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Abstract—The Cramér-Rao Lower Bound (CRLB) is used as
a classical benchmark to assess estimators. Online algorithms
for estimating modal properties from ambient data, i.e., mode
meters, can benefit from accurate estimates of forced oscillations.
The CRLB provides insight into how well forced oscillation
parameters, e.g., frequency and amplitude, can be estimated.
Previous works have solved the lower bound under a single-
channel PMU measurement; thus, this paper extends works
further to study CRLB under two-channel PMU measurements.
The goal is to study how correlated/uncorrelated noise can
affect estimation accuracy. Interestingly, these studies shows that
correlated noise can decrease the CRLB in some cases. This paper
derives the CRLB for the two-channel case and discusses factors
that affect the bound.

I. INTRODUCTION

The reliability of electrical power systems is one of the
main concerns especially with transmission lines, loads and
inter-connecting generators which increase the complexity of
analyzing the system. In recent years, synchronized Phasor
Measurement Units (PMUs) have been installed across a wide
geographical areas to collect current and voltage phasors.
These valuable measurements can enhance the reliability of
electrical power systems. Since power oscillations are one
of the major problems threatening the reliability of wide-
area power systems, one application of PMU measurements
is to estimate forced oscillations (FOs) parameters, such as
frequency, amplitude, etc.

A rogue input driving the system can cause forced oscilla-
tions [1], which should be distinguished from electromechani-
cal modal oscillations. Electromechanical modes are properties
of the system and excited by continuous random load varia-
tions or by sudden system events [2]–[4]; thus its character-
istics and consequence to the system are distinct from forced
oscillations. Forced oscillations can have large amplitude, and
if the frequency of the forced oscillation is near a system
modal frequency, forced oscillations can lead to blackouts
[5]. However, their sources are not always known. In power
systems, forced oscillations may come from steam-turbine
regulator malfunction [6], incautious power system stabilizer
design [7], or stable limit cycles [8]. Forced oscillations have
been observed in PMU data for the US Eastern and Western
Interconnects and also the Nordic power system [9].

Forced oscillations can be characterized by their frequency,
amplitude, and phase. They can easily be observed in PMU
data during times when they have large enough amplitude.
Nonetheless, small forced oscillations can be buried under
ambient power system noise in many cases because of a small
amplitude. Traditional mode meters [2], [10], [11] may give
biased mode estimates if the frequency of the forced oscillation
is close to the frequency of an electromechanical mode;
however this issue is solved by a new class of mode meters
[12], [13] which utilize estimates of the forced oscillation
frequencies. In addition, these algorithms benefit from highly
accurate estimates of frequencies of forced oscillation [14],
[15]. Because of the importance of accurate estimation of
frequencies of forced oscillations, this research will focus on
the ideal achievable estimation. Through all these previous
works, the true values of parameters provide a benchmark;
but, no research has provided a benchmark for the variance of
the parameter estimate. In addition, by all of these estimation
algorithms, a variance of estimated parameters are compared
with each other, and estimated parameters are close to the true
value. However, a lower bound on the variance has not been
studied, where such lower bound is called the Cramér-Rao
Lower Bound (CRLB).

The previous work [16] has found CRLB for the estimated
frequency, amplitude, and phase of forced oscillations when
PMU data is collected from a single measurement channel.
The goal is to see how the CRLB is decreased by utilizing
more than one PMU measurement channel and in particular
to gain insight into what influences the CRLB such as the
impact of correlation of the noise between the channels, the
signal to noise ratio (SNR) of each channel, and the record
length. This paper derives closed form expressions for the two
PMU channel case that provides these insights.

Notation: The set of integer numbers is denoted by Z. The
set of real numbers is denoted by R. A constant or a parameter
is indicated by non-bold letters (A, θ). Matrices or vectors are
denoted by bold letters (C, x). In addition, vector transpose
θ is shown as θ⊤ and the N-dimensional identity matrix is
denoted by IN×N .

The paper is organized in the following: Section II provides
details about the modeling of a forced oscillation in PMU
data under a two-measurement channel. In Section III, a direct
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method to solve the CRLB of forced oscillation’s amplitude,
phase, and frequency is derived. Section IV discusses the
CRLB for the estimated frequency, amplitude, and phase of
forced oscillations under specifics situation. Section V gives
the conclusions of the paper.

