

Modeling Correlated Features for Machine Learning Classification

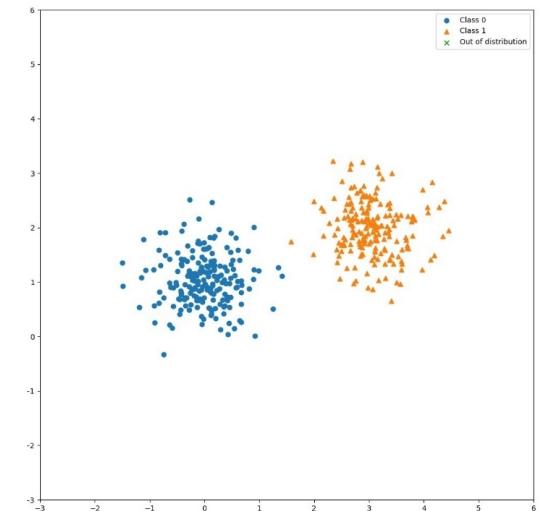
Rich Field, Mike Smith, Joe Ingram, Eva Domschat

Applied Information Sciences

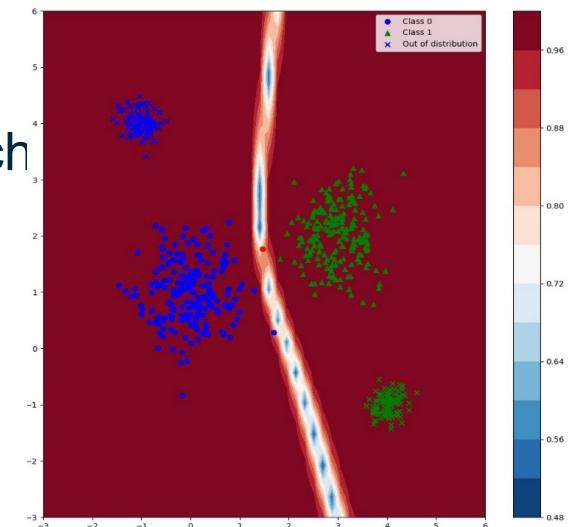
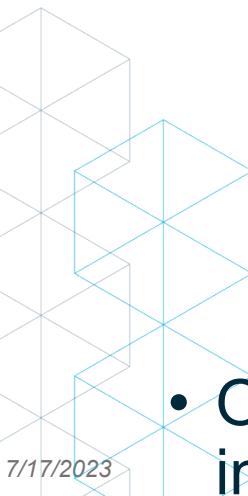
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Motivation

- Machine learning (ML) models can classify with high accuracy
 - Frequently assume any new test data is similar to the training data (small statistical distance)
 - This is often not true in practice
- Hence ML models can sometimes be over-confident in their predictions
 - Want the model to report low confidence on test points that are far from training data (large statistical distance)
- There are methods to measure statistical distance
 - Most are defined assuming two distributions; we want to look at each test point independently
 - Many assume Gaussian and independent features
 - Many out of distribution methods depend on ML model
 - Mahalanobis distance (assumes multivariate Gaussian features)
- Our objective: build statistical model of features and use for indicating when test point is far from training set



Confidence is the
normalized softmax
value (ML output)



Feature Modeling

- **Objective: Build probabilistic model for each feature**
 - Can be used for ML classification
 - Can synthesize new data that is consistent with the training data
 - Can be used to measure distance of new data from training data
- Let X_i denote a random variable that models feature i ; train the model to match properties of the original data
 - Marginal distributions

$$F_i(x_i) = \Pr(X_i \leq x_i), \quad i = 1, \dots, d$$

- Correlations (2nd-order property)

$$\mathbb{E}[X_i X_j], \quad i, j = 1, \dots, d$$

- Other (higher-order) properties

$$\Pr(X_i \leq x_i, X_j \leq x_j, X_k \leq x_k), \quad \mathbb{E}[X_i X_j^2]$$

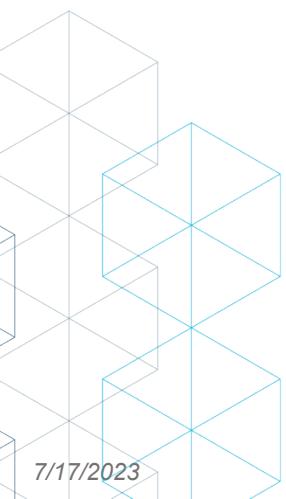
- Full joint distribution function

$$\Pr(X_1 \leq x_1, X_2 \leq x_2, \dots, X_d \leq x_d)$$

Practical problems limit us to marginal distributions and correlations

Accuracy increases

More data is needed for training



Yet Another Discriminant Analysis (YADA)

- YADA is a probabilistic model for the feature data
 - Training involves matching the marginal distributions and pairwise correlations
- The YADA model for the i^{th} feature is

$$X_i = \mu_i + \sigma_i h_i(G_i)$$

- μ_i and σ_i are the sample mean and standard deviation of X_i
- h_i is a nonlinear function of the marginal distribution of X_i
- G_i is a Gaussian random variable with zero mean and unit variance
- G_i and G_j for two features $i \neq j$ are correlated based on the sample correlation matrix
- The joint marginal distribution is available in closed-form
- Conditioned on the class labels; one YADA model per class
- Based on the translation random variable model* developed for engineering mechanics

Features are	
Gaussian	non-Gaussian
Linear discriminant analysis (LDA)	
Quadratic discriminant analysis (QDA)	Yet another discriminant analysis (YADA)

Some related methods

*M. Grigoriu. Crossings of non-Gaussian translation processes. *Journal of Engineering Mechanics*, 110(4):610–620, 1984.

