integrate emerging devices, materials, interconnects, and non-linear phenomena with the needs of scientific computing applications.

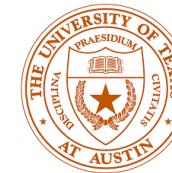
CO-designed Improved Neural Foundations Leveraging Inherent Physics Stochasticity (COINFLIPS)

- Office of Science Co-Design in Microelectronics program
 - Co-funded through ASCR and BES, participation by NP, HEP, and FES
- ~COINFLIPS is partnering with a growing number of organizations
 - Andy Kent @ New York University
 - Jean Anne Incorvia @ University of Texas Austin
 - Katie Schuman @ University of Tennessee
 - Prasanna Date @ Oak Ridge National Laboratory
 - Les Bland @ Temple University

U.S. DEPARTMENT OF
ENERGY

Office of
Science

Sandia
National
Laboratories



OAK RIDGE
National Laboratory

We are benefitting from 70 years of microelectronics that embrace ***deterministic*** components to solve ***deterministic*** problems

COINFLIPS sees an opportunity to embrace ***stochastic*** computing to solve ***uncertainty*** problems

Today's computers emulate uncertainty by using pseudo-random number generation

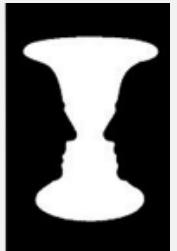
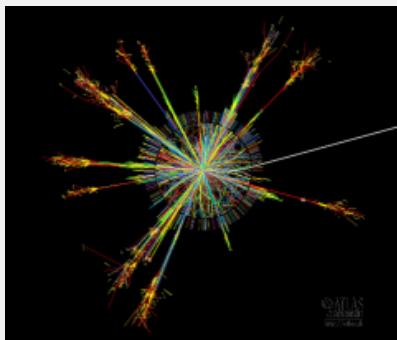
“Any one who considers arithmetical methods of producing random digits is, of course, in a state of sin.”

John von Neumann, 1951

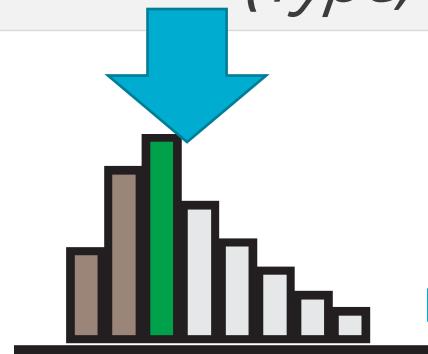
70 years later...

- Pseudo-RNGs can be quite effective, and do offer some advantages in verification, etc.
- But they are expensive, and when they go wrong the implications can be disastrous

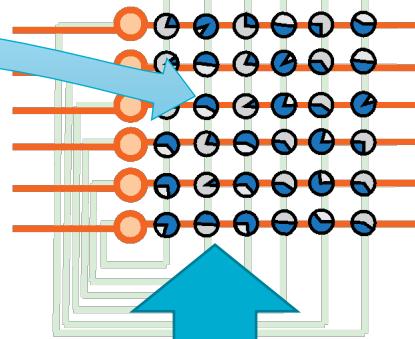
COINFLIPS aims to integrate true random number generators using stochastic devices into neuromorphic architectures



Improved Random Number Generation
(*Type, Quantity, Quality*)