II. MATHEMATICAL MODEL

If a forced oscillation (FO) appears in PMU measurements
of power systems, each channel of sampled measurement data
can be written as the sum of ambient power system noise and
the forced oscillation,

xi[n] = si[n] + wi[n], n = 0, 1, . . . , (N − 1), (1)

where i ∈ Z+ denotes the ith channel in PMU measurements.
The FO signal in the ith channel is expressed as si[n], and
N is the length of the measurement window. To keep the
mathematics tractable, the noise in each channel is modeled
as white Gaussian noise but the noise between the channels
can be correlated. This is often referred to as temporally
white but spatially correlated. This model for the noise will
lead to gaining insight into the effect spatial correlation has
on the CRLB. As in [17], the appearance of FOs in PMU
measurements can be modeled as sinusoidal which can be
written as

si[n,θi] = Ai cos (2πf0n+ ϕi), (2)

where Ai ∈ R is the amplitude of the FO in the ith channel,
and f0 ∈ [0, 1] is the normalized frequency of the FO (i.e. f0 =
F0/Fs) where F0, with unit Hz (cycles per second), is the real
frequency of the FO, and Fs is the sampling frequency of PMU
with units of samples per second. The phase of the FO is ϕi ∈
[−π, π] in units of radians for the ith channel. Amplitudes,
phases, and frequencies are all unknown parameters that need
to be estimated.

Here, to keep the mathematics tractable and to gain the
desired insight, just two channels are considered as shown
in Fig. 1. The final two-channel measurement vector can be
written as

x =

[
x1

x2

]
=



A1 cosϕ1

A1 cos (2πf0 + ϕ1)
A1 cos (2π2f0 + ϕ1)

...
A1 cos (2π(N − 1)f0 + ϕ1)

A2 cosϕ2

A2 cos (2πf0 + ϕ2)
A2 cos (2π2f0 + ϕ2)

...
A2 cos (2π(N − 1)f0 + ϕ2)


︸ ︷︷ ︸

s=

s1

s2



+



w1[0]
w1[1]
w1[2]

...
w1[N − 1]

w2[0]
w2[1]
w2[2]

...
w2[N − 1]


︸ ︷︷ ︸

w=

w1

w2



,

(3)
where the unknown parameter vector is θ = [A1A2ϕ1ϕ2f0]

⊤.
In this section, the two-channel PMU measurement case is

explored. A variety of approaches in previous works [12], [13],
[17]–[21] has been provided to estimate unknown parameters
in FO; nevertheless, this paper aims to solve the lowest

𝑥1 𝑛 = 𝑠1 𝑛, 𝜽1 + 𝑤1[n]

FOs + White Noise 

𝑥2 𝑛 = 𝑠2 𝑛, 𝜽2 + 𝑤2[n]

Power System 
Measurement 1 

Measurement 2 

Fig. 1. System sketch for two channels PMU measurements

variance of unknown parameters in FO, which previous works
have not addressed. In the next section, the lowest variance
will be solved.

III. CRAMÉR-RAO LOWER BOUND

Cramér-Rao Lower Bound (CRLB) is a lower bound on
the variance of any unbiased estimator which, if achievable,
is the smallest possible variance; however, in practice, many
unbiased estimators cannot achieve this bound. Thus, the
bound can provide a benchmark to assess different estimator
performances. The CRLB is not connected to a particular
estimation method or whether the data is being analyzed in
the time or frequency domain, but is fundamental to the
problem. Given the CRLB theorem in [22], the CRLB is
found by first finding the Fisher information matrix and
then taking its inverse. Finally, the diagonal elements at the
inverse Fisher information matrix are taken as lower bounds.
Additionally, the closed-form expressions for the CRLBs need
to be analyzed to gain insight into what influences estimation
accuracy.

