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§ Computational Challenges in Handling Spent Nuclear Fuel
§ Training Data for Machine Learning Surrogates
§ ML Surrogates

• kNNr
• ANN
• Neural ODEs

§ Conclusions

Overview
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Computational Challenges in Handling 
Spent Nuclear Fuel
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The US inventory of spent nuclear fuel is rapidly increasing

• 90,000 MTHM and 
increasing

• Pools have reached 
capacity limits

• Utilities have 
implemented dry storage

• Where facilities have 
shut down, some 
“stranded” fuel remains 
at independent spent fuel 
storage installations
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Adapted from Freeze et al. (2021, Figure 2-3)
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Our challenge is to provide realistic UO2 degradation rates in 
underground nuclear waste repository simulations
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Fuel Matrix Degradation Model (FMDM) 
adapted from Jerden et al. (2015)

Nuclear Waste Repository

Nuclear Waste Repository

Waste 
Package 

Model

Fuel Matrix Degradation Model (L) 

• Needed for each breached 
package at each time step

• Computationally intensive

• Coupling to repository scale 
model is challenging
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Surrogate models provide a cheap-to-evaluate mapping between 
the model inputs and its outputs

• Inputs are the environmental conditions along with the internal 
state at any point in time
– Environmental Concentrations of CO3

2-, O2, Fe2+, and H2 
– Temperature T
– Dose Rate, which is f(time, burnup)
– Corrosion Layer Thickness
– Internal concentration profiles

• Relevant output is the UO2 degradation rate (expressed as a 
flux)
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Training Data for Machine Learning 
Surrogates
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Process model input parameters were sampled from expected 
ranges in reservoir simulations to generate training data

• Same ranges used for training, validation, and testing data
• Ranges that span multiple orders of magnitude sampled with log-uniform 

distribution

Parameter Distribution Min. Max.

Init. Temp. (K) Uniform 300 400
Burnup 
(Gwd/MTU)

Uniform 40 65

Env. CO3
2- (mol/m3) Log-uniform 10-3 2x10-2

Env. O2 (mol/m3) Log-uniform 10-7 10-5

Env. Fe2+ (mol/m3) Log-uniform 10-3 10-2

Env. H2 (mol/m3) Log-uniform 10-5 2x10-2
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Training data is pulled from FMD Process model UO2 Flux 
trajectories for randomly sampled initial conditions
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FMD surrogate model inputs aim to track the internal fuel cask state

• Inputs that do not require detailed knowledge of the fuel cask 
state
– Environmental Concentrations of CO3

2-, O2, Fe2+, and H2 
– Temperature T
– Dose Rate, which is f(time, burnup)

• Inputs that require detailed knowledge of the internal fuel cask 
state
– Corrosion Layer Thickness
– Internal concentration profiles
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Prior results: kNNr and ANN
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kNNr has good but noisy predictions on the test data due to the 
local character of the representation

• The inputs for each prediction are taken from test data (rather than from 
previously predicted points)

• More details in Debusschere et al. 2022 & 2023
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ANN has smoother predictions as it is a global functional 
approximation

• The inputs for each prediction are taken from test data (rather than from 
previously predicted points)

• More details in Debusschere et al. 2022 & 2023
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Neural ODE
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Neural ODEs approximate the derivative of the system state as 
a Neural Network

• Train NN based on data at equidistant 
timesteps1

• Predict with ODE Solver
• Hyperparameters to tune:

– Number of layers
– Number of nodes (neurons) per layer
– Amount of training data

1 For more details, see Raissi et al. 2018

un

ODESolve(f, u, λ, t)

tn+1

un+1

𝑑𝑢
𝑑𝑡

= f(u, λ) = NN
λ 
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u

𝑑𝑢
𝑑𝑡

= f(u, λ) = NN

Loss

−𝑢!"# + 𝑢! +
Δ𝑡
2 [𝑓 𝑢!"#, λ!"# + 𝑓 𝑢!, λ! ] = 𝑤 ≈ 0

time points

Optimizer

Data at regular time intervals is used to train a multi-step method

λ

• 1-step Adams-Moulton
• Data equidistant in log(time)
• For more details, see Raissi 2018
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Testing error plateaus by 20,000 epochs
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Best results are obtained with 4 layers and 16 nodes per layer

• Inputs: [CO3
2-], [H2], T, Dose Rate, CLT and UO2 Flux @ previous time, time

• Better accuracy when using more training data, but levels off at 500 runs
• Optimal accuracy for 4 layers, 16 nodes
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Neural ODE predicts the test data very well, and has fewer outliers 
than the regular ANN approach

• Data integrated over a single time step only (all inputs taken from test data), 
to be consistent with kNNr and ANN results
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Comparison kNNr – ANN – Neural ODE
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The neural ODE approach gives the lowest errors on the testing 
data

