Any subjec
ent the views o fth USDp artment of Ene ergy o thUtdStt G

Vertical Applications for Spack: What, Why, and How

Th pp dI ribes bJ ective technical results and analysis ubjectiv opin th tm|ghtb xpressed in the paper do SAND2023-05604C
rily repre

Phil Sakievich (SNL) Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology & Engineering Solutions of Sandia, LLC,

psakiev@sandia.qov a wholly owned subsidiary of Honeywell International Inc., for the U.S.

' . LA Department of Energy’s National Nuclear Security Administration under

@psakleVICh (SIaCk/g|thUb) contract DE-NA0O003525.

06/29/2023

cCP

EXASCALE COMPUTING PROJECT

https://github.com/sandialabs/spack-manager

‘I GENTO, |
2% U.S. DEPARTMENT OF
l\l \ £ «g%) FTR Office of
A p‘o* A A zELlEnn\l
Sand National Laboratories S d National Labor It| ory managed and operated by Nation IT h Igy&Eg gSIt of Sandia LLC wholly
ned s bd ny waIIt I| f th USDptm nt of Energy's Natio clea yAmntt d r contrac

nis
@ENERSY NISH DE-NA0003525.

SAND2023-XXXXX PE

mailto:psakiev@sandia.gov
https://github.com/sandialabs/spack-manager

Overview

* What is Spack?
* What is a Vertical Application?

* Where does Spack fit in?
o Software Democratization

* What would this look like for Spack

» Spack-Manager: Case study for
vertical application

« Summary and Discussion

2 Exascale Computing Project

ECP: Funding Statement
This research was supported by the Exascale
Computing Project (17-SC-20-SC), a
collaborative effort of two U.S. Department of
Energy organizations (Office of Science and
the National Nuclear Security
Administration) responsible for the planning
and preparation of a capable exascale
ecosystem, including software, applications,
hardware, advanced system engineering, and
early testbed platforms, in support of
the nation’s exascale computing imperative.

’ ~

—_—
\\] EXASCALE
) COMPUTING

PROJECT

Spack: Package Manager++

» Spack at its core is a package
manager

* Spack has many attractive features:

— Simplea, expressive syntax for
software configurations

— Non-destructive installs

— Embedded tribal HPC knowledge
— Containerization automation

— CI pipeline construction

— Module creation

— Binary caching

— Massively parallel build processes

— A unique, scalable, multicomponent
development tool (spack develop)

/7/'0/.

.

—
'_\\ EXASCALE
) COMPUTING

. . (PROJECT
3 Exascale Computing Project k_—

Spack sustains the HPC software ecosystem
with the help of its many contributors

Over 7,100 software packages
Over 1,100 contributors

Contributions (lines of code) over time in packages, by organization

LLNL ovGu Heidelberg
200000 - I ANL/UIUC mm Kitware I CINECA
lowa RIKEN OpenFOAM
-~ B lowa State s Hamburg mmm Kirchhoff
| 150000 - AMD Max Planck Genentech
g I CERN I CEA I SjTU
X o Cscs 3vGeomatics Intel
. RIT I HZDR [Oregon
100000 7w Hisilicon SNL NREL
LANL N FAU I UZH
L I EPFL LBL Fermilab
50000 4 ANL I Perimeterinst I Ri
I ORNL BN Fujitsu Othg =
0+ . —
% ™ 2 © A > O Q " V)
O Jr Jr > > > O U {V JV {V
D a° P P P P P P P A A
106 e 300Avs Most package contributions are not from DOE

But they help sustain the DOE ecosystem!

Over 7,000 monthly active users

(per documentation site) =
(CP ==
Slide provided by Todd Gambilin ___ PROJECT

Spack users over the years

2020

@ Research Software Engineer \

@ Software Developer .
@ DevOps/SRE \ ‘
@ System Administrator 8.8%

————— @ User Support Staff

@ Data Scientist 9.9%

@ Computational Scientist

@ Software Developer
@ System Administrator
@ User Support Staff
@ Scientist/Researcher

What type of

user are you?