A. Solving Fisher information matrix

To solve the CRLB, the Fisher information matrix needs to
be found. In this paper, the amplitudes, phases, and frequency
are the unknown parameters, θ = [A1, A2, ϕ1, ϕ2, f0]

⊤. The
Fisher information matrix I(θ) can be defined as a 5 × 5
matrix, and each entry in the matrix I(θ) can be solved as

[I(θ)]ij = −E
[
∂2 ln p[x,θ]

∂θi∂θj

]
, (4)

where i, j ∈ {1, 2, . . . , 5}, and [·]ij stands for the element at
the ith column and jth row of the matrix. The signal x has
been defined in (3); since w is Gaussian noise, the probability
density function (PDF) of output x is solved as

p(x;θ) =
1

(2π)
N
2 det(C)

1
2

exp

{
1

2
(x− s(θ))⊤ C−1(x− s(θ))

}
,

(5)
where C ∈ R2N×2N is the covariance matrix of the noise w,
which can be solved as

C = E



w1[0]w1[0] w1[0]w1[1] . . . w1[0]w2[N − 1]
w1[1]w1[0] w1[1]w1[1] . . . w1[1]w2[N − 1]

...
...

. . .
...

w2[N−1]w1[0] w2[N−1]w1[1] . . . w2[N−1]w2[N−1]


 ,

(6)
and det(C) denotes the determinant of the matrix C. Since
w1 and w2 are temporally white but spatially correlated,



the covariance matrix can be expressed by the correlation
coefficient ρ in (7). Step details to find this are given in Section
A of the Appendix.

C =

[
γ1I γ12I
γ21I γ2I

]
=

[
σ2
1I ρσ1σ2I

ρσ1σ2I σ2
2I

]
(7)

where σ2
1 and σ2

2 are the variance of w1 and w2, respectively.
In addition, I stands for identity matrix. Substitute (5) into
(4), one can simplify the Fisher information matrix as

[I(θ)]ij =

[
∂s(θ)

∂θi

]⊤

C−1

[
∂s(θ)

∂θj

]
, (8)

where partial derivatives for each parameter are

∂s(θ)

∂θ1
=



cosϕ1

cos (2πf0 + ϕ1)
cos (4πf0 + ϕ1)

...
cos (2(N − 1)πf0

+ ϕ1)
0
0
...
0


,
∂s(θ)

∂θ2
=



0
0
...
0

cosϕ2

cos (2πf0 + ϕ2)
cos (4πf0 + ϕ2)

...
cos (2(N − 1)πf0

+ ϕ2)



,

(9)

∂s(θ)

∂θ3
=



−A1 sin (ϕ1)
−A1 sin (2πf0

+ ϕ1)
−A1 sin (4πf0

+ ϕ1)
...

−A1 sin (2(N − 1)
πf0 + ϕ1)

0
0
...
0



,
∂s(θ)

∂θ4
=



0
0
...
0

−A2 sin (ϕ2)
−A1 sin (2πf0

+ ϕ2)
−A1 sin (4πf0

+ ϕ2)
...

−A2 sin (2(N − 1)
πf0 + ϕ2)



,

(10)

∂s(θ)

∂θ5
=



0
−A12π sin (2πf0 + ϕ1)
−A14π sin (4πf0 + ϕ1)

...
−A12(N − 1)π sin (2(N − 1)πf0 + ϕ1)

0
−A22π sin (2πf0 + ϕ2)
−A24π sin (4πf0 + ϕ2)

...
−A22(N − 1)π sin (2(N − 1)πf0 + ϕ2)


. (11)

In Section B of the Appendix, the elements of the Fisher
information matrix are then found using (7–11). The Fisher
information matrix can finally be expressed as (12). For
concise expression, a1, a2, a3, b1 and b2 are used in the
(12), where a1 = 1

σ2
1(1−ρ2)

,a2 = 1
σ2
2(1−ρ2)

,a3 = 1
σ1σ2(1−ρ2) ,

b1 = cos (ϕ1 − ϕ2), and b2 = sin (ϕ1 − ϕ2).

B. Solving for the CRLB

By applying the CRLB theorem [22], the true value of the
estimation parameter is used; the CRLB of a parameter is
the diagonal element of the inverse of the Fisher information
matrix

Var (θ̂i) ≥
[
I−1(θ)

]
ii
, (13)

where i = 1, 2, . . . 5, and I−1(θ) ∈ R5×5 is inverse of Fisher
information matrix given in (12). Var (θ̂i) is to place a bound
on the variance of the estimate of the ith parameter in θ.

