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2 Background

Exascale Computing Project (ECP)
Representation of clouds is a major of source of uncertainty in climate
predictions – how to use exascale resources to improve cloud representation
in climate models ?
Two subprojects related to Energy Exascale Earth System Model (E3SM)

• Simple Cloud Resolving E3SM Atmosphere Model (SCREAM) - 3 km global
atmosphere model

• Multiscale Modeling Framework (MMF) - superparametrized E3SM climate
model
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3 Superparametrization

Cloud-resolving model (CRM) embedded inside each global climate
model (GCM) column
Can be fast enough (≈ 5 SYPD) to enable multi-decadal runs with some
aspects of cloud resolving simulations
CRMs typically 2d with horizontal resolution 1km
All physics (microphysics, turbulence scheme, radiation) contained in the
CRM
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4 Portable Atmosphere Model (PAM)

New CRM for E3SM
More flexibility and better numerics compared to the old CRM – SAM
New physics: two-moment microphysics (P3) and turbulence (SHOC)
Designed from the start for exascale machines (i.e. GPUs)
Written in C++ using YAKL (Yet Another Kernel Launcher) for portability
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5 Superparametrization - considerations for choice of numerics

Cartesian box domain
Periodic in the horizontal
No topography
Hydrostatically balanced reference profile available from the GCM
Needs to robustly handle various cloud regimes
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6 PAM continuous formulation

Hamiltonian formulation of moist Euler equations

dx
dt

= J
δH

δx

Fully compressible or anelastic
Prognostic variables: velocity and arbitrary number of densities
Thermodynamics variable is generic entropic density (entropy density,
(virtual) potential temperature density, ...)
Thermodynamics formulated in terms of potentials (energy, enthalpy, ...)
Choice of "unapproximated" moist thermodynamics or constant kappa
approximation
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7 PAM continuous formulation - concrete example

H (v ,ρθ ,ρ,ρs) =
∫

ρ
(

v2

2
+U(α,θ ,qs)+Φ

)

δH

δv
= F = ρv

δH

δρθ
=Π

δH

δρ
=

v2

2
+Φ+U +pα −θΠ+∑

s
(Ξd −Ξs)

δH

δρs
= Xis −Ξd

J=




−Q× (·) −θ∇(·) −∇(·) −qs∇(·)
−∇ · (θ ·) 0 0 0
−∇ · (·) 0 0 0
−∇ · (qs·) 0 0 0



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8 PAM spatial discretization

Primal/dual grid staggered discretization based on discrete exterior
calculus (DEC) that ensures good linear modes and various mimetic
properties
DEC enhancements developed for PAM:

• Nonoscillatory (WENO) and positivity-preserving transport
• Treatment of arbitrary boundary conditions
• High-order Hodge stars

See Chris Eldred’s talk on Friday
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(I) E3SM-MMF and PAM Overview

E3SM-MMF = embed a cloud
resolving model (CRM) at
each grid cell of a coarse
global climate model

Developing a new CRM for E3SM-MMF: the Portable
Atmospheric Model (PAM)

Written in C++ using YAKL performance portability framework
PAM = SCREAM physics (SHOC, P3 and RRTMGP)
plus a novel dynamical core (the structure-preserving
atmospheric model, SPAM++)

(II) PAM Continuous Formulation
General advected densities model with n densities Dk
(k = 1, . . . ,n, ex. mass density ρ, water vapor density ρv
and entropy density S = ρη) and velocity v written in
Hamiltonian form for an arbitrary Hamiltonian H [v,Dk ]:

∂ v
∂ t

+ Q×F+∑
k

dk∇Bk = 0 (1)

∂Dk

∂ t
+ ∇ · (dk F) = 0 (2)

where Q = ∇×v
D , dk = Dk

D , D is total density (a linear
combination of Dk ’s), F = δH

δv and Bk = δH
δDk

. With
appropriate choices of H and densities Dk can get many
different GFD models: ex. (thermal) shallow water,
(multicomponent) compressible Euler and anelastic
(III) PAM Spatial Numerics
Spatially discretize Hamiltonian formulation (1) - (2) in a
way that preserves the key properties, by using a discrete
exterior calculus (DEC) scheme (shown in 2D):

∂v1

∂ t
+ Q F̃ n−1 +∑

k
D̃e

kD1Bk
0 = 0 (3)

∂ D̃n
k

∂ t
+ D̃n(D̃e

k F̃ n−1) = 0 (4)

where Q = 1
2 [q̃e W+W q̃e], F̃ n−1 = δH

δv1 and Bk
0 = δH

δD̃n
k

for

(discrete) Hamiltonian H [v1, D̃n
k ].

Figure: Discrete variables and C-grid staggering used in the general
scheme in 2D, with solid lines for the primal grid and dashed lines for
the dual grid.

Scheme uses new DEC features developed at SNL:
Treatment of arbitrary boundary conditions
Higher-order Hodge stars
Structure-preserving, high-order, oscillation-limiting
transport operators with optional
positivity-preservation (SPHOOL-PD)

(IV) PAM Temporal Numerics
Temporally discretize (3) - (4) in a way that preserves the invariants
(Hamiltonian and Casimirs), by using a fully implicit energy-conserving
Poisson integrator (EC2, a type of discrete gradient method):

xn+1−xn

∆t
= J(x∗)

δ̃H

δx
(5)

where x∗ = xn+1+xn

2 and δ̃H
δx =

∫ 1
0

δH
δx (xn + τ(xn+1−xn))dτ ≈ ∑i wi

δH
δx (xi) with

xi = xn + τ i(xn+1−xn) (discrete gradient). Conserves linear/quadratic
Casimirs and arbitrary Hamiltonians to machine-precision (with enough
quadrature points i , ≈4 in practice for compressible Euler)
Implementation details of EC2 time integrator:

Solve (5) using a quasi-Newton method (simplified Jacobian, from the
linearized equations).
Simplify resulting linear system to a single positive-definite Helmholtz
or Poisson problem (depending on H ) using static condensation.
Solve this problem using a direct solve (FFT + banded diagonal
solvers). This step is specific to CRM configuration (no topography,
uniform horizontal grids).

