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Motivation:
Thermal Runaway

▶ Thermal runaway occurs due to
abusive conditions

▶ Cell temperature increases
significantly in a short time

▶ Thermal runaway can propagate
to other cells and modules

▶ Lithium-ion battery failures have
resulted in serious injuries and
considerable financial losses

▶ Conduction propagation has a
local effect to adjacent cells

▶ Conduction propagation has been
intensively investigated

Arizona Explosion1

(Image credit: Arizona Public Services)
1Hill, D., 2020. McMicken Battery Energy Storage System Event: Technical Analysis and Recommendations. DNV GL Energy

Insights USA, Incorporated. 2 / 14



Motivation:
Energy Storage System Failures And Vented Gas

▶ Convection Thermal Runaway
Mode:
▶ Vented gases contain high thermal energy
▶ Spread through entire energy storage system

Energy Storage System Fire2
2https://www.youtube.com/watch?v=uLzPSN8iagk: FM Global Fire. 3 / 14



Characterization of Vented Gas Predictions
Important Vented Gas Characteristics of Heat Transfer

▶ Venting time

▶ Venting speed

▶ Vented gas temperature

▶ Total vented moles

▶ Vented gases species

▶ Why they are important?
▶ Nu is related to Re
▶ The average heat flux

▶ Understanding the heat transfer
mechanism and estimating the heat
flux are major keys to predicting the
temperature of other cells and the
hazard posed by vent gases

* The vent gas characteristics were estimated from

LIM1TR3

3Kurzawski, A., and Shurtz, R., 2019. LIM1TR: Lithium-ion Modeling with 1-D Thermal Runaway v1.0. Tech. Rep.
SAND2021-12281, Sandia National Lab, (SNL-NM), Albuquerque, NM (United States)
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Vent Gas Heat Flux Estimation
Impinging Jet
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Vent Gas Impinging Jet Nusselt Number Correlation and
Simulation

▶ The impinging correlation is the
closest available to the simulated
case

▶ Only used as a point of reference

▶ 2-D compressible flow simulation
▶ 2nd implicit dual time stepping
▶ DNS resolved mesh
▶ Uniform vent gas inflow

▶ Mesh and simulation parameters:

Nx 750
Ny 150
∆t 1× 10−4 s

Jet velocities 58.5 and 7.0 m/s
Simulation time 2.5 s
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Grid Independence Study
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Venting Jet Evolution

▶ Case 1: v = 58.5m/s, H = 1 cm

* Note that: The aspect ration (L/H) = 100
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Venting Jet Evolution

▶ Case 2: v = 7m/s, H = 1 cm
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Heat Flux Estimation: Correlation VS Simulation
▶ For case 1: v = 58.5m/s, H = 1 cm
▶ For case 2: v = 7m/s, H = 1 cm
▶ For case 3: v = 58.5m/s, H = 2 cm
▶ For case 4: v = 7m/s, H = 2 cm
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Heat Transfer Assessment of Thermal Hazards
▶ For case 1: v = 58.5m/s, H = 1 cm
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▶ ∆Tcell is averaged over the cell during the venting only (Local temperatures
will be higher)

▶ ∆Tcell is an indication of the energy deposited in the top/bottom cells
▶ Multiple sequential cells failures are required to provide sufficient energy to

initiate thermal runaway in the adjacent module
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Conclusion And Future Work

Summary:

▶ 40% to about 70% of venting gases energy can leave the module
gap

▶ Multiple and sequential failures of cells are needed to induce
thermal runaway in cells in other modules

Future Work:

▶ Adding a suitable turbulence model

▶ Performing 3D simulations to study the effect of module geometry
on the heat flux
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THANK YOU!
Questions?

https://github.com/sandialabs/lim1tr/
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