And sample that number *where* it is needed within the computation

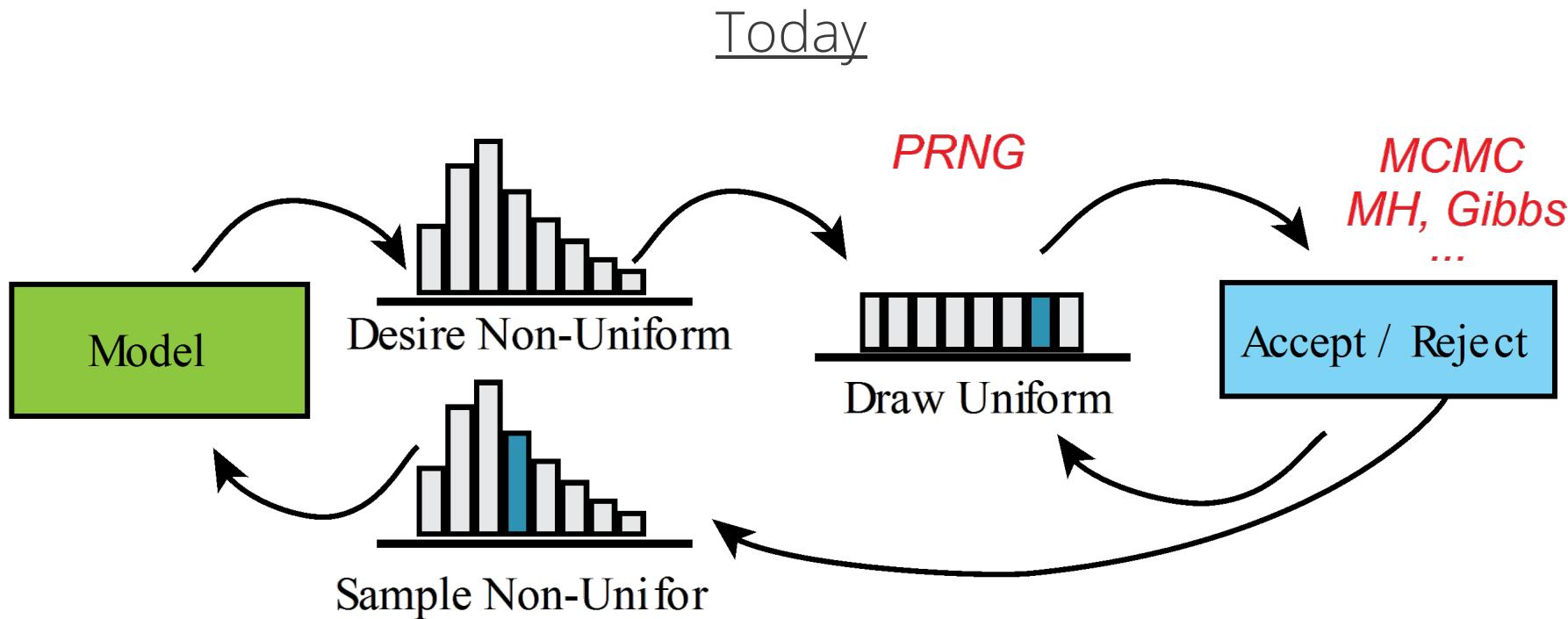


Sample a random number from the *exact* distribution we require

Neuromorphic architecture that integrates ubiquitous stochastic devices with computing and memory

COINFLIPS aims to improve both speed and energy of probabilistic computing applications

