
Vertical Applications for Spack: What, Why, and How

Phil Sakievich (SNL)
psakiev@sandia.gov
@psakievich (slack/github)

06/29/2023

Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology & Engineering Solutions of Sandia, LLC,

a wholly owned subsidiary of Honeywell International Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under

contract DE-NA0003525.

SAND2023-XXXXX PE

https://github.com/sandialabs/spack-manager

SAND2023-05604CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do
not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract
DE-NA0003525.

mailto:psakiev@sandia.gov
https://github.com/sandialabs/spack-manager

2 Exascale Computing Project

Overview

• What is Spack?
• What is a Vertical Application?
• Where does Spack fit in?
• Software Democratization
• What would this look like for Spack
• Spack-Manager: Case study for

vertical application
• Summary and Discussion

ECP: Funding Statement
This research was supported by the Exascale

Computing Project (17-SC-20-SC), a
collaborative effort of two U.S. Department of
Energy organizations (Office of Science and

the National Nuclear Security
Administration) responsible for the planning

and preparation of a capable exascale
ecosystem, including software, applications,

hardware, advanced system engineering, and
early testbed platforms, in support of

the nation’s exascale computing imperative.

3 Exascale Computing Project

Spack: Package Manager++

• Spack at its core is a package
manager

• Spack has many attractive features:
– Simplea, expressive syntax for

software configurations
– Non-destructive installs
– Embedded tribal HPC knowledge
– Containerization automation
– CI pipeline construction
– Module creation
– Binary caching
– Massively parallel build processes
– A unique, scalable, multicomponent

development tool (spack develop)
– ….

4 Exascale Computing Project

Spack sustains the HPC software ecosystem
with the help of its many contributors

Over 7,100 software packages
Over 1,100 contributors

Most package contributions are not from DOE
But they help sustain the DOE ecosystem!

Over 7,000 monthly active users
(per documentation site)

Monthly active users

Slide provided by Todd Gamblin

5 Exascale Computing Project

Spack users over the years

2020 2021 2022

What type of
user are you?

What country
are you in?

USA USA USA

36%
ECP

37%
ECP

26%
ECP

Slide provided by Todd Gamblin

6 Exascale Computing Project

What is a Vertical Application?

• A vertical application is any software
application that supports a specific
business process and targets a smaller
number of users with specific skill sets
and job responsibilities within an
organization.

User Base

C
ap

ab
ilit

ie
s

Horizontal App

V
e
r
t
i
c
a
l
A
p
p

https://www.webopedia.com/definitions/vertical-
application/

https://www.webopedia.com/definitions/application-software/
https://www.webopedia.com/definitions/application-software/

7 Exascale Computing Project

So where does Spack fit in?

• User base is growing, and so are
features…

User Base

C
ap

ab
ilit

ie
s

Horizontal App

V
e
r
t
i
c
a
l
A
p
p

8 Exascale Computing Project

So where does Spack fit in?

• User base is growing, and so are
features…

• Natural consequence is the
learning curve grows

• Different user types can lead to
friction

• Main strategies I’ve seen
A. Silo/hide Spack
B. Tell users to embrace Spack fully User Base

C
ap

ab
ilit

ie
s

Horizontal App

V
e
r
t
i
c
a
l
A
p
p

Learning cu
rve

9 Exascale Computing Project

Democratization of Spack

• Democratization of technology refers to the process by which
access to technology rapidly continues to become more accessible to
more people. New technologies and improved user experiences have
empowered those outside of the technical industry to access and
use technological products and services – Wikipedia

Rest of the talk …
• What would democratization of Spack look like?
• Is that a good idea?

https://en.wikipedia.org/wiki/Democratization_of_technology

10 Exascale Computing Project

Consider Spack as a Platform

• User base is growing, and so are
features. We don’t really want to stop
either…
– Creating vertical applications that use

Spack as a platform
– Expose the most important parts to

further education, impact, and comfort
without overwhelming

• “Everything should be made as simple
as possible but not simpler” – Albert
Einstein

User Base

C
ap

ab
ilit

ie
s

V
e
r
t
i
c
a
l
A
p
p

V
e
r
t
i
c
a
l
A
p
p

V
e
r
t
i
c
a
l
A
p
p

V
e
r
t
i
c
a
l
A
p
p

11 Exascale Computing Project

Attributes of an Ideal Vertical Application

• Minmax problem: min(user inputs) max(user impact)
• Intuitive
• Easy to update and maintain
• Provides feedback and features that help steer the direction of Spack
• Gateway to broader Spack usage