(V) Results From Standard Test Cases
Moist Rising Bubble

Showing ρv at T = 900s, Left: Anelastic, Right: Compressible Euler

Density Current
Showing θ at T = 900s, Left: Anelastic, Right: Compressible Euler

Two (Dry) Bubbles
Showing θ at T = 600s, Left: Anelastic, Right: Compressible Euler

*For anelastic, using SSPRK3 time integrator since EC2 not implemented

(VI) Conserved Quantities
Conservation Properties (Compressible Euler, Moist Rising Bubble)

Total Mass

Water Vapor Mass

Energy

Entropy

Positivity-Preservation (Compressible Euler, Moist Rising Bubble)

Water Vapor Minima Water Vapor Maxima

(VII) Conclusions
New CRM in E3SM-MMF: PAM (SPAM++ dycore + SCREAM physics)
Based on Hamiltonian formulations and structure-preserving spatial
(DEC) and temporal (EC2) numerics
Provides exact conservation of invariants (mass, energy, entropy) to
machine precision along with SPHOOL-PD transport (see caveats
below)
Does well on standard dynamical core test cases

(VIII) Future Work
EC2 time integration implemented for anelastic (ongoing)
Improved vertical spatial numerics (SRP 2023 Intern): High-order
Hodge stars for variable grids, CFV/WENO recons
Improve Newton solver convergence to fix exact energy conservation
for some tests (solutions are fine even with convergence stalls)
Positivity-preserving version of EC2 time integrator to fix exact
positivity-preservation
More sophisticated treatment of moist thermodynamics

(IX) References
C. Eldred, W. Bauer. An interpretation of TRiSK-type schemes from a discrete exterior calculus perspective, arxiv

C. Eldred. Structure-preserving numerical discretizations for domains with boundaries, Technical Report SAND2021-11517, Sandia
National Laboratories, 2021
C. Eldred, M. Norman, and M. Taylor. PAM dynamical core- continuous formulation, discrete numerics and implementation, Technical
Report WBS 2.2.3.05, Milestone ECP-AD-SE-15-1675, Sandia National Laboratories, 2021

C. Eldred, M. Waruszewski, M. Norman, M. Taylor. A quasi-Hamiltonian dynamical core for the Portable Atmospheric Model: dry dynamics,
in preparation

M. Waruszewski, C. Eldred, M. Norman, M. Taylor. A quasi-Hamiltonian dynamical core for the Portable Atmospheric Model: moist
dynamics, in preparation

Eldred, Waruszewski, Norman & Taylor The Portable Atmospheric Model
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9 PAM temporal discretizations

Various explicit Runge-Kutta (RK) schemes
• Strong Stability Preserving RK
• Kinnmark-Gray RK
• Low-storage RK

Fully implicit energy-conserving Poisson integrator (EC2)
To achieve reasonable time-to-solution:

Anelastic model can use explicit integrators since it filters out acoustic waves
Fully compressible needs (semi-)implicit scheme to step over acoustic waves
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10 EC2 time integrator

xn+1 −xn

∆t
= J

(
xn +xn+1

2

)
δ̃H

δx

where
δ̃H

δx
=

∫ 1

0

(
(1− τ)xn + τxn+1)

)
dτ

is called the discrete gradient and is usually evaluated using quadrature
Also know as the average vector field method
Quadrature order to achieve exact energy conservation depends on the
nonlinearity of H (4 points is usually sufficient)
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11 Solution strategy for nonlinear problem

F (xn+1) = xn+1 −xn −∆tJ
(

xn +xn+1

2

) nq

∑
m=1

ωm
δH

δx

(
(1− τm)xn + τmxn+1)

)
= 0

Anelastic: fixed-point iteration
Compressible: quasi-Newton method

Jlinearδxk =−F (xk )

where the approximate Jacobian Jlinear comes from linearization about a
reference state
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12 Solution strategy for linear systems

Both anelastic and compressible schemes require solving one linear system
per nonlinear iteration
Both can be reduced (Schur complement) to solving for a single variable
(pressure or vertical velocity)
Direct solve based on

• FFT in the horizontal directions
• Banded solve in the vertical (tridiagonal for the lowest order case)

This is very efficient on GPUs (linear solve usually less than 15% of the total
runtime)

June 27, 2023



13 Rising bubble

maximum advective
CFL ≈ 0.6
3 quadrature points
Compressible
iterations average
7.3
Anelastic iterations
average 5.3
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14 Density current
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15 Gravity waves

Gravity waves in a channel from Baldauf & Brdar (QJR, 2013)
Exact solution of linearized Euler equations with gravity
For small initial perturbations can be used to test convergence of nonlinear
models
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16 Gravity waves: convergence

Fixed high spatial resolution 2400×161
Changing ∆t to look at temporal convergence
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17 Supercell

Splitting supercell storm test based on DCMIP but in planar geometry
Kessler physics
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18 Supercell statistics
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19 Summary and future work

Summary:
New CRM for E3SM based on structure-preserving numerics
Implicit second-order energy-conserving time integrator
Verified energy-conservation, convergence, and obtained good results on
standard test cases
Not overly expensive compared to more standard approaches

Future work:
Improve convergence (nonlinear solvers can sometimes stall)
Positivity preservation without SSP property
Fully compressible model in 3d based on pressure solve
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