• Neural ODEs use the UO2 flux at the current time step as input, whereas kNNr 
and ANN do not

Surrogate nrmse mape_f

kNNr 0.26 1.4%
ANN 0.37 2.4%

Neural ODE 0.18 0.80%

CLT Flux
Surrogate nrmse mape

kNNr 0.11 29%
ANN 0.12 14%

Neural ODE 0.086 1.9%
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Conclusions
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Conclusions and Ongoing Work

• Machine Learning offers powerful ways to approximate the FMD process 
model outputs

• The Neural ODE formulation lends itself well to time advancement and gives 
very accurate results

• Adding more internal fuel surface state information may further improve 
accuracy
– But will require additional surrogate predictions at each time step

• Surrogate models enable more detailed FMD dynamics in repository 
simulations

• Ongoing work focuses on determining an appropriate description of internal 
fuel cask state to balance accuracy and complexity
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Additional Materials
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US Department of Energy (DOE) Office of Nuclear Energy

• Spent Fuel and Waste Science and Technology (SFWST) 
– Research and Development (R&D) Campaign (2010 – current)

• Mission
– To identify alternatives and conduct scientific research and technology development to 

enable storage, transportation and disposal of used nuclear fuel and wastes generated by 
existing and future nuclear fuel cycles

• Mission work
– Storage and transportation R&D
– Disposal R&D “Geological disposal remains 

the only long-term solution 
available.”

 National Research Council, 2001
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Deep Geologic Disposal

• Several possible host rocks in US
• Investigating direct disposal of 

dual-purpose canisters (DPCs)

(BRC 2012, Figure 4)

Crystalline

Shale/ArgilliteSalt
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Stages of a Deep Geologic Disposal Program

U.S. Program Currently:
•  Concept Evaluation stage
• “Generic” stage

Safety Assessments

Generic Assessment Bases Final
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GDSA Framework
§ Geologic disposal 

safety assessment 
(GDSA) framework 

§ PFLOTRAN for multi-
physics simulation

§ Dakota for 
probabilistic 
performance 
assessment (PA)

§ dfnWorks for DFN 
tools

§ Open source
§ Massively parallel
§ Freely available 

(pa.sandia.gov)

Performance Assessment R&D
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The Need for Surrogate Models
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The Fuel Matrix Degradation (FMD) process model computes the 
degradation rate of spent nuclear fuel

• 1D reactive-transport model (diffusion only)
• Chemical (slow) and oxidative (fast) 

dissolution of UO2 matrix
• Hydrogen peroxide production via alpha-

radiolysis
• Precipitation and dissolution of U(VI) (i.e., 

schoepite) corrosion layer at the fuel surface
• Arrhenius temperature dependence
• Complexation of uranium with carbonates
• Hydrogen as an oxidation sink (focused on 

fuel interface)
• Logarithmic spatial discretization for 

enhanced accuracy near the solid interfaces

See Also: J. Harvey et al. 
2022
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Surrogate FMD models can alleviate cost of UO2 flux computation 
in probabilistic repository assessments

33

Flow and Transport Model
 Advection, diffusion, 

dispersion
 Discrete fracture networks

 Multiphase flow
 Sorption, solubility, colloids

 Isotope partitioning
 Decay, ingrowth
 Thermal effects

 Chemical reactions

Uncertainty 
Sampling and 

Sensitivity 
Analysis

Computational Support Results 
VisualizationProcessing

Input 
Parameters

Parameter 
database

Multi-Physics Simulation and Integration

PFLOTRAN

Biosphere Model
 Exposure pathways

 Uptake/ transfer
 Dose calculations

Source Term and 
Engineered Barrier System 

Evolution Model
  Inventory

  Decay, ingrowth
  Waste form degradation

  Waste package degradation
  Radionuclide release
  Thermal, mechanical

  Gas generation

Models

Fuel Matrix Degradation 
Model (FMDM)
Offline, MATLAB

FMDM Surrogates:
ü PFLOTRAN Coupled
ü HPC Speed and Scale
ü Fortran
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k-Nearest Neighbor regression (kNNr) interpolates between points 
in the training data closest to the query point

• Generalization of table lookup in 
higher dimensional setting

• Local approximation
• Inverse distance weighting means 

no training error
• Kd-Tree structure offers efficient 

table search
• Hyperparameters to tune:

– Amount of training data
– Number of nearest neighbors to use in 

interpolation x

f(x) True Model
Training Data
Prediction

x1 xq x2
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Artificial Neural Networks (ANN) approximate a function as a 
weighted combination of nonlinear functions 

• Global functional 
approximation

• In each layer:
o 𝑦! = 𝑓 𝑏! + ∑𝑤!,#𝑥#
o ReLU activation function

• Prediction cost does not 
depend on amount of 
training data

• Hyperparameters to tune:
– Number of layers
– Number of nodes (neurons) 

per layer
This Photo by Unknown Author is licensed under CC BY-SA

Type	equation	here.