12 Exascale Computing Project

Spack-Manager: Example of a Vertical Spack Application

• Spack-Manager is an extension
to Spack that aims to act as a
buffer between Spack and our
end application
– Increases our agility
– Framework to prototype new Spack

features
– Manage machine specific

configurations and create a machine
agnostic interface

• This talk will focus on accelerating
application developer workflows

Blissfully
Unaware

Minimal Spack
Knowledge

Heavy Spack
Knowledge

End Users

Application
Developers

Admins

Philosophy: Population size of the user profile
should have an inverse relationship with required

understanding of Spack

13 Exascale Computing Project

ExaWind: The Motivating Application
• ExaWind software stack:

– Combine two loosely coupled
CFD codes with entirely
different software stacks
(Trilinos and AMReX)

– Living on the develop branch of
multiple dependencies

– Project is actively supporting
development of 7+ software
packages in the stack
(CPU+GPU)

– Many, many machines:
Laptops, Azure, Eagle, Summit,
Crusher/Frontier, Sunspot, etc.

• Developer Configuration
Challenges:
– Building
– Developing
– Testing
– Deploying
–

Packages under active
development

14 Exascale Computing Project

Core Spack Feature: Spack Develop
• In a Spack environment develop specs

can be added
• Develop specs work as follows

– If DAG_spec.satisfies(develop_spec)
• Do a build from the users source code rather than

from Spack’s staging procedure
• Perform incremental builds based on timestamp

of files in the source directory

• Allows for arbitrary development of
packages in the graph
– Dependencies will get automatically rebuilt

• Allows for multiple builds from the same
source
– Cuda and Non-Cuda builds from the same

source code at the same time
– Graph level parallelism is available in builds

In this configuration you will get
4 develop builds: cuda and non-cuda
nalu-wind and trilinos coming from
the same sources
spack:
 specs:
 - nalu-wind +cuda cuda_arch=70
 - nalu-wind ~cuda
 view: false
 concretizer:
 unify: false
 develop:
 nalu-wind:
 spec: nalu-wind@master
 trilinos:
 spec: trilinos@develop

15 Exascale Computing Project

Spack-Manager

Spack-Manager Infrastructure

Spack-Scripting

scripting

unit tests

manager
Project Specific

Information
repo

configs

scripts

templates

Spack
(submodule)

scripts

• 1k-2k lines of python code
(including prototypes)

• Core features for machine
agnostic environment curation is
closer to 500 700 lines

• Utilize Spack code through
Spack extensions

• Also get the testing and
formatting infrastructure

• Relatively simple to maintain

16 Exascale Computing Project

Machine Agnostic API: How do we do this?
• Utilize Spack API’s to write Spack

extensions
– Environment curation
– All of our scripts serve to reduce the end user

API
– Can be replicated through core Spack

commands and a little manual intervention
• A core example of this is:

– find-machine + create-env
• find-machine: a utility that allows custom python

scripts to identify the current machine
• create-env: uses find-machine and stored configs to

automate platform specific environments

spack env create -d [foo]

spack env activate -d [foo]

spack repo add ${SPACK_MANAGER}/repos/exawind

manually insert machine specific configs:
packages.yaml, configs.yaml, compilers.yaml

spack add [specs]

spack env deactivatespack manager create-env –d [foo] –s [specs]

17 Exascale Computing Project

Setting Up a Development Environment

• spack develop is amazingly
powerful but …

• Setting up a development
environment can still be a
lot of work

• Can start to feel tedious
when done often

• Number of commands can
be reduced with some
basic assumptions

Basic Setup

• source ${SPACK_MANAGER}/start.sh
• spack manager create-env --specs do re mi
• spack env activate –d .

Development
Commands

• spack develop do@develop
• spack develop re@main
• spack develop mi@main

Final
Touches

• cd re
• git remote add user git@github.com:user/feature
• git fetch --all && git checkout feature
• spack install

mailto:git@github.com:user/feature

18 Exascale Computing Project

Bash ”quick-commands”

• Wrap the functionality of basic
setup and development
commands together

• Common features:
– Shell source Spack/Spack-

Manager
– Create an anonymous Spack

environment
– Activate the created environment

• Development specific
assumptions:
– All concrete spec’s are intended as

develop specs ([name]@[version])
– Anything not pre-cloned should be

fetched via spack develop

• quick-create-dev --spec do@develop re@main mi@main

19 Exascale Computing Project

What does it look like?
quick-create-dev --spec exawind@master amr-wind@main nalu-wind@master

What user needs to care about

Machine/project specific boiler plate
abstracted away

20 Exascale Computing Project

Build and Test Process: Debug Issue from Trilinos Update

1) quick-create-dev -s nalu-wind@master+cuda build_type=Debug trilinos@develop build_type=Debug

2) spack install

3) spack cd -b nalu-wind

4) # run test to confirm behavior

5) # modify trillinos source code

6) spack install

7) # run test to see if behavior is fixed

8) # iterate further

21 Exascale Computing Project

Example: Uh-Oh a Memory Leak!