@ Manager

@ All of the Above ® Code user/analyst

@ Scientist/Researcher
@ Manager

What country
are you in?

36% 26%
ECP ECP
5 Exascale Computing Project Slide provided by Todd Gamblin \\-—-

What is a Vertical Application?

* Avertical application is any software
application that supports a specific
business process and targets a smaller
number of users with specific skill sets
and job responsibilities within an
organization.

https://www.webopedia.com/definitions/vertical-
application/

6 Exascale Computing Project

Capabilities

)

V
e
r
t
i
C
a
|
A
P
P .
(] Horizontal App
User Base
’;\\ EXASCALE
(L P e

https://www.webopedia.com/definitions/application-software/
https://www.webopedia.com/definitions/application-software/

So where does Spack fit in?

» User base is growing, and so are
features...

7 Exascale Computing Project

Capabilities

)

Vv \
e
r
t
i
c
a
|
A
p 4
P .
(] Horizontal App]
—_ >
User Base

So where does Spack fit in?

» User base is growing, and so are .
features...

* Natural consequence is the
learning curve grows

V
e
r
t
i

* Different user types can lead to
friction

Capabilities

* Main strategies I've seen
A. Silo/hide Spack

B. Tell users to embrace Spack fully 6‘(\\0@
\/8

2
<

"ﬁ \
\ EXASCALE

) —) COMPUTING
PROJECT

8 Exascale Computing Project \(

Democratization of Spack

 Democratization of technology refers to the process by which
access to technology rapidly continues to become more accessible to
more people. New technologies and improved user experiences have
empowered those outside of the technical industry to access and
use technological products and services — Wikipedia

Rest of the talk ...
* What would democratization of Spack look like?

* |s that a good idea?

https://en.wikipedia.org/wiki/Democratization_of technology

9 Exascale Computing Project \(

EEEEEEE

Consider Spack as a Platform

)
)
]

_4

» User base is growing, and so are
features. We don’t really want to stop

either...
— Creating vertical applications that use
Spack as a platform

— Expose the most important parts to
further education, impact, and comfort

without overwhelming

» “Everything should be made as simple
as possible but not simpler” — Albert

Einstein
= \ EXASCALE

—
\) —) COMPUTING

Capabilities

TOT P>—0O0 0 ——= 0 <
T O P>—O 0 ———= 00 <
TCTOT P>—00 ——= 0 <
TOP>—000 ——= 0 <

4

——

(

[
[

User Base

PROJECT

10 Exascale Computing Project

Attributes of an Ideal Vertical Application

* Minmax problem: min(user inputs) max(user impact)

* [ntuitive

« Easy to update and maintain

* Provides feedback and features that help steer the direction of Spack
» Gateway to broader Spack usage

EEEEEEE

11 Exascale Computing Project \(

Spack-Manager: Example of a Vertical Spack Application

* Spack-Manager is an extension
to Spack that aims to act as a
buffer between Spack and our
end application

— Increases our agility

— Framework to prototype new Spack
features

— Manage machine specific
configurations and create a machine
agnostic interface

* This talk will focus on accelerating
application developer workflows

12 Exascale Computing Project

Philosophy: Population size of the user profile
should have an inverse relationship with required
understanding of Spack

