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Motivation/Need for Reduced Order Methods

* Numerical and experimental studies produce lots of data

* These data
* Require lots of storage space
e Can be difficult to analyze and interpret
* Are computationally expensive to produce iteratively

* Reduced order methods can help with these problems



BY U Mechanical Engineering

IRA A. FULTON COLLEGE OF ENGINEERING

axonomy

* Reduced order compression (ROC)
* Compression of datasets for storage and quick retrieval

e Reduced order analysis (ROA)
* Extraction of significant features from data

* Reduced order modeling (ROM)

* Utilizing patterns in data to accelerate future modeling
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Spectral Representations

* Most reduced order methods are built off spectral representations

* Spectral representations are composed of:
* A basis of eigenfunctions
* Expansion coefficients

* The same idea as a truncated, generalized Fourier Series:
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yvpes of Bases Considered

* Empirical eigenfunctions
* Decomposition of data
* Principal orthogonal decomposition (POD)

* Analytical eigenfunctions
* Analysis or decomposition of differential operator
e Sturm-Liouville Theorem
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Problem Overview

* Hemisphere heated by convection with time varying ambient
temperature

* Described by 1-D heat diffusion equation in spherical coordinates

* Exact analytical solution derived to generate data

* Analytical eigenfunctions derived using Sturm-Liouville

* Empirical eigenfunctions derived from data using POD \ 1 /

* Three tasks considered
* Compression of the noiseless data
* Analysis of the data in the presence of noise
* Use of the bases for different thermal diffusivities
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Selection/Truncation Criteria

* Three standard error measures used
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Compression

* Empirical eigenfunctions derived from noiseless data
* Noiseless data projected onto both bases
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Analysis in the Presence of Noise

* Empirical eigenfunctions derived from noisy data
* Noisy data projected onto both bases
* Errors, AIC calculated relative to noiseless data
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Varying Diffusivity

* Empirical eigenfunctions derived from data with nominal diffusivity

* Analytical eigenfunctions from nominal problem used
* Data derived with different diffusivities projected onto bases
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Conclusions

* Analytical and empirical eigenfunctions are both viable options for
representing noiseless data

* Analytical eigenfunctions are better at extracting the dynamics from
noisy data

* Empirical eigenfunctions can be used as effective bases for
representations for a wide range of thermal diffusivities

* The AIC can be used as an effective comparison and optimal
truncation criterion, and can assist in the task of selecting a basis for
reduced order spectral representations
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Future Work

* Explore use of empirical eigenfunctions while varying other
thermophysical properties or boundary conditions

* Use empirical eigenfunctions to perform ROM for UQ
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