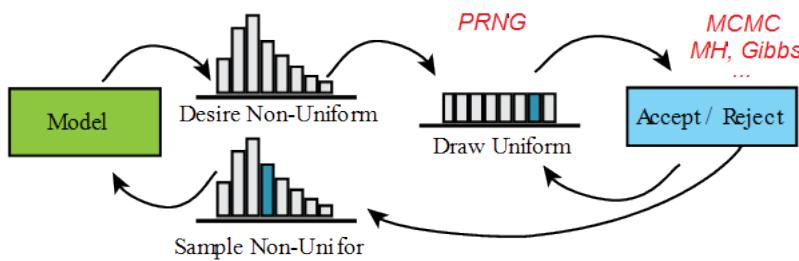
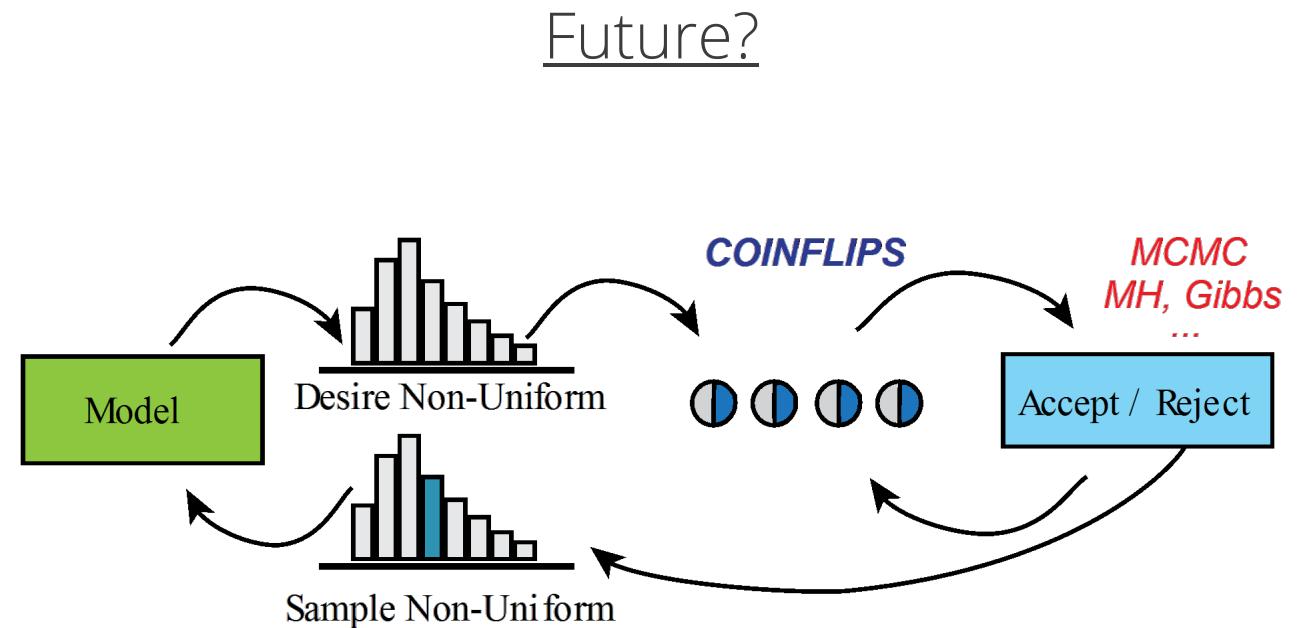
Evaluate opportunity of a probabilistic computing paradigm