—

\\ ExASCALE
&

) —] COMPUTING
PROJECT

ExaWind: The Motivating Application

Packages under active

« ExaWind software stack: development

— Combine two loosely coupled xovindenaster/oreb?))
CFD codes with entirely
different software stacks nolu-windenaster/Tgunkes
(Trilinos and AMReX)
_ Living On the deve|qp branch Of / trilinos@develop/oeoShy4 cemp@l. 9.8, 1/bekbtk, amr-wind@main/5o2ip ioga@develop/eaaxbeu
multiple dependencies
] . . . openfast@2.6.0/rnpues hypreB2.24.0/erwbw3r parmetiséd.@_3/5cgateh [_cgns@at_a_eﬂibrjjkl'[mauom_s.u/quguqa Inetcdf-cm_s_ifttaetxsl
— Projectis actlvely sup]portlng —— V4
development Of + SO tware [yuml-cpp@e_?.aﬂvusnm [apenblns@a_s_za;zw3rxi] [mis@s_l_wstxkqm] [para'l.'l.e'l.—netcdf@l_12.2/alekj:m hdf581.12.1/gaahlus
packages in the stack
(CPU+GPU - -
cmaked3. 23 .8/fr271yr mdEl. 4. 19/micowvu openmpifd 1.3/ /y5sg6bt

— Many, many machines: _
LaptOpS, Azure, Eagle, Summ't, [Libsigsegv@&ﬂ!ojnids] [libe\r&nt@Z.l.lZ/tSthjd] [openssh@‘s.gpllgmdtts.r]
Crusher/Frontier, Sunspot, etc. l

» Developer Configuration — 2
C h a I | e n g e S : libxml2@2. 9. 12/ 7yabyvi boost®1.78.8/7iygxuw perl®s. 34 . 1/ayneiqf

— Building Z <

xz85.2.5/dwivzys [bzipz@l .@.8/65ed] fs] [gdbm@1.19/v]g6 ?nd] [berkel ey-db@18.1.40/xgt3t1s | [z1ib81.2.12/Fmhpso?
— Developing
. di ffutils®3.8/662adoo [1 ibedite3,1-20210216/ mquz]
— Testing
- Dep|0y|ng Tibicom®l.16/fuftfsr ncurses#6. 2/xdbageo

- @@

pkgconf@l 8.0/ kfureck

—

\
EXASCALE
\) I—] COMPUTING

PROJECT

13 Exascale Computing Project \(

Core Spack Feature: Spack Develop

* In a Spack environment develop specs
can be added

* Develop specs work as follows

— If DAG_spec.satisfies(develop_spec)

* Do a build from the users source code rather than
from Spack’s staging procedure

* Perform incremental builds based on timestamp
of files in the source directory

* Allows for arbitrary development of
packages in the graph
— Dependencies will get automatically rebuilt
 Allows for multiple builds from the same
source

— Cuda and Non-Cuda builds from the same
source code at the same time

— Graph level parallelism is available in builds

14 Exascale Computing Project

In this configuration you will get
4 develop builds: cuda and non-cuda
nalu-wind and trilinos coming from
the same sources
spack:
specs:
- nalu-wind +cuda cuda_arch=70
- nalu-wind ~cuda
view: false
concretizer:
unify: false
develop:
nalu-wind:
spec: nalu-wind@master
trilinos:
spec: trilinos@develop

=\
\] EXASCALE
) COMPUTING

PROJECT

Spack-Manager Infrastructure

* 1k-2k lines of python code
(including prototypes)

e Core features for machine
agnostic environment curation is
closer to 500 700 lines

 Utilize Spack code through
Spack extensions

* Also get the testing and
formatting infrastructure

* Relatively simple to maintain

15 Exascale Computing Project

Spack
(submodule)

|

scripts

J

/ Project Specific\

Information

repo

.
p-

configs

/
~

&
P

scripts

J

/
N

Y

\ templates

/ Spack-Manager \

/ Spack-Scriptingx

scripting

manager

unit tests

)
|

@
|
-

2

] EXASCALE
) COMPUTING
PROJECT

Machine Agnostic APIl: How do we do this?

