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So why the brain?

> Energy efficient

/‘/ | » Operationally fast considering

N\ slow components

» Data efficient

@_ » Diverse applications

» Robustness




/What is the brain good at?

Realized Features of Brain

Inspiration in
Neuromorphic Hardware

Event-driven communication
Graph based connectivity
Processing in Memory

In situ learning

Analog computation

Post-Moore’s Law Devices

Ubiquitous stochasticity
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/Where are we today in neuromorphic computing?

Realized Features of Brain

Inspiration in i
Neuromorphic Hardware y i, N Intel Loihi 2
il Millions of CMOS neurons
Billions of CMOS synapses
~ 1 Watt power

Event-driven communication
Graph based connectivity
Processing in Memory

In situ learning

Analog computation

Post-Moore’s Law Devices

Ubiquitous stochasticity
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Towards novel future architectures

Deep
Learning

Spiking Truly Brain-Derived
Algorithms Algorithms

Algorithms

Programmable
Hardware

Hybrid Unknown Future

Spiking . -
GPUs : Analog-Digital (3D Architecture,
Neuromorphic Neuromorphic Novel Devices, ...)

Aimone |B, Advanced Intelligent Systems, 2023
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/ Fundamental science question: what is the scale of

neuromorphic computing needed?

>10"" neurons
>10">synapses

High complexity
Highly efficient

Slow

>10° neurons

>108 synapses

Low complexity
Moderately efficient
Fast

|=2V/R

~10% neurons
~10%synapses

Very low complexity
Highly efficient
Fast?
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Where are we today in neuromorphic computing? And where

might we be in the future?

Realized Features of Brain

Inspiration in
Neuromorphic Hardware

Event-driven communication
Graph based connectivity
Processing in Memory

In situ learning

Analog computation
Post-Moore’s Law Devices

Ubiquitous stochasticity

Tomorrow

Zidan et al., 2018

Intel Loihi 2

Millions of CMOS neurons
Billions of CMOS synapses
~ 1 Watt power

Post-Moore Devices
(ECRAM, Memristors, MTJs,
optical, organic, etc)

Scale to human sizes?




// Sandia hosts some of the world’s largest CMOS-based neuromorphic

systems
Loihi Pohoiki .
109 SpiNNaker 1 million core Springs (768 chips) . SpiNNaker 2
University of Manchester Intel expected
Y Loihi 2 system
1 08 TrueNorth 64-chip ’ . . Sandia (expected)
, AFRL
TrueNorth 16-chip Darwin
2 107 Livermore ‘ Zhejiang Loihi Pohoiki Springs (384 chips)
o , Sandia
2 TrueNorth 1-chip
z Livermore Loihi Nahuku (8-chips)
s 100 . ‘ Sandia -
. O |
o T L
E 10°
s

SpiNNaker 48-chip
Sandia

2016 2018 2020 2022 2024
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Computational Primitives

W s

Spiking neuromorphic today

<

Spiking Neurons (vertices / nodes)

Synapses (connections / edges)

Edges: Directed and weighted
Nodes: Threshold gate logic + time
 Artificial neural networks are a special
Programmability, theoretical,
analysis and software are open

research questions

case

/

Programmable as arbitrary graphs

/

rd

e



//I\Ieuromorphic hardware jumped ahead of the rest of the stack

g
‘4 WM Neuromorphic hardware has been built
>,n' < - with a “if we build it, neuroscientists will
NI l “ come” hope
:W‘Fu }.{ —e-
@ /) 2
\/ -
ey A We need
/WW\ —
e % Driving Applicat
= riving Applications
>::’rr: <
% Systems Interface
g % Software and Programming Paradigm
@i < Theoretical Framework
| II\




A quick aside: most neuromorphic hardware is not designed for
current artificial neural networks

 Distinct training
and inference
modes

« Time is largely
avoided

« Computer vision

Continuous neurons Linear algebra-like networks and natural ‘
lanol1aoce

I— Output

0000Ce0000




/ GPUs have been?

Truly General Purpose

Performance

Specialized General Purpose

GPU

Performance

Performance

@
)
c
18]
£
—
o
Y—
O
o |-

/Could neuromorphic be generalized to more algorithms just as

Application Specific

Performance
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Arithmetic (adding, subtraction,
multiplication, etc.)