COINFLIPS

Evaluate opportunity of a probabilistic computing paradigm

Today

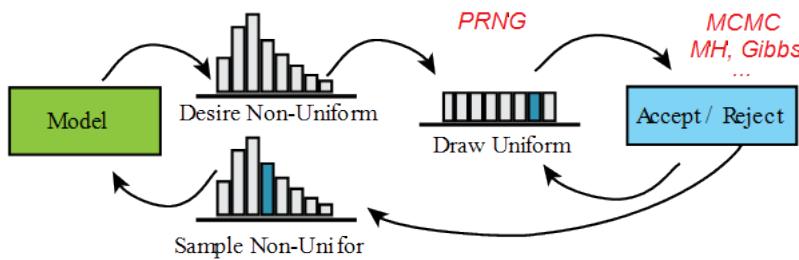
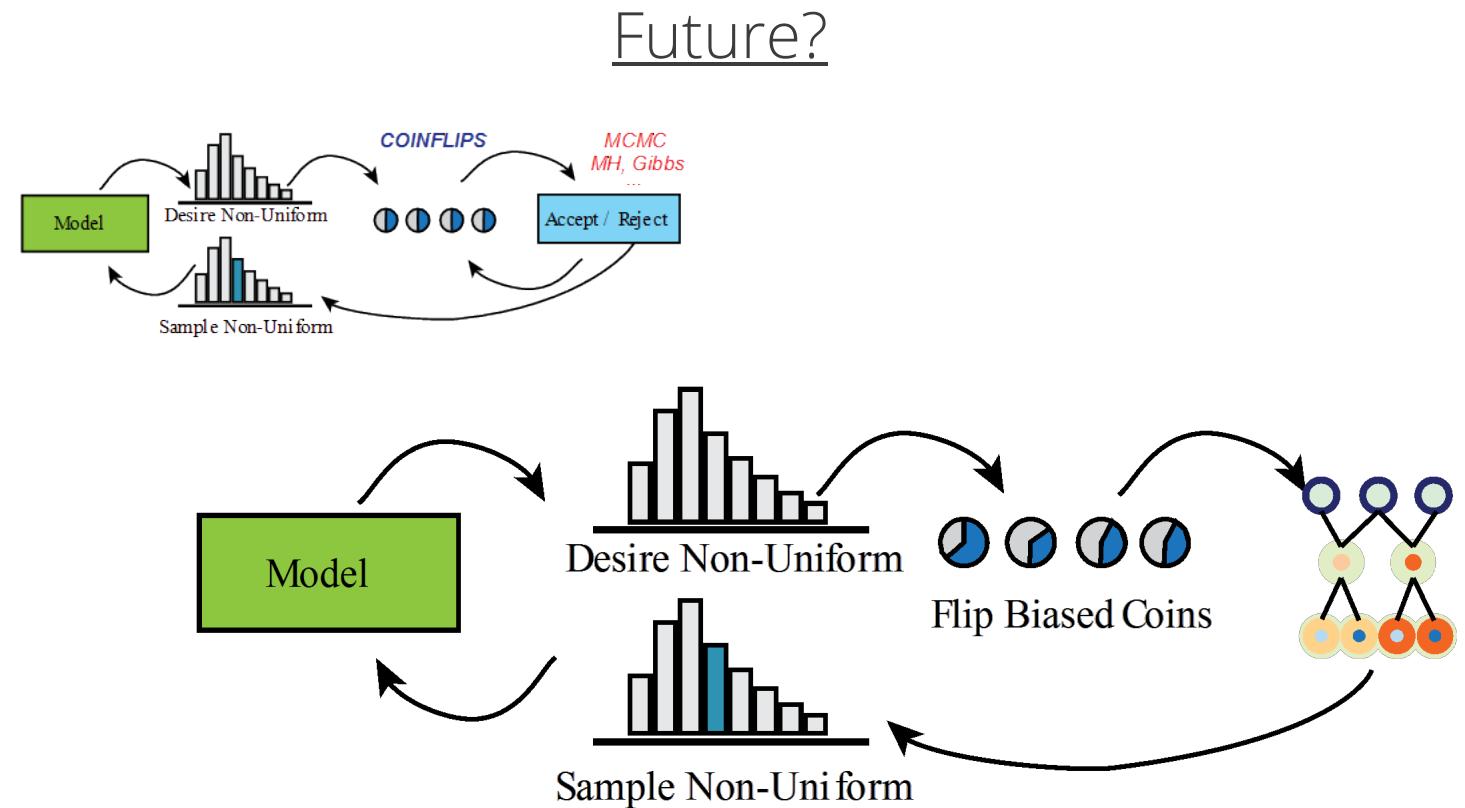


