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* QOur objective: build statistical model of features and use for _Z

Motivation

* Machine learning (ML) models can classify with high
accuracy

* Frequently assume any new test data is similar to the training data
(small statistical distance)

* This is often not true in practice | *@i'
* Hence ML models can sometimes be over-confident in their -
predictions :

« Want the model to report low confidence on test points that are far
from training data (large statistical distance)

* There are methods to measure statistical distance
* Most are defined assuming two distributions; we want to ook at %Qch:

nceis

test point independently normalized softmax
e Many assume Gaussian and independent features value (ML output)
* Many out of distribution methods depend on ML model
« Mahalanobis distance (assumes multivariate Gaussian features)

indicatina when test point is far from trainina set



.1 Feature Modeling

* Objective: Build probabilistic model for each feature
* Can be used for ML classification
* Can synthesize new data that is consistent with the training data
* Can be used to measure distance of new data from training data

* Let X; denote a random variable that models feature i; train the model to match
properties of the original data
* Marginal distributions T  Practical

. problems limit us
Fz(ﬂfz) = PT(Xi < 35@')7 1=1,...,d to marginal

* Correlations (2"-order property) distributions and
correlations

EX; X;], i,j=1,...,d Accuracy

increases

* Other (higher-order) properties
More data is
needed for

Pr(X; <, X; < aj, X <), E[X; X7]
* Full joint distribution function training

Pr(X; <z1,Xe <x9,...,Xqg < 24)
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.| Yet Another Discriminant Analysis (YADA)

Features are

* YADA is a probabilistic model for the feature data - B Gaussian non-Gaussian
() Inear
* Training involves matching the marginal distributions and © 5 discriminant
pairwise correlations § & analysis (LDA)
. : ©
* The YADA model for the it" feature is 2
S Quadratic Yet another
. - O: N . Q T discriminant discriminant
Xz i + 7 hz(Gz> 9 0
= 5 analysis (QDA) analysis (YADA)
* u; and g; are the sample mean and standard deviation of X; T 0

h; is a nonlinear function of the marginal distribution of X;
Some related methods

G; is a Gaussian random variable with zero mean and unit variance

G; and G;j for two features i # j are correlated based on the sample correlation matrix

The joint marginal distribution is available in closed-form
* Conditioned on the class labels; one YADA model per class

* Based on the translation random variable model” developed for engineering
mechanics

7/17/2'023 M. Grigoriu. Crossings of non-Gaussian translation processes. Journal of Engineering Mechanics, 110(4):610-620, 1984.
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YADA Maps Features to their Gaussian Image

 The YADA model provides an invertible mapping to the space of

multivariate (correlated) Gaussian variable

20 A

* Mahalanobis distance

* Statistical distance of point 15
to a distribution

X2

* Can be applied in the 161
multivariate Gaussian space
to assess the statistical 141 @& Clasel ..:A yo e
distance of new test point ¢ w3 &%
X = (Xi, le)T from a 340 45;{1 0 S5 60
trained YADA model

VGTc1G, G = (Gq,...,G)T

“https://www.kaggle.com/code/parulpandey/penguin-dataset-the-new-iris/notebook

® Class1
® Class2
® Class3




.| Training a YADA Model

* Given training data {(x,y);,j = 1,..,n},X € R4,y € {1, ..., k}, partition it
according to the class label

* For each class:

|. Compute the sample mean y; and standard deviation g; for each feature
Xij—Hi .

—i=1,..,d,j=1,..,n

g

2. Normalize the training set z; j=

3. Compute the sample cumulative distribution function F; of z; for each feature
* Empirical methods
* Kernel methods (e.g., kernel density estimation)

4. Determine the Gaussian image of the training set g;; = d1loF (zl- j)
5. Compute the sample Pearson correlation matrix ¢ from {g;;}

6. Compute the inverse and (log) determinant of ¢

Note: it might also be useful to train a single YADA model to all data regardless of the class label
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-1 Model Uncertainty

* Given
* Training data {(x,y);,j = 1,..,n},x € Rd,y € {1, .., Kk}
* Kk trained YADA models
* Test point x’ with predicted label from an ML model

* Assess uncertainty in the predicted label for x’ that is due to possible
inconsistency between test and training data

* Use Mahalanobis distance from each YADA model to quantify how “far” test point is from the
training data

MD(x', j) = \/(g(j))T (c(j))_l g, gl is the Gaussian image of x’ with respect to model j

Compare MD(x’, j) to the {MD(x, j)} calculated from the training data

Given a random test point, the probability distribution of its Mahalanobis distance from a
model is known in closed-form (the chi distribution with d degrees of freedom)

This means we can evaluate the likelihood of any particular MD(x/, j)

We define confidence as this likelihood, scaled to take values in (0, 1)