Data filtering

sorting

Data conversions

implement on NMC, but orTfy\

Performance

to avoid I/0

CPU

\——-——-—-I--_—-—-_’

Possibly good on NMC, but there

Deep learning / conventional

may be alternatives

artificial neural networks
Parallel data processing
(background and change

detection, convolutions, etc)
Linear algebra (MVM, cross-

correlations, L1-norm, etc)

Classic machine learning (SVMs, k-
nearest neighbors, clustering)

Performance

GPU

Tasks

/" Separating the “can do” from the “should do”

N B _FE RN N B B NF§

,' systems reach scale

|

I'- Algorithms the brain actually uses

V' (* we dont have these yet..)

I'. Random walks / Discrete Time

I Monte Carlo

Il »  Some Graph Algorithms (Dynamic

1 programming, Djikstra, triangle

| counting, graph cut, etc)

|° Someneural networks

|

|

1

| . NMC

[ 2

I £

\ S

\ 8 B B B .
\\~ L1 . 11l

Tasks

8hould implement on NMC onc®,

\-—-__——-_-—_—-——'
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/7 Neuromorphic computing can impact a broad range of applications

= I0oPscience

Neuromorphic Computing and Engineering

ACCEPTED MANUSCRIPT » OPEN ACCESS

A review of non-cognitive applications for

neuromorphic computing

James Aimone' {2}, Prasanna Date?, Gabriel Fonseca-Guerra®, Kathleen Hamilton?,

Kyle Henke?, Bill Kay®, Garrett Kenyon?, Shruti Kulkarni®, Susan Mniszewski®,

& 1

Maryam Parsa’, Sumedh Risbud?® {2), Catherine Schuman , William Severa' and
. Darhy Smith! = Hide full author list
Accepted Manuscript online 10 August 2022 « © 2022 The Author(s). Published by IOF

Publishing Ltd

64 Total downloads

Turn on Mathlax

Share this article




//Today's spiking NMC shows energy advantage over conventional
approaches on Monte Carlo simulations

/ " Spikes from input nodes

/ . Probe | [ I 1 I ‘
‘14; ’- [ & ® § & § N =& §F Nl | | ; j ; i

|'|'J| ” | \ \ A ' ' i } | i

) I Buffer == Counter I

\-‘ L ¥ F F B & & 0 °F § ---l i i 1 i H

sﬂmm . I < » :

8yt
’--- -----------1

— a’f . \
111 “-’"“’ Probability mssp  Output I

-

Leaky Integrate and Fire Neuron Spikes to output nmﬁs| ,J- t!_[

timestep= 1

NAure
clectronics

Neuromorphic scaling advantages for
energy-efficient random walk computations

). Darby Smith©, Aaron ). Hill, Leah E. Reeder, Brian C. Franke, Richard B. Lehoucq, Ojas Parekh,
William Severa and James B. Aimone © =

Moo e (gt b b w1 me gl ata the n-n--l of the brsem R
e b typm ally b wned om artofe ol
©am pryde v s haycond o ﬁumh-huhun—nﬂ—m- comhpur sbadty of souhmng mewrs-

e
I}-\. bre viabd cn Mhats (b mathed s mhe b repeeient 3 hund sma st sl | compat stea sl Vood bt Lidveng 3 wede 1 amge of et 8l
———"

number of walkers

Spiking 10N

Scientific
Computing

Smith et al., Nature Electronics 2022



/Neuromorphic computing advantage appears to be when an
/" algorithm can split task across computational graph with sparse
7/ communication

rd

e

Monte Carlo simulations
Discrete Time Markov Chains

Dynamic programming

o o e s a Graph neural networks

Spiking

Scientific
Computing




/We can identify a neuromorphic advantage for simulating random
walks

Walker Updates per Joule

LEHE ¢

&.E+0T

LEHAT

4 8

16

1 ——

=

E =4

¢

b} [ —

[=1

W

D 206 oo

p=]

(=9

B .