Step 1: Draw suitable uniform RNs from hardware

COINFLIPS

Evaluate opportunity of a probabilistic computing paradigm

Today

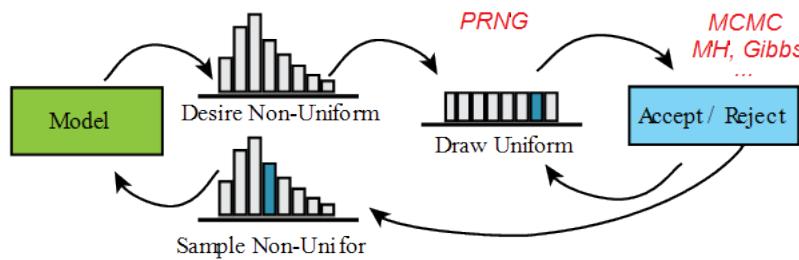


Step 2: Draw suitable model-specific RNs from hardware

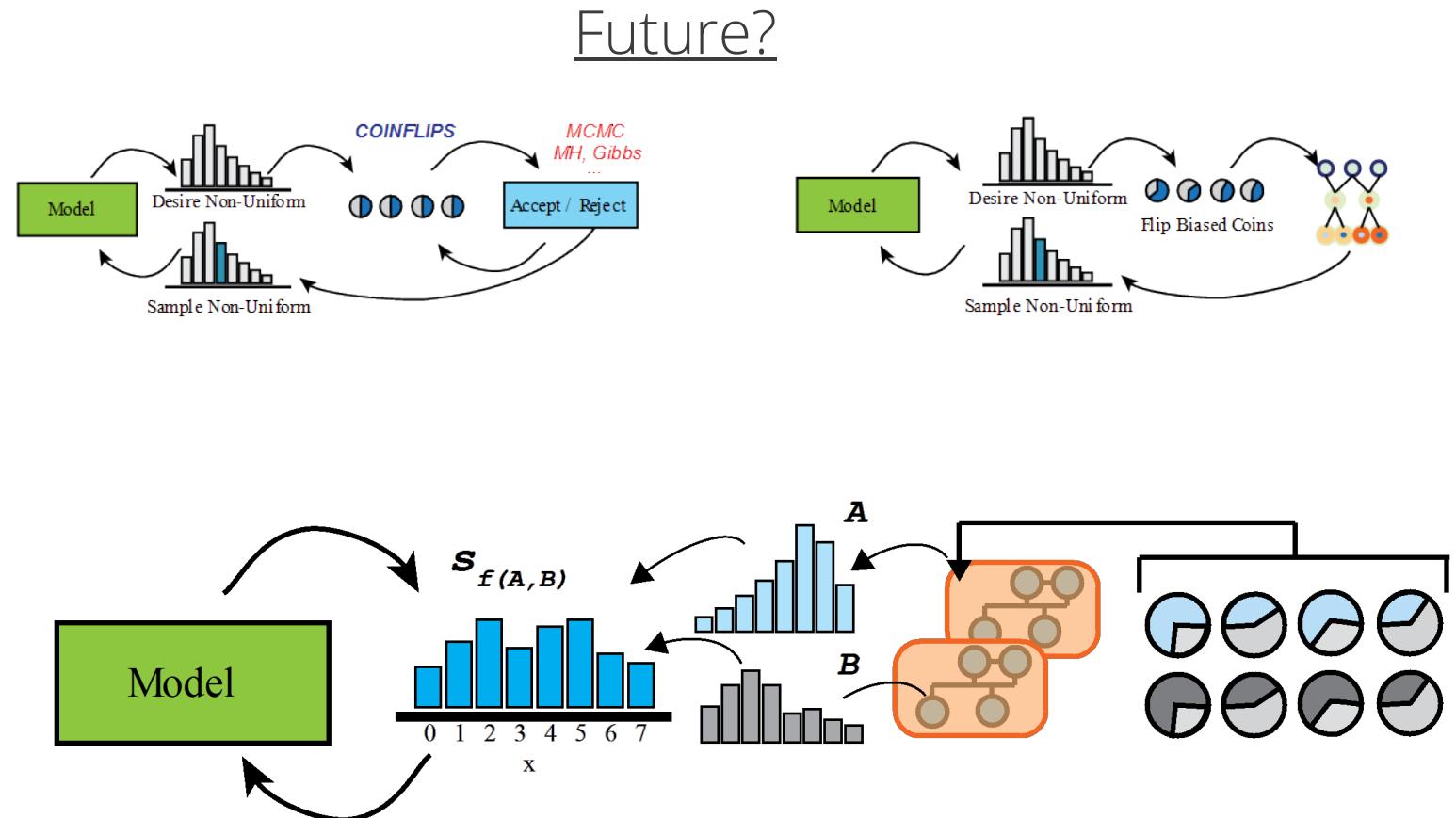
COINFLIPS

Evaluate opportunity of a probabilistic computing paradigm

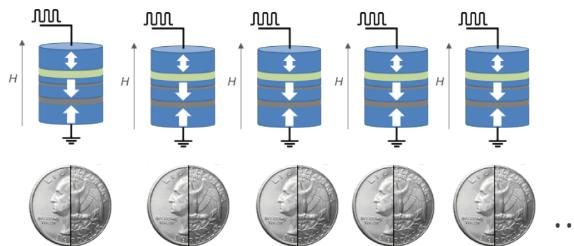