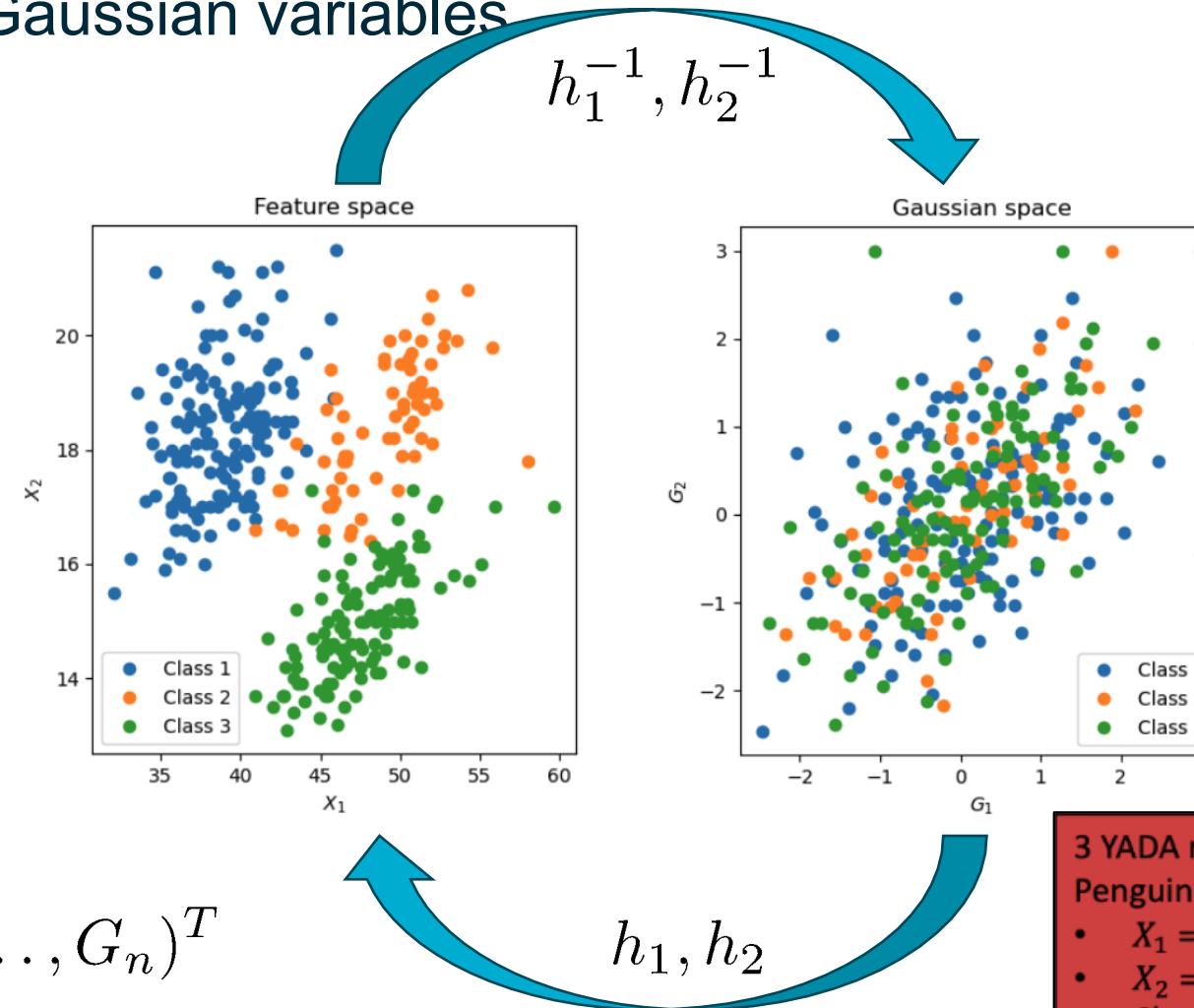
YADA Maps Features to their Gaussian Image

- The YADA model provides an invertible mapping to the space of multivariate (correlated) Gaussian variables

$$G_i = h_i^{-1} \left(\frac{X_i - \mu_i}{\sigma_i} \right)$$

- Mahalanobis distance**
 - Statistical distance of point to a distribution
 - Can be applied in the multivariate Gaussian space to assess the statistical distance of new test point $\mathbf{X} = (X_1, \dots, X_d)^T$ from a trained YADA model

$$\sqrt{\mathbf{G}^T \mathbf{c}^{-1} \mathbf{G}}, \quad \mathbf{G} = (G_1, \dots, G_n)^T$$



3 YADA models trained on the Penguin Dataset*
 • X_1 = culmen length (mm)
 • X_2 = culmen width (mm)
 • Class labels are {Adelie, Chinstrap, Gentoo}

*<https://www.kaggle.com/code/parulpandey/penguin-dataset-the-new-iris/notebook>

Training a YADA Model

- Given training data $\{(x, y)_j, j = 1, \dots, n\}, x \in \mathbb{R}^d, y \in \{1, \dots, \kappa\}$, partition it according to the class label
- For each class:
 - Compute the sample mean μ_i and standard deviation σ_i for each feature
 - Normalize the training set $z_{ij} = \frac{x_{ij} - \mu_i}{\sigma_i}, i = 1, \dots, d, j = 1, \dots, n$
 - Compute the sample cumulative distribution function F_i of z_i for each feature
 - Empirical methods
 - Kernel methods (e.g., kernel density estimation)
 - Determine the Gaussian image of the training set $g_{ij} = \Phi^{-1} \circ F_i(z_{ij})$
 - Compute the sample Pearson correlation matrix c from $\{g_{ij}\}$
 - Compute the inverse and (log) determinant of c

Note: it might also be useful to train a single YADA model to all data regardless of the class label

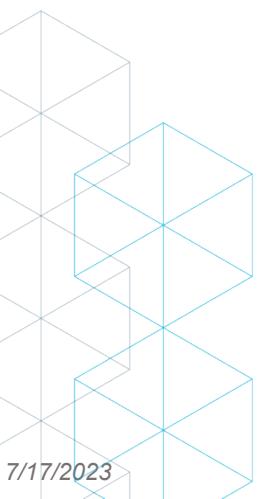
Model Uncertainty

- Given
 - Training data $\{(\mathbf{x}, y)_j, j = 1, \dots, n\}, \mathbf{x} \in \mathbb{R}^d, y \in \{1, \dots, \kappa\}$
 - κ trained YADA models
 - Test point \mathbf{x}' with predicted label from an ML model
- Assess uncertainty in the predicted label for \mathbf{x}' that is due to possible inconsistency between test and training data
 - Use Mahalanobis distance from each YADA model to quantify how “far” test point is from the training data

$$\text{MD}(\mathbf{x}', j) = \sqrt{(\mathbf{g}^{(j)})^T (\mathbf{c}^{(j)})^{-1} \mathbf{g}^{(j)}}, \text{ } \mathbf{g}^{(j)}$$
 is the Gaussian image of \mathbf{x}' with respect to model j