Finally, the CRLB of amplitude, phase and frequency are
solved as

Var (Â1) ≥
2σ2

1

N
, (14)

Var (Â2) ≥
2σ2

2

N
, (15)

Var (ϕ̂1) ≥
1

Nη1
+

(N − 1)

N(N + 1)

3(1− ρ2)

η1 + η2 − 2ρb1
√
η1η2

, (16)

Var (ϕ̂2) ≥
1

Nη2
+

(N − 1)

N(N + 1)

3(1− ρ2)

η1 + η2 − 2ρb1
√
η1η2

, (17)

Var (F̂0) ≥
12F 2

s

(2π)2N(N2 − 1)

(1− ρ2)

η1 + η2 − 2ρb1
√
η1η2

, (18)

where ηi is the signal-to-noise ratio (SNR), which is defined
as the mean square value of the FO in the ith channel divided
by the ambient noise power in the ith channel,

ηi =
A2

i /2

σ2
i

. (19)

The above closed-form solutions give key insights into what
are important factors when estimating the amplitudes, phases,
and frequencies of forced oscillations. For instance: The CRLB
for the amplitude estimate is directly proportional to the value
of noise power σ2

i , and inversely proportional to the number
of samples (N ). Intuitively, as the noise power increases, one
could get worse estimation results. If the length of estimation
data increases, which means more achievable information of
FOs, the estimation accuracy highly increases. Compared to
CRLB for the phase or the frequency, one can obviously
observe that CRLB for the amplitude is only determined by
two main factors; thus, discussions will mainly focus on CRLB
for the phase or the frequency in the next section.

This section completely described deriving the CRLB and
arriving at a closed-form expression for each of the estimated
unknown parameters. In the result section to follow, a closer
look will be made regarding the closed-form expressions for
the CRLB of the phase and frequency estimates to gain more
intuitive insight into what influences the estimation of these
parameters.

IV. RESULTS AND DISCUSSIONS

The closed-form expressions of the CRLB for the phase and
frequency are complicated expressions and are hard for the
reader to easily find insight to discover how the lower bounds
are affected by different parameters. Here, three different cases
will be discussed to help the reader understand CRLB for the
phase and the frequency.



I(θ) =



N
2 a1

N
2 a3b1 0 N

2 a3A2b2
N(N−1)

2 πa3A2b2

N
2 a3b1

N
2 a2

N
2 a3A1b2 0 −N(N−1)

2 πa3A1b2

0 N
2 a3A1b2

N
2 a1A

2
1

N
2 a3A1A2b1

N(N−1)
2 π(a1A

2
1 + a3A1A2b2)

−N
2 a3A2b2 0 N

2 a3A1A2b1
N
2 a2A

2
2

N(N−1)
2 π(a2A

2
2 + a3A1A2b2)

N(N−1)
2 πa3A2b2 −N(N−1)

2 πa3A1b2
N(N−1)

2 π(a1A
2
1

N(N−1)
2 π(a2A

2
2

N(N−1)(2N−1)
6

(2π2)
2 (a1A

2
1 + a2A

2
2

+ a3A1A2b2) + a3A1A2b2) + 2a3A1A2b1)


(12)

A. Perfect Correlation

Under the perfect correlation case, the noise in the two
channels is the same to within a constant multiplier. The value
of correlation coefficient is ρ = 1 or −1; thus, the CRLB in
(16), (17) and (18) become

Var (ϕ̂1) ≥
1

Nη1
, (20)

Var (ϕ̂2) ≥
1

Nη2
, (21)

Var (F̂0) ≥ 0. (22)

Interestingly, the CRLB for the frequency is equal to 0, which
means the lower bound on the variance of the frequency esti-
mate is zero. The CRLB for the phase is inversely proportional
to the SNR ηi, and inversely proportional to the number of
samples (N ). Compared with the CRLB of single channel
PMU measurement in [22], the CRLB for the phase under
two channels PMU measurement is 4 times smaller than the
single channel case for large N.

