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2 | Background

m Exascale Computing Project (ECP)

m Representation of clouds is a major of source of uncertainty in climate

predictions — how to use exascale resources to improve cloud representation
in climate models ?

m Two subprojects related to Energy Exascale Earth System Model (E3SM)
® Simple Cloud Resolving E3SM Atmosphere Model (SCREAM) - 3 km global
atmosphere model

® Multiscale Modeling Framework (MMF) - superparametrized E3SM climate
model
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3 | Superparametrization

m Cloud-resolving model (CRM) embedded inside each global climate
model (GCM) column

m Can be fast enough (=~ 5 SYPD) to enable multi-decadal runs with some
aspects of cloud resolving simulations

m CRMs typically 2d with horizontal resolution 1km

m All physics (microphysics, turbulence scheme, radiation) contained in the
CRM
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4 | Portable Atmosphere Model (PAM)

m New CRM for E3SM

m More flexibility and better numerics compared to the old CRM — SAM

m New physics: two-moment microphysics (P3) and turbulence (SHOC)
m Designed from the start for exascale machines (i.e. GPUs)

m Written in C++ using YAKL (Yet Another Kernel Launcher) for portability
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5 | Superparametrization - considerations for choice of numerics[ﬁ

m Cartesian box domain

m Periodic in the horizontal

m No topography

m Hydrostatically balanced reference profile available from the GCM
m Needs to robustly handle various cloud regimes
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PAM continuous formulation

m Hamiltonian formulation of moist Euler equations
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m Fully compressible or anelastic
m Prognostic variables: velocity and arbitrary number of densities

m Thermodynamics variable is generic entropic density (entropy density,
(virtual) potential temperature density, ...)

m Thermodynamics formulated in terms of potentials (energy, enthalpy, ..

m Choice of "unapproximated" moist thermodynamics or constant kappa
approximation
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7 I PAM continuous formulation - concrete example
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PAM spatial discretization

m Primal/dual grid staggered discretization based on discrete exterior
calculus (DEC) that ensures good linear modes and various mimetic
properties

m DEC enhancements developed for PAM:

® Nonoscillatory (WENO) and positivity-preserving transport
* Treatment of arbitrary boundary conditions
® High-order Hodge stars

m See Chris Eldred’s talk on Friday
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9 I PAM temporal discretizations

m Various explicit Runge-Kutta (RK) schemes

e Strong Stability Preserving RK
¢ Kinnmark-Gray RK
® Low-storage RK

m Fully implicit energy-conserving Poisson integrator (EC2)
To achieve reasonable time-to-solution:

m Anelastic model can use explicit integrators since it filters out acoustic waves
m Fully compressible needs (semi-)implicit scheme to step over acoustic waves
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10 I EC2 time integrator

M1 xn X"+ xH g}?
S ()%
where .
6;5 = /01 ((1 —r)x”—Mx”“)) dr
is called the discrete gradient and is usually evaluated using quadrature
m Also know as the average vector field method

m Quadrature order to achieve exact energy conservation depends on the
nonlinearity of 57 (4 points is usually sufficient)
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11 | Solution strategy for nonlinear problem [ﬁ

5 Z Om— <(1 — T X"+ Tpx ™ )) =0
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m Anelastic: fixed-point iteration
m Compressible: quasi-Newton method

Jlinearsxk = _F(Xk)

where the approximate Jacobian Jjnear cOMes from linearization about a
reference state
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Solution strategy for linear systems

m Both anelastic and compressible schemes require solving one linear system
per nonlinear iteration

m Both can be reduced (Schur complement) to solving for a single variable
(pressure or vertical velocity)
m Direct solve based on
® FFT in the horizontal directions
® Banded solve in the vertical (tridiagonal for the lowest order case)

m This is very efficient on GPUs (linear solve usually less than 15% of the total
runtime)
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13 I Rising bubble

E maximum advective
CFL~ 0.6

m 3 quadrature points

m Compressible
iterations average
7.3

m Anelastic iterations
average 5.3
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14 | Density current

minAB =-8.764
maxAB = 2.38e-06Xont=18.575 km

20

minA6 =-12.133
maxAB = 5.59e-02 X7ron=18.932 km

June 27, 2023

minAB = -8.842
maxAB = 1.52e-08 Xson=18.489 km

minA6 =-11.532
maxAB = 6.77e-02 Xfont=18.814 km

6 8 10 12 14 16 18 20




15

June 27, 2023

Gravity waves

m Gravity waves in a channel from Baldauf & Brdar (QJR, 2013)
m Exact solution of linearized Euler equations with gravity
m For small initial perturbations can be used to test convergence of nonlinear

models
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16 I Gravity waves: convergence

m Fixed high spatial resolution 2400 x 161 |
m Changing At to look at temporal convergence
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17| Supercell

m Splitting supercell storm test based on DCMIP but in planar geometry
m Kessler physics

5 6 -4 -2 0 2 4 5 8 10 12 1a 16 15 20 2 24

30 min 60 min 90 min 120 min
' : ]
N
32
: & -
@
-

52|  vertical velocity °

‘00’

52 rainwater

60 80 160 60 80 100 60 80 100 60 80 100
[ I I I I [
1 2 H 4 5 3

June 27, 2023



18 | Supercell statistics

Precipitation rate [10°kg/s]
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Summary and future work

Summary:
m New CRM for EBSM based on structure-preserving numerics
m Implicit second-order energy-conserving time integrator

m Verified energy-conservation, convergence, and obtained good results on
standard test cases

m Not overly expensive compared to more standard approaches
Future work:

m Improve convergence (nonlinear solvers can sometimes stall)

m Positivity preservation without SSP property

m Fully compressible model in 3d based on pressure solve