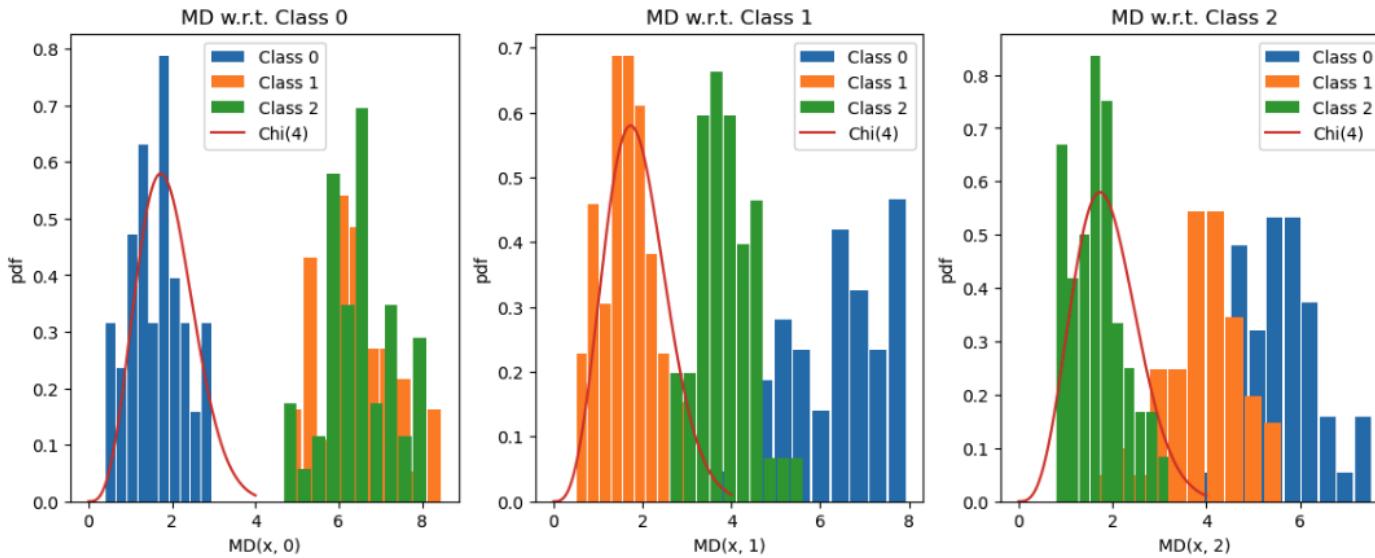
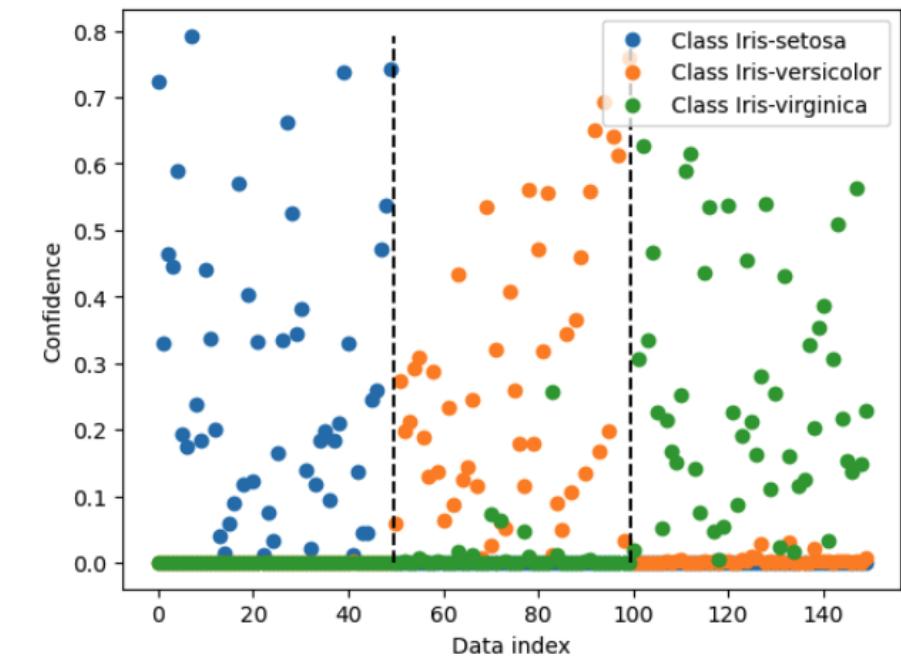
- Compare $\text{MD}(\mathbf{x}', j)$ to the $\{\text{MD}(\mathbf{x}, j)\}$ calculated from the training data
- Given a random test point, the probability distribution of its Mahalanobis distance from a model is known in closed-form (the chi distribution with d degrees of freedom)
- This means we can evaluate the likelihood of any particular $\text{MD}(\mathbf{x}', j)$
- We define confidence as this likelihood, scaled to take values in $(0, 1)$

$$\text{conf}(\mathbf{x}', j) = \frac{1}{(d-1)^{(d-1)/2}} \exp\left(-\frac{1}{2} (\text{MD}(\mathbf{x}', j)^2 - d + 1)\right)$$