B. No Correlation

This subsection aims to examine how estimation accuracy
changes if the noise in two measurement channels is uncor-
related. As w1 and w2 are uncorrelated, the value of the
correlation coefficient is ρ = 0. The CRLB in (16), (17) and
(18) can be simplified as

Var (ϕ̂1) ≥
1

Nη1
+

(N − 1)

N(N + 1)

3

η
, (23)

Var (ϕ̂2) ≥
1

Nη2
+

(N − 1)

N(N + 1)

3

η
, (24)

Var (F̂0) ≥
12F 2

s

(2π)2N(N2 − 1)

1

η
, (25)

where η = η1 + η2 is defined as total SNR of the system.
From the above three equations, one can observe

• The CRLB for the phase is inversely proportional to the
number of samples (N ); in addition, it also has a term
inversely proportional to the total SNR (η) and a term
inversely proportional to the SNR at that channel. One
thing should be noticed here if η1 = 0 or η2 = 0 which

means only one signal presence in the measurement; in
other words, this case can be considered as a single
channel PMU measurement. The CRLB is simplified as

Var (ϕ̂i) ≥
2(2N − 1)

N(N + 1)ηi
. (26)

The above results exactly match the result in [22], and
(23), (24) guarantee to be smaller than the single channel
case in (26) for large N.

• The CRLB for the frequency is inversely proportional
to total SNR (η). But the bound falls off much more
quickly with the number of samples since it is inversely
proportional to N3 for the bound on the frequency
compared to N for the amplitude and the phase. If η1 = 0
or η2 = 0, the CRLB is simplified as

Var (F̂0) ≥
12F 2

s

(2π)2N(N2 − 1)ηi
, (27)

where the above result also matches results in [22].
Compared to (25) and (27), one can notice that the CRLB
for the frequency in the multi-channel case is smaller than
the single-channel case because of total SNR in (25).

C. Correlated channel

As previous two subsections discuss some special cases of
the value of the correlation coefficient. This section will focus
on when 0 < |ρ| < 1.

It is easy to observe from (16–18) that the CRLB for the
phase is inversely proportional to the number of samples (N ),
and the CRLB for the frequency is inversely proportional to
N3. It is also clear that the bounds decrease with increasing
SNRs. The other two parameters that play key roles in the
bounds are the correlation coefficient (ρ) and b1 which is the
cosine of the phase angle difference. Note, both these values
are constrained to be between −1 and 1. Since cosine is an
even function, the bounds are an even function of the phase
angle difference. Notice that the CRLB for the phase has two
terms, where the first term is inversely proportional to N and
the channel’s SNR but does not depend on ρ or b1. The second
term, and also the CRLB for the frequency, depends on the
two SNRs, ρ, and b1. Because of the (1 − ρ2), this goes to
zero if |ρ| = 1. Also, b1 only appears in the expression as



a product with ρ, where ρb1 is between -1 and 1. So if that
product is negative it increases the size of the denominator
and thus decreases the bound. If that product is positive the
opposite is true. Two figures are given to better understand
the variation of the CRLB as phase difference and correlation
coefficient change. In the first case, the phase difference is
fixed at π/3. For other parameters, η1 = η2 = 5dB, N = 100,
Fs = 5. Fig. 2(a) shows that when ρ increases, the CRLB
for both phase and frequency has a similar U-shape, where
ρ can be determined to find the maximum value for the
CRLB. In the second case, ρ is fixed at a value 0.2, and other
parameters’ values are as same as before. From Fig. 2(b), the
CRLB for the phase or the frequency has a similar U-shape
and the maximum CRLB value is at phase difference 0. If
ρ is positive, the CRLB for the phase or the frequency is
monotonically decreasing as the phase difference goes from
0 to π. But if ρ is negative, the CRLB for the phase or the
frequency is monotonically increasing. In addition, one can
observe that curve of the CRLB for the frequency falls off
faster than the phase, which is mentioned in the earlier section.
From the discussions in this section, correlated noise can
improve potential estimation accuracy under some situations
by decreasing the bound.

V. CONCLUSION

This paper proposes the mathematical model of FOs in
two-PMU measurement channels, and instead of focusing on
estimating parameters in FOs, this paper solves for a bound
on the achievable estimation performance. Such a bound acts
as a benchmark to evaluate different estimation algorithms.
Cramér-Rao Lower Bound, known as a classic benchmark,
is introduced and solved. The closed form of the CRLB
gives readers insightful perspectives to view different kinds
of parameters affecting estimation accuracy. Additionally, this
paper explores how noise in two different channels affects the
CRLB of unknown parameters in FOs. Future work will study
FOs under colored Gaussian noise instead of white Gaussian
noise, accurately describing the ambient power system.
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APPENDIX

A. Solving Covariance Matrix
As shown in (3), the noise part can be written as vector

form as w = [w⊤
1 w⊤

2 ]
⊤. Thus, given (6), the covariance

matrix can rewrite as,

C = E{ww⊤} = E

{[
w1

w2

] [
w⊤

1 w⊤
2

]}
, (28)