Today



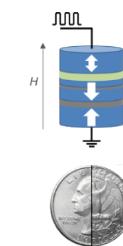
COINFLIPS



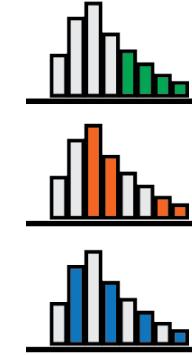
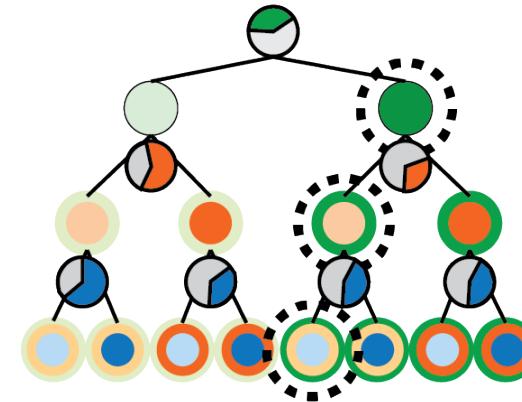
Mapping Coinflips to Arbitrary Distributions



Many devices
flipping at one
time



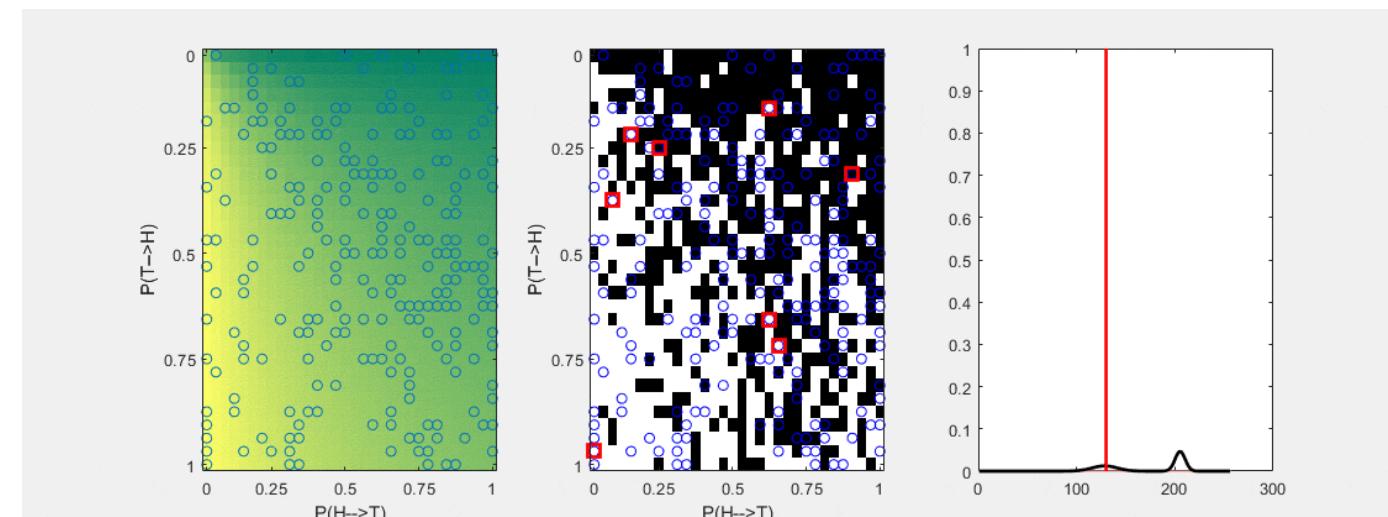
Naively, we can expand a binary tree with probabilities to describe any distribution