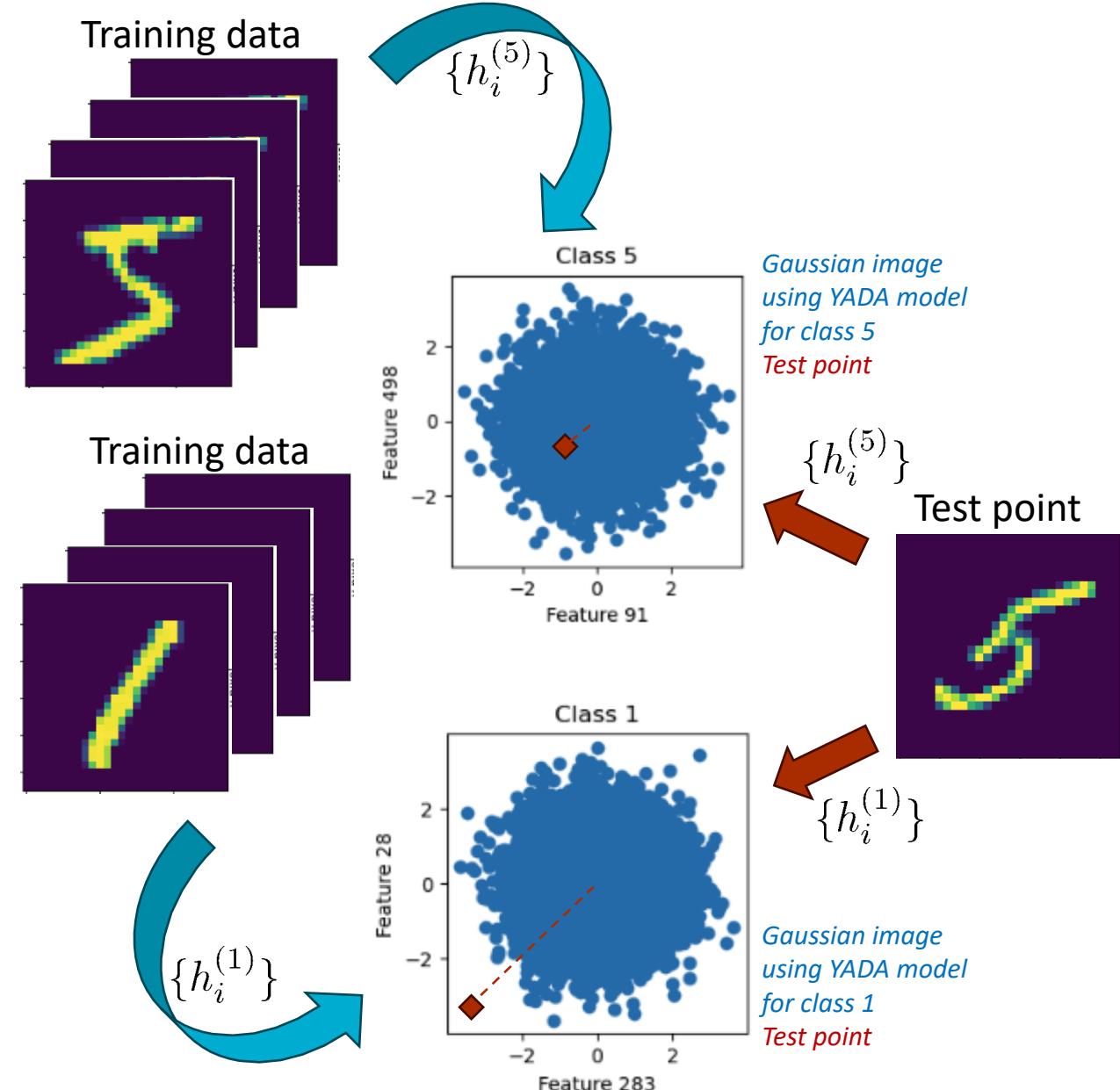
Results for Iris Dataset

- Left: Normalized histograms of the Mahalanobis distances of each training point from each YADA model
 - $MD(x, \text{correct class})$ follows the chi distribution
 - $MD(x, \text{incorrect class}) > MD(x, \text{correct class})$ in most cases
- Right: Confidence that a training point comes from each YADA model

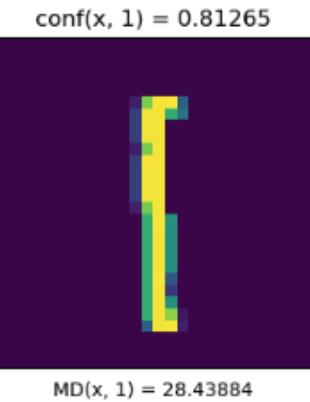
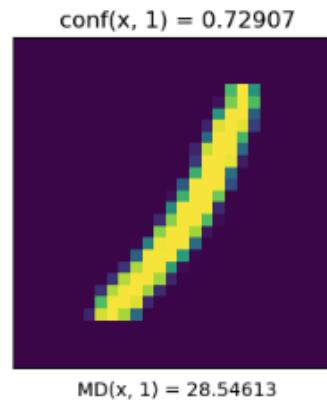
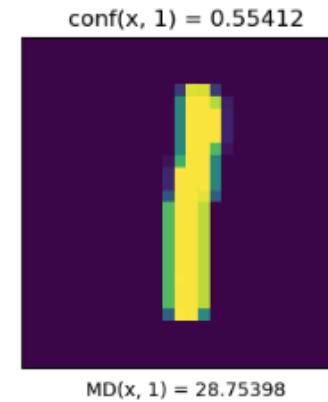
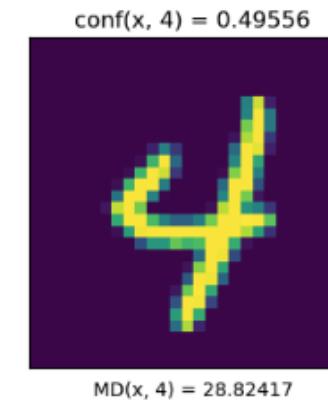
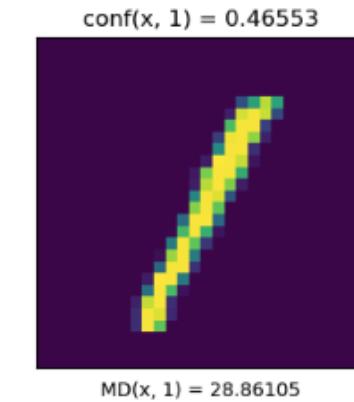


YADA Applied to MNIST Dataset

- Training data: 60,000 images of handwritten digits
 - Approximately equal number of each of the 10 classes
- Each image is 28x28 pixels
- Treat each pixel value as a feature
 - Integer in $\{0, \dots, 255\}$; map to $[0, 1]$
 - $28 \times 28 = 784$ features
- Train 10 YADA models
- Testing data: 10,000 additional images
- Compute MD of test point to each YADA model
 - Confidence measure

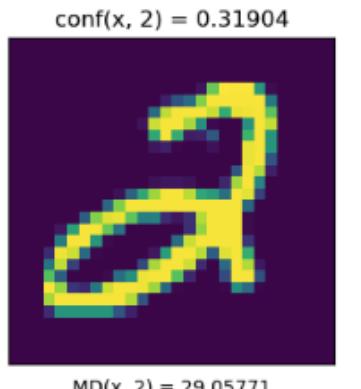


Results for MNIST Dataset

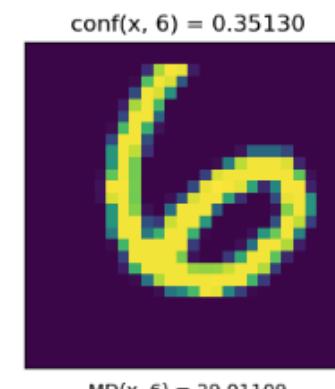
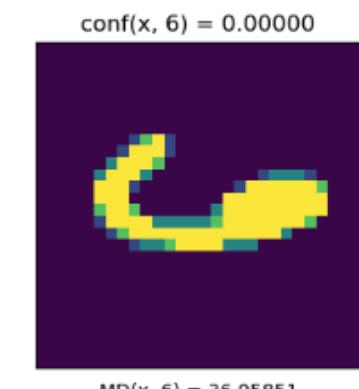
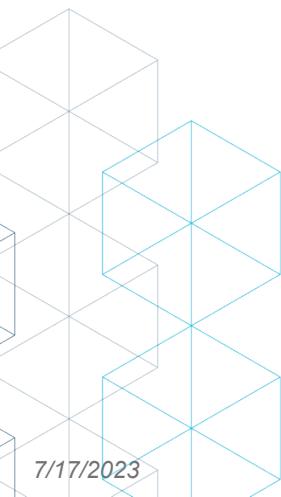