Single Nalu-Wind
rank

Single AMR-Wind
rank

(Plot generated merely by sampling ps)

Where!
- Long-standing

memory leak not
many developers
had time to
investigate

- Lots of overhead to
set up tools for such
a large stack

22 Exascale Computing Project

quick-develop -s exawind+asan build_type=Debug \
 ^amr-wind+asan build_type=Debug \
 ^nalu-wind+asan build_type=Debug \
 ^tioga+asan build_type=Debug \
 ^trilinos+asan build_type=Debug %clang@10.0.0
spack install
spack cd -b exawind
spack build-env exawind ctest -j $(nproc) --output-on-failure

SUMMARY: AddressSanitizer: 791 byte(s) leaked in 17 allocation(s).

spack-manager/environments/exawind/tioga/src/tioga_nogpu.h:24
spack-manager/environments/exawind/tioga/src/tioga_nogpu.h:36
spack-manager/environments/exawind/tioga/src/CartGrid.C:218
spack-manager/environments/exawind/tioga/src/CartGrid.C:239
spack-manager/environments/exawind/tioga/src/CartGrid.C:130
spack-manager/environments/exawind/tioga/src/tioga.C:1081
spack-manager/environments/exawind/exawind/src/OversetSimulation.cpp:90
spack-manager/environments/exawind/exawind/src/OversetSimulation.cpp:69
spack-manager/environments/exawind/exawind/app/exawind.cpp:173

Set up a development
environment and turn
address sanitizer on
for everything

Look at the ASAN
backtrace

It’s in TIOGA (which only
executes in the Nalu-
Wind ranks)

Wait…got some output!

vim spack-manager/environments/exawind/tioga/src/tioga_nogpu.h
spack install
spack cd -b exawind
spack build-env exawind ctest -j $(nproc) --output-on-failure

Edit TIOGA code (or any code in
the stack) and easily get updated
results

Spack-Manager: Debugging a Magnitude Faster

Run regression tests

Builds tioga, relinks nalu-wind, and relinks exawind

23 Exascale Computing Project

Onboarding Developers

• Ask developers to learn 3 things
about Spack:
– How to query the API for help, i.e. --

help and spack info
– How to read and write a Spack spec
– What the major steps in the Spack

build process are

• Learn to speak the basics of the
language

I have to type a whole 12 characters
to compile just 2 different codes with
a zillion dependencies to debug my

code
- Ganesh Vijayakumar (NREL)

Spack Manager and Spack have saved
me an incredible amount of time and

headache[…].
- Nate deVelder (SNL)

[…]Spack-manager allows us to easily
manage and control a complex build

chain for a number of different hardware
targets. To me, ExaWind would be much
more difficult to configure and build for
emerging platforms without this critical

build package.
- Paul Mullowney (AMD)

For ExaWind development, onboarding
new developers and development using
Spack-Manager in general has made us

an order of magnitude more efficient.
- Jon Rood (NREL)

24 Exascale Computing Project

Spack-Manager Summary

• Overall considered a universal win on ExaWind
• Large work reduction in environment curation, after that it is

boilerplate Spack
– Allows developers to work on arbitrarily complex software stacks through the

simple syntax of Spack specs
– Mixed results WRT developers digging further into Spack

• The principles and base code are project agnostic, ExaWind specifics
are in the configuration settings

• Extending to more projects is possible with some adjustments
• Needs of Spack-Manager have influenced mainline Spack and

features have been upstreamed

25 Exascale Computing Project

Discussions to be Had

• Adding vertical applications creates a buffer between users day to day needs and
Spack feature development
– “Spack is great but it is missing x, y, z”
– “Spack needs to stabilize more before we can use it"

• Should something like this exist for each app or should we rally around a few
more common implementations?
– Absolve all ideas into into Spack vs adding infrastructure to make it easier to spin up new

vertical applications quickly
• Adding vertical applications can turn Spack into a plugin ecosystem.

– Is that good or bad?
– Does Spack want to go there?
– Do users want to go there?

• What users and use cases would benefit most from vertical applications?

Feel free to reach out: psakiev@sandia.gov
@psakievich (github/slack)

mailto:psakiev@sandia.gov