2 — ~Loihi

= —~CPU

=~-TrueNorth

2‘E+03 1 1 I L 1

1000 2000 4000 8000 16000 32000

# Walkers

Walker Updates per Joule

1.E+09

1.E+08

1.E+07

@ TrueNorth Single-Mesh
# TrueNorth Multi-Mesh
® Loihi
© CPU Single-Core

. + CPU Multi-Core
mGPU

L
® O

1.E+06
1.E+05

1.E+06  1.E+07  1.E+08  1.E+09  1.E+10
Walker Updates per Second

Smith et al.,, Nature Electronics 2022
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'/~ Math: What PDEs can these stochastic processes be useful for?

Class of Partial Integro-Differential Equations.
2
w0+ bt —u(t)
u(t, x (t,x)—u(t,x

g 0x;0x; l_ l 0x;

Ot x) =~ (aa") (%)
atu ,x—z .aa ij , X

+A(t,x) utx+h(txq) —ult,x) ¢o(g;t,x)dq
+c(t, x)ult,x) + f(t, x), x € R, t € [0, ).

Stochastic Process:

NMC Hardware Simulates This Stochastic Process

dX(t)=b t,X(t) dt +a t,X(t) dW(t) + h(t,X(t),q)dP t;Q,X(t) .

Spiki , .y ' | ;
Scffén’gﬁc Solution to initial value problem (u(0.x)=g(x) A e I I RS e E el
t t

S
u(t,x) =E g X(t) exp c s,X(s) ds + [ s,X(s) exp c £, X(¥) df ds X(0) =x.
0 0 0

Computing

Smith et al., Nature Electronics 2022



/" Neural MC algorithm can run wide range of stochastic processes

74
/4 _ aonly

a,b A h
Diffusion X< Jump
Processes
Time ' Time
a b a b A hc

Drift Absorption "

/ Decay

Spiking

Scientific
Computing

Time

Smith et al., Nature Electronics 2022




P/Some more applied examples
/ 5 | N
== Analytical Solution

7/ » Boltzmann state transition | e

—(] = -1

» Particle can existin 2 states (+1 or -1) or
be absorbed.

» Implement as simple stochastic process
on TrueNorth

D L " " i ;
0 05 1 1.5 2
. Time (t)
Physical Cartoon 1000
5
800 == Analytical Solution
—) = 1
‘ 4 —) = -]
-1 600
Absorbed
_____ . 400
DTMC $DE Approximation
Spiking (1 =g Gp11 @p2s
Scientific ' 200 1!
Computing +1
» o w
0 0.5 1 1.5 2

1 ‘h)"' q1P2,2

Time (1)
Smith et al., Nature Electronics 2022 ‘




P /Some more applied examples

7 > 1D particle transport

1MATLAB, 1M Walkers/Location 1 Loihi, 6250 Walkers/Location

» Particle moves in 2D, only track 1D. 0.15
> At point x=0, particle reflects in random oo
direction S 0.1
. . . . % 0
> Track velocity in x-dimension and angle 8
» Implemented on Loihi 05 0.0
-1 : - 0
-1 -0.5 0 0.5 1 -1 -0.5 0 05 1
. Direction Direction
""- “ 7 x

m
wn

=1}
b 4

Spiking

Average Percent Error
wh
on o

Scientific Y
Computing

-
n

x

4 N a " i
1250 2500 3750 5000 6250
Walkers/Location

Smith et al., Nature Electronics 2022
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1.E+09

1.E+08

1.E+07

Walker Updates per Joule

1.E+06

Spiking

Scientific
Computing

@ TrueNorth Single-Mesh
# TrueNorth Multi-Mesh
® Loihi
CPU Single-Core
’ CPU Multi-Core
mGPU

.E+05

1.E+06  1.E+07  1.E+08  1.E+09  1.E+10
Walker Updates per Second

// Monte Carlo advantage comes from benefits of spiking
... Still limited by CMOS

Broad Applications

Monte Carlo simulations
Discrete Time Markov Chains

Graph Analytics
Graph neural networks

Limitations

Stochastic sampling
Neuron and synapse scaling
Configurability of neurons

On chip / off chip
communication




computing

P/ Today’s large scale neuromorphic systems are on Pareto Frontier of
4

” Broad class of algorithms fit this tradeoff If we're honest; who will pick energy
o Monte Carlo / Probabilistic efficiency over speed?