5 test images with the least uncertainty

Images of '2' with the least and most uncertainty

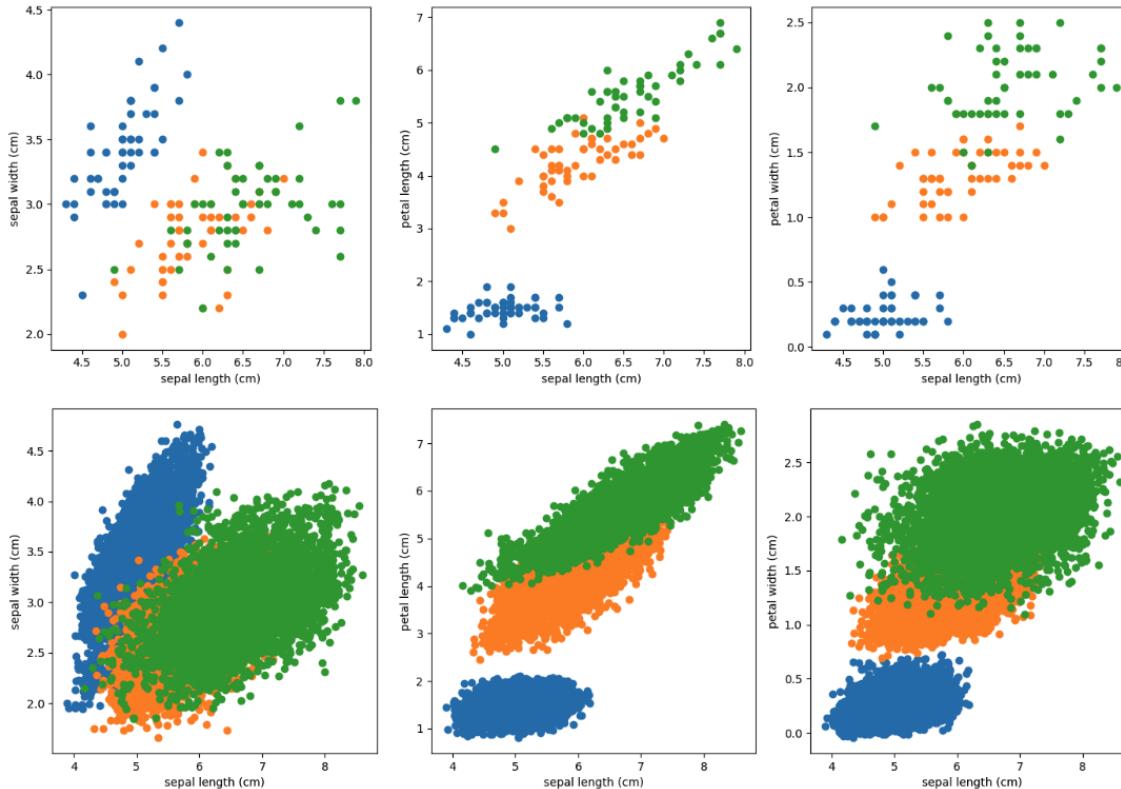


Images of '6' with the least and most uncertainty



YADA: Create Synthetic Data

- YADA is a probabilistic model, so we can draw random samples from it to produce synthetic data



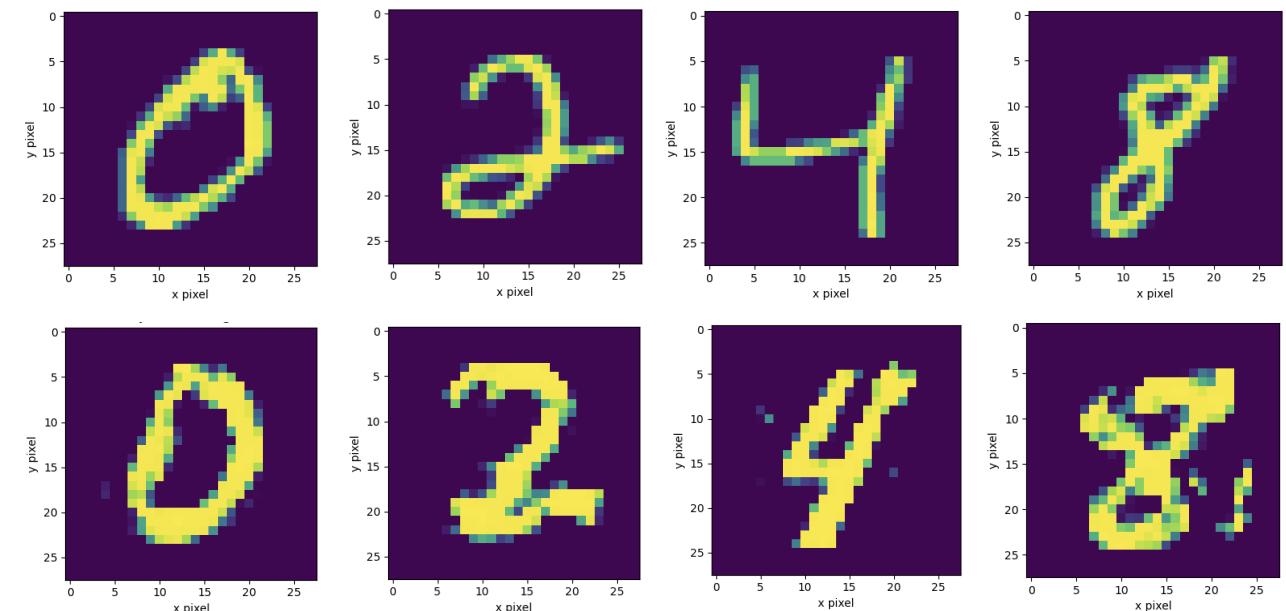
YADA model trained on the Fisher iris Dataset*

- Top row are real data
- Bottom row are synthetic data produced by YADA

*<https://archive.ics.uci.edu/dataset/53/iris>

Algorithm

- Create samples of correlated Gaussian variables
- Map each sample to the feature space



YADA model trained on the MNIST Dataset* (images of handwritten digits 0-9)

- Top row are real images
- Bottom row are synthetic images produced from YADA models