$x = 1$ —

$x = 1 0$ —

$x = 1 0 0$ —

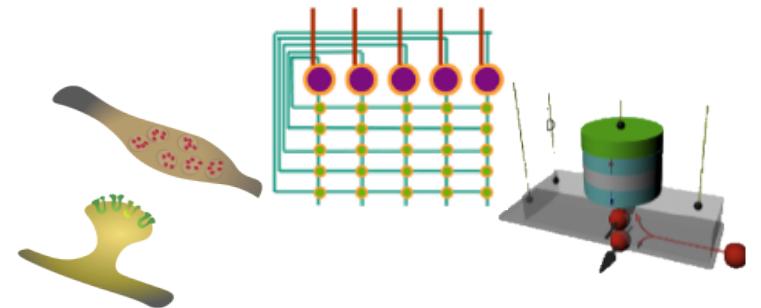
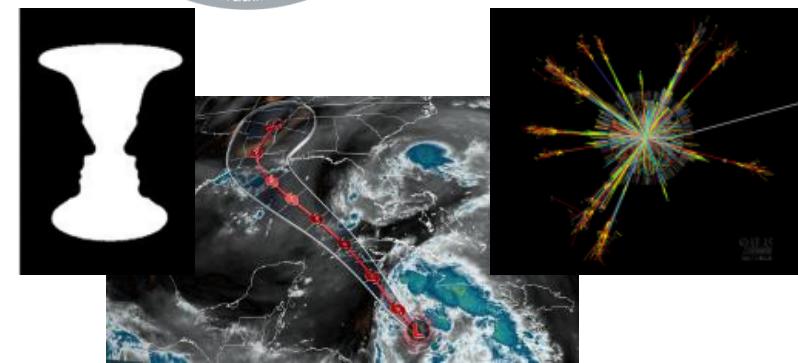


Simulation...

Probabilistic
Neural Theory
and Algorithms

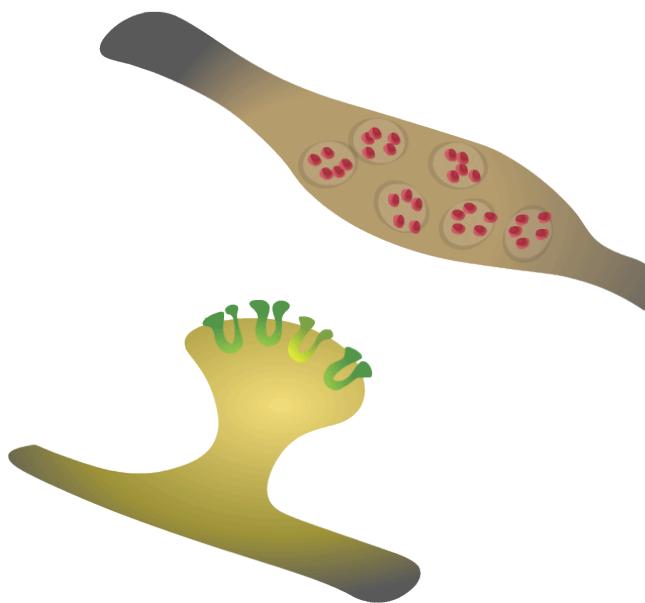
Summary: Probabilistic computing is perhaps an ideal target for exploring potential for microelectronics co-design

- All aspects of microelectronics (from materials to applications) have something to contribute
 - *Can show benefits from innovation at all scales*
- Stochastic devices
 - + neuromorphic parallelism
 - = broad application impact
 - *Both Mod-Sim and AI stand to benefit*
- Opportunity to consider important aspects of computing up front
 - *Address issues such as I/O, programmability, and theory from the onset, as opposed to after-the-fact*