o Graph analytics
o Artificial intelligence

o Optimization TrueNorth
Architectural advantage -

o Event-driven processing 4, NNa.ke.r

o Massive parallelism Operations ] oihi

Limitations per Joule

o Still CMOS devices

o Architecture is a one time benefit
not an extension to Moore's Law

Operations per second

Spiking

Scientific
Computing




// Today’s large scale neuromorphic systems are on Pareto Frontier of
/ computing

” Broad class of algorithms fit this tradeoff

o Monte Carlo / Probabilistic
o Graph analytics

o Artificial intelligence

o Optimization

Architectural advantage

o Event-driven processing Operations
o Massive parallelism per Joule
Limitations

o Still CMOS devices

o Architecture is a one time benefit
not an extension to Moore's Law

Operations per second

Spiking

Scientific

Computing Opportunity for Brain-inspired Materials, Devices & Algorithms

Increasing processing (density, speed, capabilities, etc) while preserving
energy advantage and jump neuromorphic over Pareto Frontier




Brain

Inspiration

review articles

SO0 VAR NI EER

Advances in neurotechnologies are reigniting
opportunities to bring neural computation
insights into broader computing applications.

BY JAMES B. AIMONE

Neural
Algorithms
and Computing
Beyond
Moore’s Law
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Algorithm Class

Deep Vision
Processing

Temporal Neural
Networks

Bayesian Neural
Algorithms

Dynamical Memory

and Control
Algorithms

Cognitive Inference

Algorithms

Self-organizing

Algorithms
(&) >
cC =
.
c 58
Brai S2ao
rain 3Z ®
Inspiration < ©

Current Algorithms

Deep Convolutional Networks
(VGG, AlexNet, GoogleNet,
etc.), HMax, Neocognitron

Deep Recurrent Networks (long
short-term memory),
Hopfield Networks

Predictive Coding, Hierarchical
Temporal Memory

Liguid State Machines, Echo
State Networks, Neural
Engineering Framework

Reinforcement learning
(e.g., Q-learning)

Neurogenesis Deep Learning

Inspiration

Hierarchy of sensory nuclei and
early sensory cortices

Local recurrence of most biological
neural circuits,
especially higher sensory cortices

Substantial reciprocal feedback
between “higher” and “lower”
sensory cortices

Continual dynamics of
hippocampus, cerebellum, and
prefrontal and motor cortices

Integration of multiple modalities
and memory into prefrontal cortex,
which provides top-down influence

on sensory processing

Initial development and continuous
refinement of neural circuits to
specific input and outputs

Self-organizing Algorithms

Cognitive Inference Algorithms

//

Dynamical Memory Algorithms

Bayesian Neural Algorithms

Temporal Neural Networks

eep Sensory Networks

Time =>

Application

Static feature extraction (e.g.,
images) & pattern classification

Dynamic feature extraction (e.g.,
videos, audio) & classification

Inference across spatial and
temporal scales

Online learning content-
addressable memory & adaptive
motor control

Context and experience
dependent information
processing and decision making

Automated neural algorithm
development for unknown input
and output transformations

Aimone, CACM 2019




Brain
Inspiration

months
_ u
Synapto- Neurogenesis
hours genesis
Temporal
Scale LTP/LTD Neuromodulation

seconds
milliseconds

synapse cell circuit region g

Spatial Scale

Aimone, CACM 2019




Brain

Al systems are slowly starting to incorporate brain-like plasticity

w—
PERSPECTNE — machine intelligence
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Biological underpinnings for lifelong learning
machines
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Neurogenesis
Episodic replay
Metaplasticity

Neuromodulation

Context-dependent
perception and gating

Hierarchical
distributed systems
Cognition outside
the brain
Reconfigurable
organisms