*<http://yann.lecun.com/exdb/mnist/>

YADA: Classification Based on Maximum Joint Likelihood

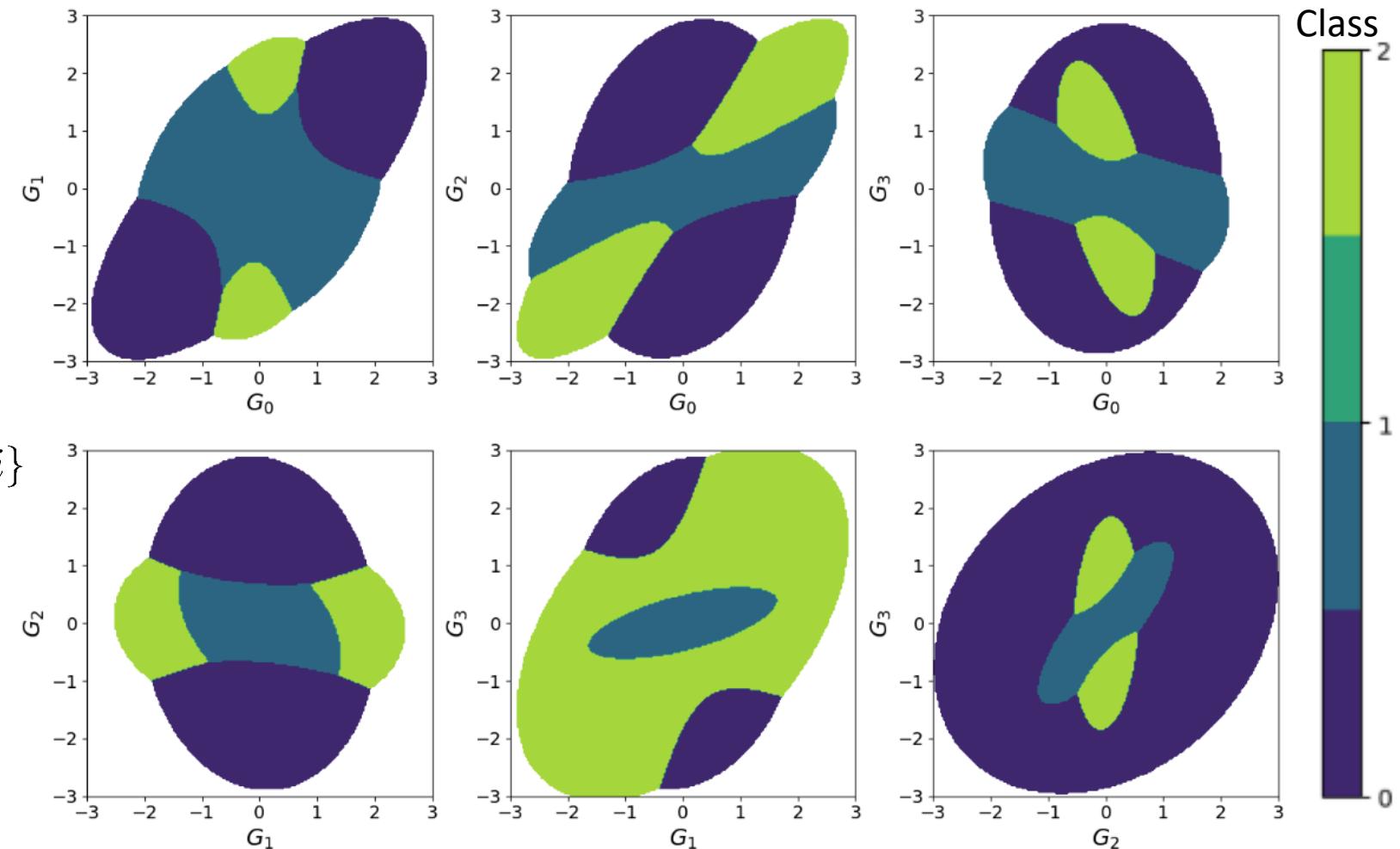
- Classification is defined using the Gaussian image of a test point \mathbf{X}
- The set of points belonging to class i :

$$\mathcal{C}_i = \{\mathbf{G}: \phi_n(\mathbf{G}; \mathbf{0}, \mathbf{c}^{(i)}) > \phi_n(\mathbf{G}; \mathbf{0}, \mathbf{c}^{(j)}), \forall j \neq i\}$$

ϕ_n = multivariate normal PDF

$\mathbf{c}^{(i)}$ = covariance matrix for class i

- YADA predicts that \mathbf{X} is from class i if its Gaussian image $\mathbf{G} \in \mathcal{C}_i$
 - White regions = the likelihood of all YADA models is very small

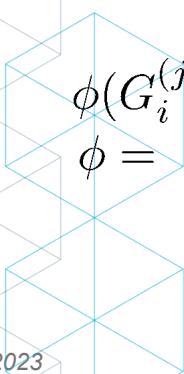


Decision boundaries for the Fisher iris dataset

- Each plot illustrates a different pairing of features with the other two set to zero
- Drawn in the Gaussian space

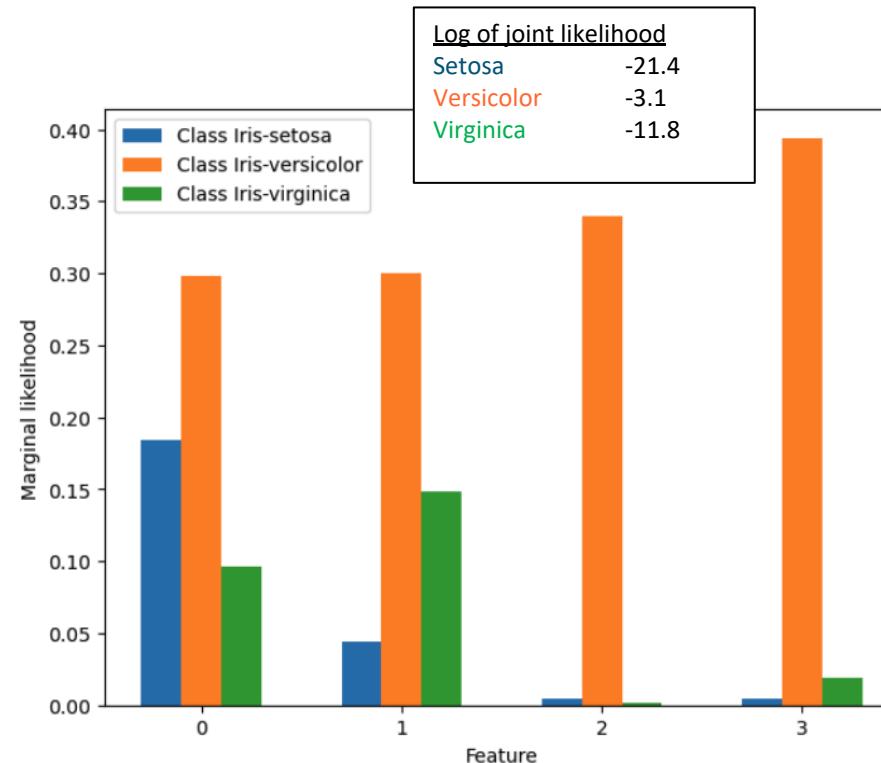
YADA: Marginal Likelihoods Can Provide Explanations