: 1 1 .
COIlf(X/,]) — (d L 1>(d—1)/2 exp <_§ (MD(X/7.])2 —d+ 1))
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.| Results for Iris Dataset

 Left: Normalized histograms of the Mahalanobis distances of each training
point from each YADA model
 MD(x, correct class) follows the chi distribution
 MD(x, incorrect class) > MD(x, correct class) in most cases

» Right: Confidence that a training point comes from each YADA model
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.1 YADA Applied to MNIST Dataset

Training data

 Training data: 60,000 images of
handwritten digits

* Approximately equal number of each
of the 10 classes

 Each image is 28x28 pixels

* Treat each pixel value as a
feature

 Integerin {0, ..., 255}; map to [0, 1]
o 28 x 28 = 784 features

* Train 10 YADA models
* Testing data: 10,000 additjonal

Feature 498

Training data

images )

Feature 28
o

. Compute MD of test point to

each YADA model (i

 Confidence measure
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Gaussian image
using YADA model
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~ Test point
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" ‘ Results for MNIST Dataset @

conf(x, 1) = 0.81265 conf(x, 1) = 0.72907 conf(x, 1) = 0.55412 conf(x, 4) = 0.49556 conf(x, 1) = 0.46553
5 test images with the
least uncertainty
MD(x, 1) = 28.43B884 MD(x, 1) = 28.54613 MD(x, 1) = 28.75398 MD{x, 4} = 2B.82417 MDi{x, 1} = 2B.B6105
Images of 2’ with the least Images of ‘6’ with the least
and most uncertainty and most uncertainty
conf(x, 2} = 0.31904 conf(x, 2} = 0.00000 conf(x, 6) = 0.35130 confix, 6) = 0.00000

2] 2 o] -

MD(x, 2] = 29.05771 MD(x, 2} = 36.04508 MD(x, 6) = 29.01109 MD(x, 6) = 36.05851
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y ‘ YADA: Create Synthetic Data @

 YADA is a probabilistic model, so we can draw random samples from it to
produce synthetic data
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YADA model trained on the Fisher iris Dataset”

* Top row are real data

* Bottom row are synthetic data produced by YADA
*https://archive.ics.uci.edu/dataset/53/iris

Algorithm

1. Create samples of correlated Gaussian variables
2. Map each sample to the feature space

YADA model trained on the MNIST Dataset” (images of handwritten digits 0-9)
* Top row are real images

* Bottom row are synthetic images produced from YADA models
*http://yann.lecun.com/exdb/mnist/
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* Classification is defined
using the Gaussian
image of a test point X

* The set of points
belonging to class i:
Ci ={G: ¢n(G;0,cD) >
On(G:0,c),¥j # i}
¢, = multivariate normal PDF

¢ = covariance matrix for class i

* YADA predicts that X is
from class i if its
Gaussian image G € C;

* White regions = the
likelihood of all YADA

models is very small

| 7/17/2023
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YADA: Classification Based on Maximum Joint Likelihood
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-1 YADA: Marginal Likelihoods Can Provide Explanations

e Classification is
based on the joint
likelihood function

* The marginal
likelihood functions
can be used for
explanations

* Compute the
Gaussian image of
a test point w.r.t.
each class j

Marginal likelihood

S(GUN,i=1,...n
¢ = Univariate normal PDF
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Marginal likelihoods for one test
point from the Fisher iris dataset
*  YADA predicts the label to be

e Marginal likelihoods shown for
each feature

y pixel

5 10 15 20 25
* pixel

One test image from the MNIST dataset

* Each pixel is a feature

*  YADA predicts the label to be ‘7’

* Highlighted pixels are features
where the marginal likelihood for ‘7’
was large while small for all other
classes




+1 Summary

ML models can sometimes be over-confident in their predictions

« Want the model to report low confidence on test points that are far from training data
(large statistical distance)

* The YADA model can achieve this

* YADA — a statistical model of features for indicating when a test point is far
from training set
« Mahalanobis distance of test point from the YADA model for each class
* An uncertainty or confidence measure can be obtained using the MD
« Showed results for MNIST image dataset

* YADA can also be used: (1) for creating synthetic data; and (2) as an
alternative ML classifier that can provide explanations

* One possible extension: Include feature importance values as weights
during YADA training

7/17/2023
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" ‘ Results for MNIST Dataset

* Left: Histograms of the M distances of each a point from each YADA model
» Blue = training data with correct label
» Green = test data with correct label
* Orange = test data with incorrect label

 Right: Histograms of the confidence for each test point for each YADA
model
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-1 Density-based Trustworthiness

 YADA: Yet Another Discriminant Analysis

* Probabilistic model

* Based on a Translational Random Variables model (converts
features to a Gaussian space)

« Accounts for correlations (second order/pair-wise)
* Non-Gaussian features

Density: Are test points
represented by training
data? Do classes overlap?
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