Multisensory
integration

Key features

54,175,176,179,
180

67,89,181-185

70,78,84-86,88,

78,79,84,89,164
89,157,159,160

78,79,158,161-
167

78,168

E"fglt‘i”g Task-agnostic Noise
similarity learning tolerance
234 161
54,176 176,177
7,181,185,198
89 78,159 78,158,199
79,162-166 70,161 158,162,163
188-191 113,191,200
2
195-197 5//////
7
139,147 139,147
152,155,192,193 113,162

Hesource

efficiency and
sustainability

174,201,202

53,54,175,176,
179,180,203

89,181-183,198

89

191

139,147
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A concrete future direction: Brain-inspired
systems may need to embrace stochasticity




//Has the tremendous success of deterministic computing left

/ probabilistic applications behind?

rd

e

Which approach is best to

interpret a clear input? =400 W
~1013-10"4 FLOPS

Fully deterministic

Moore's
Law Wins!

~20 W
~10'> synaptic events / second
Fully stochastic




probabilistic applications behind?

,/Has the tremendous success of deterministic computing left
74
4

Which approach is best to
interpret an ambiguous 00w

input? ~103-10™ FLOPS
Fully deterministic

~20 W
~10'> synaptic events / second
Fully stochastic
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Computing applications face challenges in uncertainty

Modeling and Simulation

Artificial Intelligence

« Modeling uncertainties is critical in the use of even fully deterministic

« Bayesian neural simulations
networks are
appealing yet often « Many applications are inherently stochastic in their physics and are best
computationally modeled using probabilistic methods
intractable




//CO-designed Improved Neural Foundations Leveraging Inherent
Physics Stochasticity (COINFLIPS)

" ENERGY.GOV

Office of Science Co-Design in

Microelectronics program | DOE Announces $;4hl\:illli:on or
. Co-funded through ASCR and BES, B e rrar i iTechnolosic Y |

participation by NP, HEP, and FES

To enable new generations of energy-efficient
computing systems over the next decade, a
complete reconceptualization of the science
and technology underlying the
microelectronics co-design approach is
neeaged to integrate emerging devices, materials,
interconnects, and non-linear phenomena with
the needs of scientific computing applications.

__
I %0acRrince Wl

B>, U.S. DEPARTMENT OF Office of Saﬂdla
YENERGY science @ National

Laboratories




/CO-designed Improved Neural Foundations Leveraging Inherent
Physics Stochasticity (COINFLIPS)

7

rd

. Office of Science Co-Design in

Microelectronics program

« Co-funded through ASCR and BES,
participation by NP, HEP, and FES

* ~COINFLIPS is partnering with a

growing number of organizations
o Andy Kent @ New York University

o Jean Anne Incorvia @ University of Texas Austin
o Katie Schuman @ University of Tennessee

o Prasanna Date @ Oak Ridge National Laboratory
o Les Bland @ Temple University

B>, U.S. DEPARTMENT OF Office of Saﬂdia
ENERGY Science @ National UI %QQ’EIE‘{EQE
Laboratories N

(( / € ‘SIDIL.
] e A
2 o5
' S &/ &
#\% 1 S *

NYU
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We are benefitting from 70 years of
microelectronics that embrace
deterministic components to solve
deterministic problems

COINFLIPS sees an opportunity to embrace
stochastic computing to solve uncertainty
problems




//Today’s computers emulate uncertainty by using pseudo-random
number generation

74

e

"Any one who considers arithmetical
methods of producing random digits
s, of course, in a state of sin.”

John von Neumann, 1951

/0 years later...

« Pseudo-RNGs can be quite effective, and
do offer some advantages in verification,
etc.

« But they are expensive, and when they
go wrong the implications can be
disastrous




,/COINFLIPS aims to integrate true random number generators using
stochastic devices into neuromorphic architectures

Improved Random Number Generation

(Type, Quantity, Quality)

And sample that number whereit
is needed within the computation

R Sceveun
e OO OO GO—
9P

Sample a random number from —— 0908660 —
the exact distribution we require t
Neuromorphic architecture thatfritegrates

‘ ubiquitous stochastic devices with computing and
memory

COINFLIPS aims to improve both speed and energy
of probabilistic computing applications
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~ Evaluate opportunity of a probabilistic computing paradigm

74
‘4

Today
PRNG MCMC
/\d]]]hh /‘\ /'\ MH, Gibbs
Model Desire Non-Uniform M Accept / Reject

Al

Sample Non-Uni for

Draw Uniform
_ /

COINFLIPS




Evaluate opportunity of a probabilistic computing paradigm

Today

Model

Desire Non-Uniform

Sample Non-Uni for

COINFLIPS

Al

PRNG

T

MCMmC
MH, Gibbs

Accept/ Reject

Future?