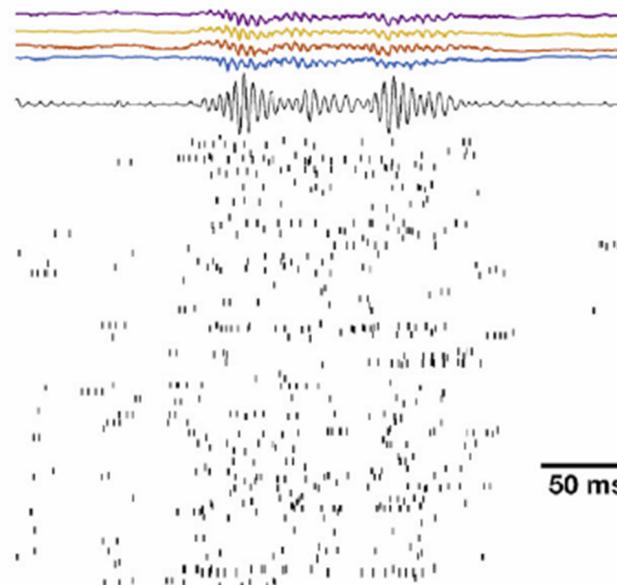


Backup: Neuroscience and stochastic computation

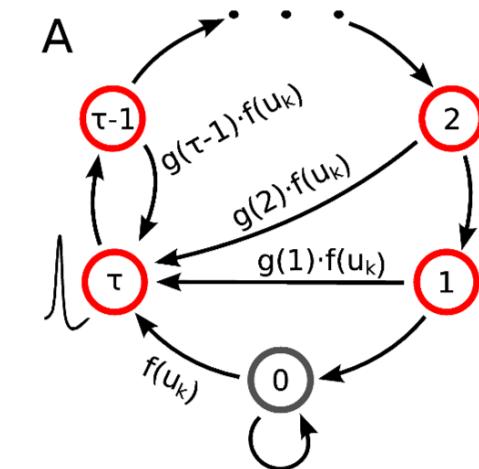
There is a long history of viewing neuroscience through a stochastic computation perspective. Most of this history is independent of envisioned computing applications



"Independent sources of quantal variability at single glutamatergic synapses" Franks KM, Stevens CF, Sejnowski TJ. *J. Neurosci.* 2003



"Hippocampal Reactivation of Random Trajectories Resembling Brownian Diffusion" Stella F et al., *Neuron*. 2017



"Neural Dynamics as Sampling: A model of stochastic computation ..." Buesing L et al., *PLOS Computational Biology*. 2011

Has the tremendous success of deterministic computing left probabilistic applications behind?

Stochasticity reveals contrast in computing approaches

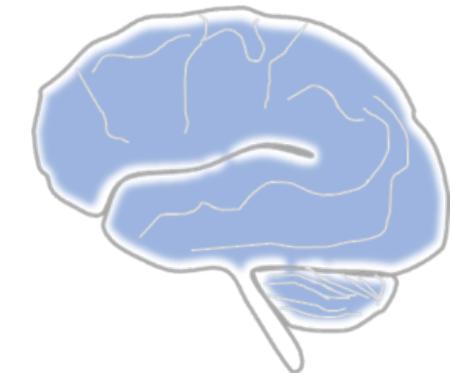
- Modern microelectronics spends tremendous resources in enforcing determinism
- The brain embraces and controls stochasticity across spatial and time scales

Developing probabilistic computing to address probabilistic applications

- **COINFLIPS** is combining stochastic devices with neuromorphic architectures
- Co-design is proving invaluable in developing this novel paradigm for microelectronics

Which approach is best to interpret an ambiguous input?

~20 W
~ 10^{15} synaptic events / second
Fully stochastic



~400 W
~ 10^{13} - 10^{14} FLOPS
Fully deterministic

Thanks