(a)

(b)

Fig. 2. CRLB for the frequency and the phase as correlation coefficient or
phase change. The range of x-axis in (b) is [−π, π], which has been scaled
by π to [−1, 1].

which is simplified as

C =

[
E{w1w1

⊤} E{w1w2
⊤}

E{w2w1
⊤} E{w2w2

⊤}

]
. (29)

Since, w1 and w2 are assumed to be white Gaussian noise
with mean of 0 and variance of σ2

1 , σ2
2 , respectively. Thus,

one can rewrite covariance matrix as

C =

[
γ1I γ12I
γ21I γ2I

]
. (30)

Based on the characteristics of white Gaussian noise w1 and
w2

E{wiwi
⊤} = σ2

i I = γiI, (31)

where i = 1 or i = 2, If w1 and w2 are independent of each
other, one can find that E{w1w2

⊤} = 0; however, here, w1

and w2 are considered as more general case: if w1 and w2

are assumed to be correlated with each other with correlation
coefficient ρ. Thereby, ρ = γ12√

γ1
√
γ2

= γ12√
σ1

√
σ2

Finally, one



can get γ12 = γ21 = ρσ1σ2. The covariance matrix can be
expressed as

C =

[
σ2
1I ρσ1σ2I

ρσ1σ2I σ2
2I

]
. (32)

B. Solving Fisher Information Matrix

[I(θ)]11 =
1

σ2
1σ2

2(1 − ρ2)

Nσ2
2

2
− 0 − 0 + 0

 =
N

2σ2
1(1 − ρ2)

(33)

[I(θ)]12 =
1

σ2
1σ2

2(1 − ρ2)

(
0 − 0 −

Nρσ1σ2 cos (ϕ1 − ϕ2)

2

)
(34)

[I(θ)]13 =
1

σ2
1σ2

2(1 − ρ2)
(0 − 0 − 0 + 0) = 0 (35)

[I(θ)]14 =
1

σ2
1σ2

2(1 − ρ2)

(
0 − 0 −

NA2ρσ1σ2 sin (ϕ1 − ϕ2)

2

)
(36)

[I(θ)]15 =
NπA2ρσ1σ2 sin (ϕ1 − ϕ2)

σ2
1σ2

2(1 − ρ2)

N−1∑
n=0

n (37)

[I(θ)]22 =
1

σ2
1σ2

2(1 − ρ2)

0 − 0 − 0 +
Nσ2

1

2

 (38)

[I(θ)]23 =

N
2

πA1ρσ1σ2 sin (ϕ1 − ϕ2)

σ2
1σ2

2(1 − ρ2)
(39)

[I(θ)]24 =
1

σ2
1σ2

2(1 − ρ2)
(0 − 0 − 0 + 0) = 0 (40)

[I(θ)]25 =
NπA1ρσ1σ2 sin (ϕ1 − ϕ2)

σ2
1σ2

2(1 − ρ2)

N−1∑
n=0

n (41)

[I(θ)]33 =
1

σ2
1σ2

2(1 − ρ2)

Nσ2
1A2

1

2
− 0 − 0 + 0

 (42)

[I(θ)]34 =

N
2

A1A2ρσ1σ2 cos (ϕ1 − ϕ2)

σ2
1σ2

2(1 − ρ2)
(43)

[I(θ)]35 =
(σ2

2A2
1 − ρσ1σ2A1A2 cos (ϕ1 − ϕ2))π

σ2
1σ2

2(1 − ρ2)

N−1∑
n=0

n (44)

[I(θ)]44 =
1

σ2
1σ2

2(1 − ρ2)

0 − 0 − 0 +
Nσ2

1A2
2

2

 (45)

[I(θ)]45 =
(σ2

1A2
2 − ρσ1σ2A1A2 cos (ϕ1 − ϕ2))π

σ2
1σ2

2(1 − ρ2)

N−1∑
n=0

n (46)

[I(θ)]55 =
(σ2

1A2
2 + σ2

2A2
1 − 2ρσ1σ2A1A2 cos (ϕ1 − ϕ2))2π

σ2
1σ2

2(1 − ρ2)

N−1∑
n=0

n
2 (47)
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