[ ‘ COINFLIPS MCMC
/‘\ /‘\ /_\ MH, Gibbs

Model Desire Non-Uniform CICXOXQ Accept / Reject

i, =

Sample Non-Uni form

Step 1. Draw suitable uniform RNs from hardware




Today

Model

Desire Non-Uniform

Sample Non-Uni for

COINFLIPS

Al

PRNG

T

MCMmC
MH, Gibbs

Accept/ Reject

Evaluate opportunity of a probabilistic computing paradigm

Future?

COINFLIPS MCMC

Al ™

Model Desire Non-Unifonm 0 0 0 O Accept /| Reject

~ ™

Model Desire Non-Uniform O O O O

|:I ‘ Flip Biased Coins N\ &

Sample Non-Uni form

Step 2. Draw suitable model-specific RNs from hardware
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Today
PRNG
/~ N /N
Model Desire Non-Uniform m_

Sample Non-Uni for

COINFLIPS

MCMmC
MH, Gibbs

Accept/ Reject

il

valuate opportunity of a probabilistic computing paradigm

Future?
COINFLIPS MCMC
Sl T T e /N d “ IR /-\QRS’
Model Desire Non-Uniform PO Accept | Reject Model Desire Non-Uniform 0 O O O

Sample Non

|

-Uni form Sample Non Umfbrm

LN e <l

- |:[| HpB ed Coin

OO

Model

!!!!!!!! s oeO

"~

Step 3. Integrate hardware-enabled random sampling into computation
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/~ Mapping Coinflips to Arbitrary Distributions

Naively, we can expand a binary tree with probabilities
to describe any distribution
x=1
Xx=10
Many devices
ﬂppmgatone =100
time
Probabilistic 3 Z:
Neural Theory "o 0z}
and Algorithms 01t
" N

Simulation...




// Summary: Probabilistic computing is perhaps an ideal target for
| exploring potential for microelectronics co-design

 All aspects of microelectronics (from

materials to applications) have something
to contribute
* Can show benefits from innovation at all scales

» Stochastic devices
+ neuromorphic parallelism

= broad application impact
*  Both Mod-Sim and Al stand to benefit

* Opportunity to consider important aspects
of computing up front

* Address issues such as I/0, programmability, and
theory from the onset, as opposed to after-the-fact
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/ Backup: Neuroscience and stochastic computation

There is a long history of viewing neuroscience through a stochastic
computation perspective. Most of this history is independent of envisioned

computing applications

VAN A ANARS
— —— ARG VNI mr e AN A g e

e o e ——
- ‘WWW"VWW““'WUWWW

“Independent sources of quantal variability at | “Hippocampal Reactivation of Random
single glutamatergic synapses” Franks KM, Trajectories Resembling Brownian

Stevens CF, Sejnowski TJ J. Neurosci. 2003 Diffusion” Stella F et al., Neuron. 2017

A TN
@ O

e

g(1)-f(uy) @
‘a,\@/

%)

“Neural Dynamics as Sampling: A model of
stochastic computation ...” Buesing L et

al., PLOS Computational Biology. 2011
44



_,/Has the tremendous success of deterministic computing left
probabilistic applications behind?

Stochasticity reveals contrast in 20w .
computing approaches ~107> synaptic events / second

: : Fully stochastic
*  Modern microelectronics spends  which approach is best
tremendous resources in to interpret an
enforcing determinism . .
ambiguous input?

* The brain embraces and controls
stochasticity across spatial and
time scales

Developing probabilistic computing to
address probabilistic applications

*  COINFLIPS is combining
stochastic devices with
neuromorphic architectures

« Co-design is proving invaluable
in developing this novel .
paradigm for microelectronics

~400 W
~1013-10" FLOPS
Fully deterministic

00
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