http://stackoverflow.com/questions/28288489/neural-networks-does-the-input-layer-consist-of-neurons
https://creativecommons.org/licenses/by-sa/3.0/
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Surrogate Models Based on Environmental 
and Global Inputs Only
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Hyperparameter tuning improves the performance for kNNr

• Inputs: [CO3
2-], [H2], T, Dose Rate

• Accuracy improves with more training data
• Best accuracy with 9 subsamples per FMD process model run and 80 

nearest neighbors
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ANN gives optimal results with 2 layers and 64 nodes per layer

• Inputs: [CO3
2-], [O2], [Fe2+], [H2], T, Dose Rate

• Adding more layers or more nodes per layer does not significantly improve 
accuracy
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Despite minimal input, surrogates based on only environmental 
inputs approximate the actual UO2 flux quite well

• Overprediction between 10 and 1000 years
• kNNr approximations are noisier due to the 

nature of the local approximation

Surrogate nrmse mape

kNNr 0.48 44%
ANN 0.52 25%
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Model inputs that do not impact the fuel degradation rate much can 
be dropped

• Correlation between fuel 
degradation rate and O2, Fe2+ is 
very small

• Training kNNr without these 
species gave better accuracy

• Fewer inputs also speeds up table 
lookup

• ANN not as impacted by extra 
inputs
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Most of the errors are very small

• Histogram shows MSE averaged over each FMD process model run
• Some outliers with very low probability have MSE greater than 2	10$% (mol/m2/yr)2 
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Except for outliers, the agreement with test data is adequate

outlier outlier
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Surrogate Models with CLT added
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The corrosion layer thickness can be predicted with high accuracy

• Prediction of CLT based on test data
• No time integration used

Surrogate nrmse mape_f

kNNr 0.26 1.4%
ANN 0.37 2.4%
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Adding the corrosion layer thickness as input gives dramatically 
better accuracy in fuel degradation rate prediction

• Prediction of UO2 flux based on test data
• No time integration used

Surrogate nrmse mape

kNNr 0.11 29%
ANN 0.12 14%
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Application to Repository Simulation
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§ 2 x 41 drifts at a depth 
of 405m

§ 10M grid cells
§ 2000 4-PWR packages

• 65 GWd/MTHM burn-up
• 100 year Out of Reactor 

storage
§ Sevougian et al. 2019

The surrogate models are demonstrated in a PFLOTRAN 
simulation of a generic shale repository reference case
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§ Degradation starts after waste package is 
breached

§ Fractional Degradation Rate (FDR) model 
assumes constant fractional rate of 
degradation

§ ANN and kNNr surrogates provide higher 
fidelity by considering environmental inputs 
and changes in dose rate and temperature 
over time

Surrogate models give more realistic prediction of fuel degradation 
rate than constant approximation 

FDR

ANN

kNNr
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§ Simulations use 1024 processors
§ Transport is more expensive in 

ANN and kNNr runs to model 
transport of environmental 
species

§ Running the full FMD process 
model on 2000 waste packages 
for 1M years would not be 
feasible in probabilistic (UQ) 
setting

Surrogate models are comparable in computational cost to 
constant fractional rate approximation
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kNNr has best results with 8 – 12 nearest neighbors

• Inputs: [CO3
2-], [H2], T, Dose Rate, CLT @ previous time, time step

• Better accuracy when using more training data
• Fewer nearest neighbors results in faster table lookup
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Data conditioning improves the quality of the training data

• Remove FMD process model runs that are physically unrealistic
– Runs that do not finish
– Runs that stagnate at late time
– Runs with Corrosion Layer Thicknesses that exceed physical domain size

• Log-transform data
• Subsample FMD process model runs

– Random subset of points to reduce clustering in training data
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A variety of metrics evaluate different elements of the surrogate 
model accuracy

• (Normalized Root) Mean Squared Error
– Good metric for engineering purposes

• Mean Absolute Percentage Error
– Highlights errors in small values

• Mean Absolute Error
– Not as sensitive to outliers

𝑚𝑎𝑝𝑒 =
1
𝑁
=
&'#

(
𝑦)*+,,& − 𝑦.*/+,&

𝑦.*/+,&
×	100

𝑛𝑟𝑚𝑠𝑒 =

1
𝑁∑&'#

( 𝑦)*+,,& − 𝑦.*/+,&
0

1
𝑁∑&'#

( 𝑦.*/+,&

𝑚𝑎𝑒 =
1
𝑁
=
&'#

(

𝑦)*+,,& − 𝑦.*/+,&

𝑚𝑠𝑒 =
1
𝑁
=
&'#

(

𝑦)*+,,& − 𝑦.*/+,&
0