 Utilize Spack API’s to write Spack
extensions

— Environment curation

— ﬁl—l’IOf our scripts serve to reduce the end user

¥
— Can be replicated through core Spack .

commands and a little manual intervention

* A core example of this is: @

— find-machine + create-env manually insert machine specific configs: ’
« find-machine: a utility that allows custom python packages.yaml, configs.yami, compilers.yam|

scripts to identify the current machine
¥

« create-env: uses find-machine and stored configs to
spack manager create-env —d [foo] —s [specs] <)

automate platform specific environments
’-*"\

Ty \
EXASCALE

(\) —) COMPUTING
16 Exascale Computing Project &.—

PROJECT

Setting Up a Development Environment

* spack develop is amazingly
powerful but ...

» Setting up a development
environment can still be a
lot of work

e Can start to feel tedious
when done often

* Number of co_mmands can
be r_educed W|t_h some
basic assumptions

17 Exascale Computing Project

Basic Setup

 source ${SPACK_MANAGERY}/start.sh
» spack manager create-env --specs do re mi
* spack env activate —d .

Development
Commands

» spack develop do@develop
* spack develop re@main
 spack develop mi@main

Final
Touches

e cdre

* git remote add user git@github.com:user/feature
« git fetch --all && git checkout feature

* spack install

—
\\ J EXASCALE
) COMPUTING
PROJECT

mailto:git@github.com:user/feature

Bash "quick-commands”

« Wrap the functionality of basic
setup and development
commands together

* Common features:

— Shell source Spack/Spack-
Manager

— Create an anonymous Spack
environment

— Activate the created environment

* Development specific
assumptions:

— All concrete spec’s are intended as
develop specs ([name]@)][version])

— Anything not pre-cloned should be
fetched via spack develop

Step

spack-start

Create an environment
Activate an environment
Add root specs

Add develop specs

Add externals

Concretize and install

quick-create
X
X

X

quick-create-dev

X

X

X

quick-develop

X

X

X

* quick-create-dev --spec do@develop re@main mi@main

18 Exascale Computing Project

— \
\)

\

—

EXASCALE
COMPUTING
PROJECT

What does it look like?

quick-create-dev --spec exawind@master amr-wind@main nalu-wind@master

2 spack.yaml

spack:

specs:
- exawind@master
- amr-wind@main
- nalu-wind@main
view: true
concretizer:
unify: true
include:
- include.yaml
develop:
exawind:
spec: exawind@=master
amr-wind:
spec: amr-wind@=main
nalu-wind:
spec: nalu-wind@=mastep

What user needs to care about

Machine/project specific boiler plate /
19 Exascale Computing Project abstracted away

Build and Test Process: Debug Issue from Trilinos Update

1) quick—create—dev —s nalu—wind@master+cuda build_type=Debug trilinos@develop build type=Debug
2) spack install

3) spack cd —b nalu—wind

4) # run test to confirm behavior

5) # modify trillinos source code

6) spack install

7) # run test to see if behavior is fixed

8) # iterate further

"ﬁ \
\ EXASCALE

) —) COMPUTING
PROJECT

20 Exascale Computing Project \(

Example: Uh-Oh a Memory Leak!

Exawind Memory Usage by MPI Rank

3.0 A

2.5

2.0

1.5

Memory Usage (GB)

1.0 1

0.5

0.0~

J

_—
e]
—————

Il |
'n u I

i WWWWMWWWW

Where!

____ Single Nalu-Wind
rank

____ Single AMR-Wind
rank

- Long-standing
memory leak not
many developers
had time to
investigate

- Lots of overhead to

21 Exascale Computing Project

=1

50

100 150 200 250
Elapsed Run Time (seconds)

(Plot generated merely by sampling ps)

300

set up tools for such
a large stack

PPPPPPP

Spack-Manager: Debugging a Magnitude Faster

quick-develop -s exawind+asan build_type=Debug \
Aamr-wind+asan build_type=Debug \
~nalu-wind+asan build_type=Debug \
Atioga+asan build_type=Debug \
Mrilinos+asan build_type=Debug %clang@10.0.0

spack install
spack cd -b exawind
spack build-env exawind ctest -j $(nproc) --output-on-failure

Set up a development
environment and turn
address sanitizer on
for everything

Run regression tests

SUMMARY: AddressSanitizer: 791 byte(s) leaked in 17 allocation(s).