- Classification is based on the joint likelihood function
- The marginal likelihood functions can be used for explanations
 - Compute the Gaussian image of a test point w.r.t. each class j



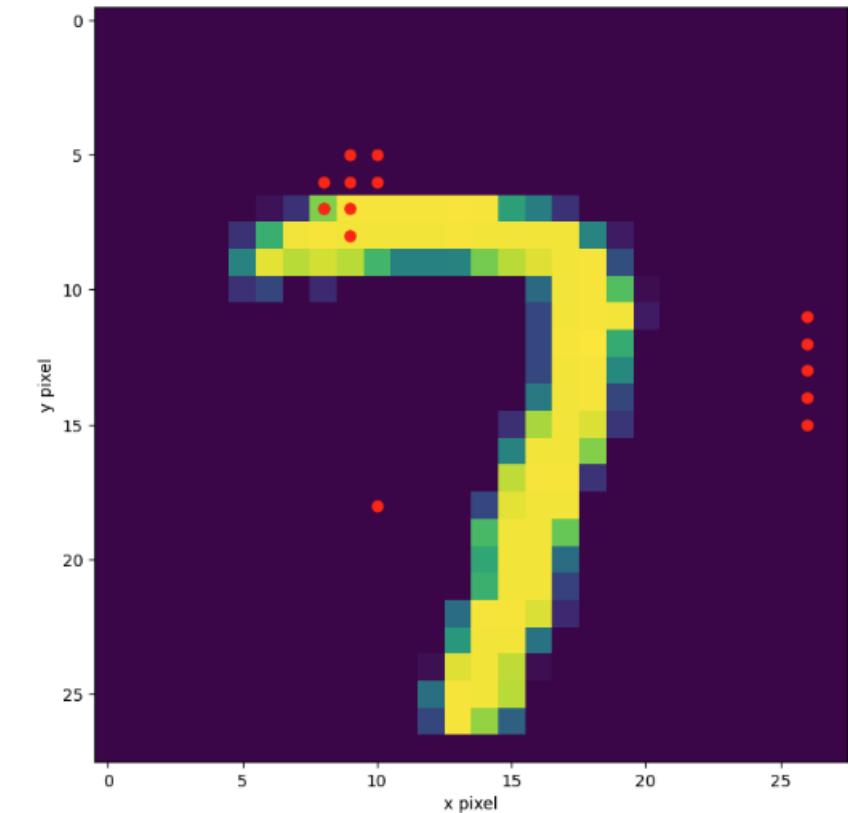
$$\phi(G_i^{(j)}), i = 1, \dots, n$$

ϕ = Univariate normal PDF



Marginal likelihoods for one test point from the Fisher iris dataset

- YADA predicts the label to be Versicolor
- Marginal likelihoods shown for each feature



One test image from the MNIST dataset

- Each pixel is a feature
- YADA predicts the label to be '7'
- Highlighted pixels are features where the marginal likelihood for '7' was large while small for all other classes

Summary

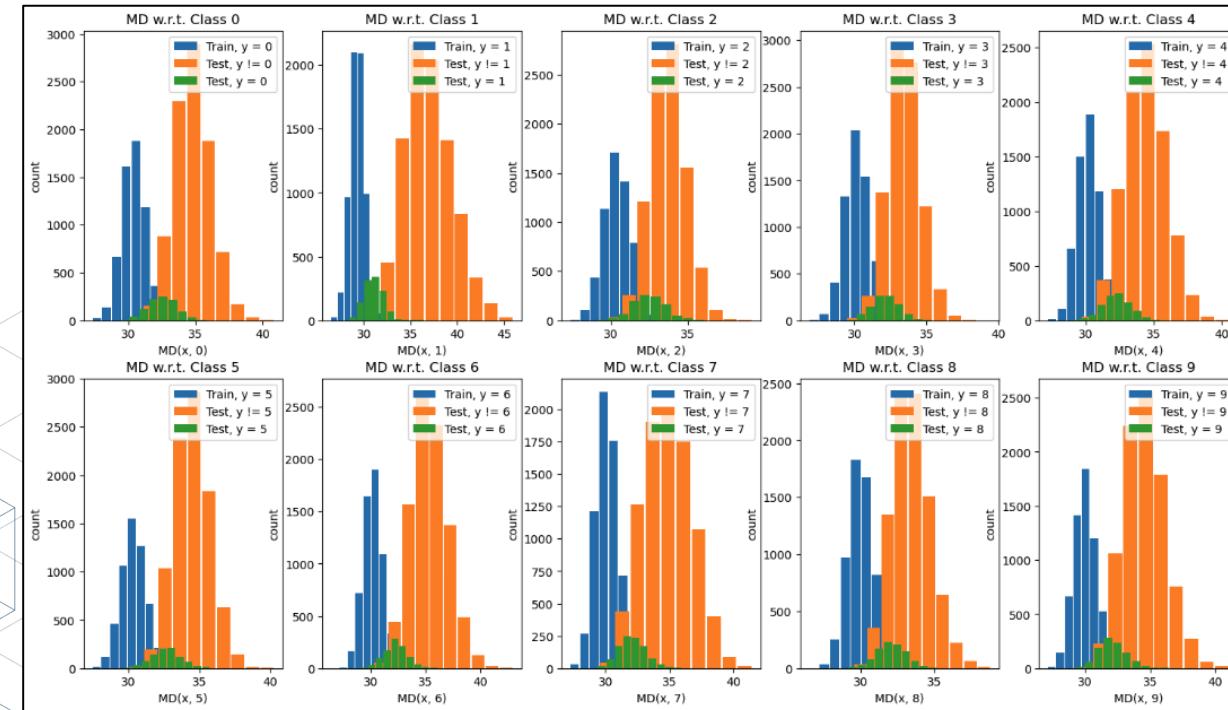
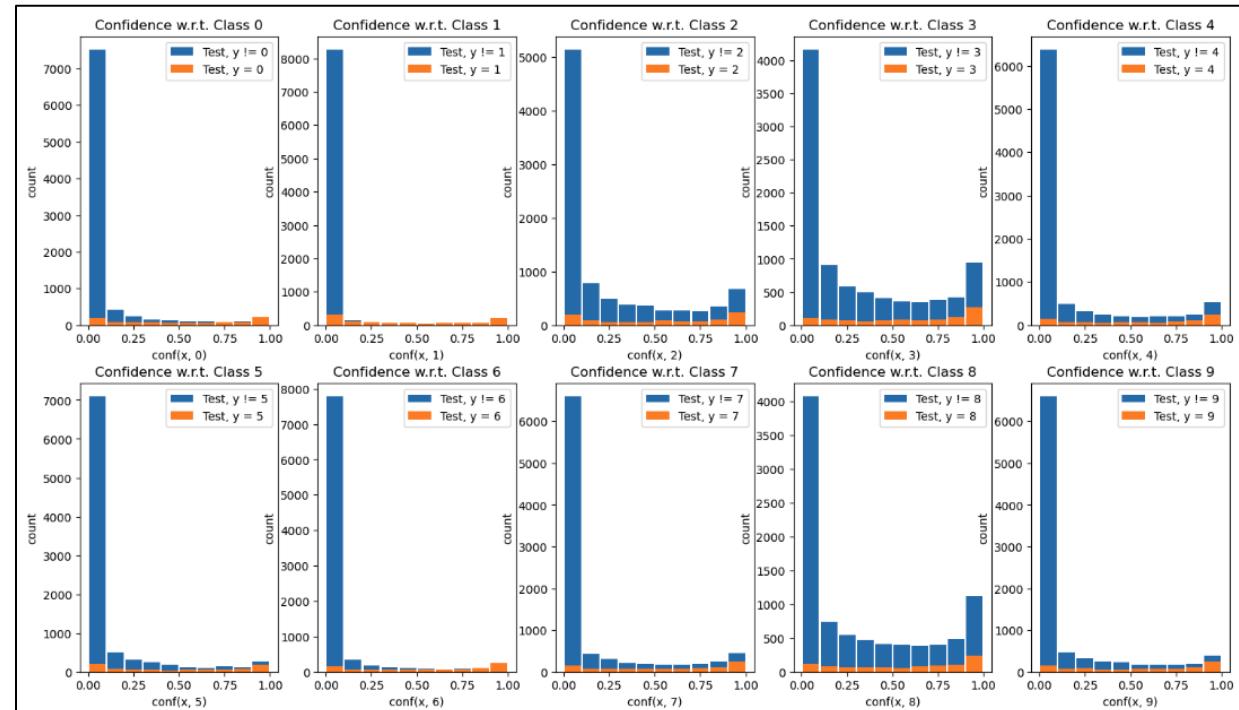
- ML models can sometimes be over-confident in their predictions
 - Want the model to report low confidence on test points that are far from training data (large statistical distance)
 - The YADA model can achieve this
- YADA – a statistical model of features for indicating when a test point is far from training set
 - Mahalanobis distance of test point from the YADA model for each class
 - An uncertainty or confidence measure can be obtained using the MD
 - Showed results for MNIST image dataset
- YADA can also be used: (1) for creating synthetic data; and (2) as an alternative ML classifier that can provide explanations
- One possible extension: Include feature importance values as weights during YADA training