Wait...got some output!

spack-manager/environments/exawind/tioga/src/tioga_nogpu.h:24
spack-manager/environments/exawind/tioga/src/tioga_nogpu.h:36
spack-manager/environments/exawind/tioga/src/CartGrid.C:218
spack-manager/environments/exawind/tioga/src/CartGrid.C:239
spack-manager/environments/exawind/tioga/src/CartGrid.C:130
spack-manager/environments/exawind/tioga/src/tioga.C:1081
spack-manager/environments/exawind/exawind/src/OversetSimulation.cpp:90
spack-manager/environments/exawind/exawind/src/OversetSimulation.cpp:69
spack-manager/environments/exawind/exawind/app/exawind.cpp:173

Look at the ASAN
backtrace

It's in TIOGA (which only
executes in the Nalu-
Wind ranks)

vim spack-manager/environments/exawind/tioga/src/tioga_nogpu.h Edit TIOGA code (OI’ any code in

spack install the stack) and easily get updated

spack cd -b exawind P
spack build-env exawind ctest -j $(nproc) --output-on-failure results — \\)

COMPUTING
PROJECT

I J EXASCALE

22 Exascale Computing Prolect B i1ds tioga, relinks nalu-wind, and relinks exawind \\-—-

O N boa rd i n g D eve | (o) pe rs For ExaWind development, onboarding

new developers and development using
Spack-Manager in general has made us
an order of magnitude more efficient.

_ - Jon Rood (NREL)
» Ask developers to learn 3 things .
[...]Spack-manager allows us to easily
about SpaCk: manage and control a complex build
. chain for a number of different hardware
— How to query the API for help, i.e. -- targets. To me, ExaWind would be much
he|p and spack info more difficult to configure and build for
_ emerging platforms without this critical
— How to read and write a Spack spec build package.
_ . - Paul Mullowney (AMD)
— What the major steps in the Spack | have to type a whole 12 characters
build process are to compile just 2 different codes with
a zillion dependencies to debug my
* Learn to speak the basics of the code

- Ganesh Vijayakumar (NREL)
Spack Manager and Spack have saved
me an incredible amount of time and
headache]...].

- Nate deVelder (SNL)

(’-.'ﬁ \\ EXASCALE
\

language

) —) COMPUTING

23 Exascale Computing Project PROJECT

Spack-Manager Summary

 Overall considered a universal win on ExaWind

 Large work reduction in environment curation, after that it is
boilerplate Spack

— Allows developers to work on arbitrarily complex software stacks through the
simple syntax of Spack specs

— Mixed results WRT developers digging further into Spack

* The principles and base code are project agnostic, ExaWind specifics
are in the configuration settings

* Extending to more projects is possible with some adjustments

* Needs of Spack-Manager have influenced mainline Spack and
features have been upstreamed =

"ﬁ \
\ EXASCALE

) —) COMPUTING
PROJECT

24 Exascale Computing Project \(

Discussions to be Had

Adding vertical applications creates a buffer between users day to day needs and
Spack feature development

— "Spack is great but it is missing x, y, Z”
— “Spack needs to stabilize more before we can use it"
Should something like this exist for each app or should we rally around a few

more common implementations?

— Absolve all ideas into into Spack vs adding infrastructure to make it easier to spin up new
vertical applications quickly

Adding vertical applications can turn Spack into a plugin ecosystem.
— Is that good or bad?
— Does Spack want to go there?
— Do users want to go there?

What users and use cases would benefit most from vertical applications?

Feel free to reach out: psakiev@sandia.gov
@psakievich (github/slack) ,..;_\\\

] EXASCALE
) COMPUTING
PROJECT

25 Exascale Computing Project \(

mailto:psakiev@sandia.gov