7/17/2023

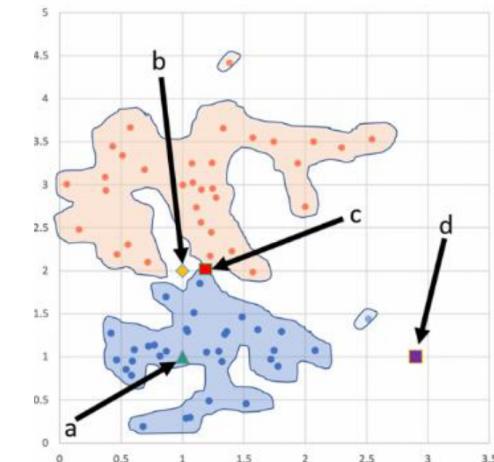
Results for MNIST Dataset

- Left: Histograms of the M distances of each a point from each YADA model
 - Blue = training data with correct label
 - Green = test data with correct label
 - Orange = test data with incorrect label
- Right: Histograms of the confidence for each test point for each YADA model

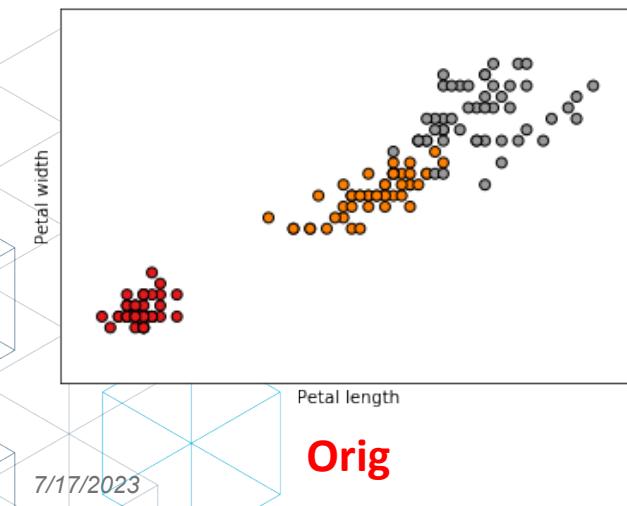
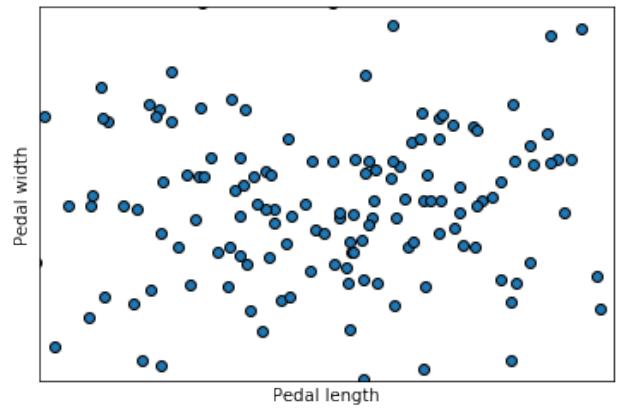
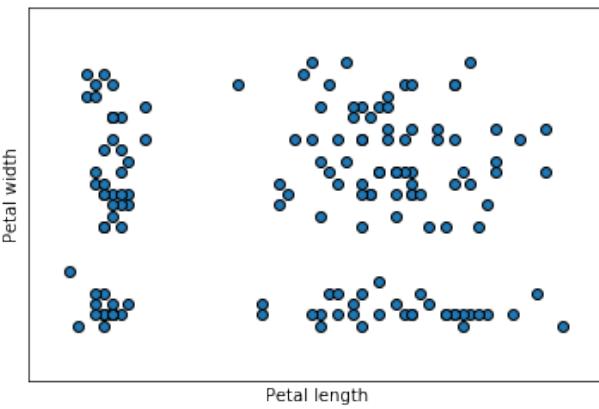


Density-based Trustworthiness

- **YADA: Yet Another Discriminant Analysis**
 - Probabilistic model
 - Based on a Translational Random Variables model (converts features to a Gaussian space)
 - Accounts for correlations (second order/pair-wise)
 - Non-Gaussian features



Density: Are test points represented by training data? Do classes overlap?



17

