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Motivation

Climate Interventions
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Image source: https://eos.org/science-updates/improving-models-for-solar-climate-intervention-research

Threat of climate change has led to
proposed interventions...

Stratospheric aerosol injections

Marine cloud brightening

Cirrus cloud thinning

etc.

Climate Interventions

What are the downstream effects of
such mitigation strategies?
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Example

Mount Pinatubo eruption in 1991

Released 18-19 Tg of sulfur dioxide

Proxy for anthropogenic stratospheric aerosol
injection

Our Objective

Develop algorithms to characterize (i.e., quantify) relationships between climate variables related to a climate event
(in observed data)
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Sulfur dioxide

Injection of sulfur dioxide (18-19 Tg) into atmosphere [1]

Aerosol optical depth (AOD)

Vertically integrated measure of aerosols in air from surface to

stratosphere [2]

AOD increased as a result of injection of sulfur dioxide [1; 2]

Stratospheric temperature

Temperatures at pressure levels of 30-50 mb rose 2.5-3.5

degrees centigrade compared to 20-year mean [3]

Figure generated using Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA- 2) data [4]

Mount Pintabuo Pathway
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Step 1: Model climate event variables with echo state
network

Allow complex machine learning model to capture
complex variable relationships

Step 2: Quantify relationships via explainability

Apply feature importance to understand relationships
captured by model

Our Approach

Use machine learning...
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Approach

Echo State Networks and Feature Importance
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Overview

Machine learning model for temporal data

Sibling to recurrent neural network (RNN)

Computationally efficient model

Compared to RNNs and spatio-temporal statistical models

ESN reservoir parameters randomly sampled instead of

estimated

Previous work using ESN for long-term spatio-
temporal forecasting

McDermott and Wikle [5]

Single-Layer Echo State Network

Output stage: ridge regression

Hidden stage: nonlinear stochastic transformation

Note: Only parameters estimated are in .

Echo-State Networks

yt = Vht + ϵt      ϵt ∼ N(0,σ2
ϵ I)

ht = gh( Wht−1 + U~xt−τ)
ν

|λw|

~xt−τ = [x′
t−τ , x′

t−τ−τ ∗ , . . . , x′
t−τ−mτ ∗]

′

V
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Echo-State Networks
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Echo-State Networks: Spatio-Temporal Context

Recall that we are working with spatio-temporal data...
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Output variable (stratospheric temperature): Input variables (e.g., lagged aerosol optical depth and
stratospheric temperature):

Echo-State Networks: Spatio-Temporal Context

Spatio-temporal processes at spatial locations  over times ...

Stage Formula Description

Output data stage Basis function decomposition (e.g., PCA)

Output stage Ridge regression

Hidden stage Nonlinear stochastic transformation

Input data stage Basis function decomposition (e.g., PCA)

{si ∈ D ⊂ R
2; i = 1, . . . ,N} t = 1, . . . ,T

ZY ,t = (ZY ,t(s1),ZY ,t(s2), . . . ,ZY ,t(sN))′

Zk,t = (Zk,t(s1),Zk,t(s2), . . . ,Zk,t(sN))′

 for k = 1, . . . ,K

ZY ,t ≈ ΦY yt

yt = Vht + ϵt

ht = gh ( Wht−1 + U~xt−τ)
ν

|λw|

Zk,t ≈ Φkxk,t      where xt = [x′
1,t, . . . , x′

K,t]
′
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Goal

Feature importance aims to
quantify effect of input variable on a
model's predictions

Background

Permutation feature importance [6]
Pixel absence affect with ESNs [7]
Temporal permutation feature
importance [8]

Our Work

Adapt for ESNs in context of spatio-
temporal data

In particular...

Compute feature importance on trained ESN model for:

input variable over block of times

on forecasts of response variable at a time

Feature Importance for ESNs
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Concept: "Adjust" inputs at times(s) of
interest and quantify effect on model
performance

Permute values: spatio-temporal
permutation feature importance
(stPFI)

Set values to zero: spatio-temporal
zeroed feature importance (stZFI)

Feature Importance for ESNs

Feature Importance: Difference in
RMSEs from "adjusted" and observed
spatial predictions:

Interpretation: Large feature importance indicates "adjusted" inputs lead to a decrease in model performance
indicating the model uses those inputs for prediction (i.e., inputs 'important' to model)

RMSEadj,t − RMSEobs,t
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Climate Application

Mount Pinatubo
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Source

Modern-Era Retrospective Analysis for Research
and Applications, Version 2 (MERRA- 2)

Training Years

1980 to 1995

Includes eruptions of Mount Pinatubo (1991) and
El Chichón (1982)

Time Interval

Monthly

Latitudes

-86 to 86 degrees

Mount Pinatubo Example: Data

16



ESN Output

Stratospheric Temperature (50mb)

ESN Inputs

Lagged Stratospheric Temperature
(50mb)

Lagged AOD

Forecast Lag

One month

Preprocessing (all variables)

Climatologies

Principal components (first 5)

Mount Pinatubo Example: Model
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Key Point

Peak of importance for
AOD (and lack of peak of
importance for lagged
stratospheric
temperatures), provides
evidence that volcanic
eruption impact on
temperature can be
traced through AOD

FI Metric

Weighted RMSE
(weighted by cosine of
the latitude)

Mount Pinatubo Example: Feature Importance
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Conclusions and Future Work
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Summary and Conclusions

Summary

Interested in quantifying relationships between climate variables associated with pathway of climate event

Motivated by increasing possibility of climate interventions

Our machine learning approach:

Use ESN to model variable relationships

Understand variable relationships using proposed spatio-temporal feature importance

Conclusion

Approach provided evidence of AOD being an intermediate variable in Mount Pinatubo climate pathway
affecting stratospheric temperature
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Future (Current) Work

ESN extensions

Addition of multiple layers
ESN ensembles
Bayesian ESNs

Spatio-temporal feature importance

Implement proposed retraining technique [9] to lessen detection of spurious relationships due to correlation
Adapt to visualize on spatial scale
Comparison to other newly proposed explainability techniques for ESNs (layer-wise relevance propagation) [10]

Mount Pinatubo application

Inclusion of additional pathway variables (e.g., SO2, radiative flux, surface temperature)
Importance of grouped variables
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ESN Details
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ESN Details
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ESN Details
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Feature Importance: Spatio-Temporal Context

Compute FI on the trained ESN model for...

spatio-temporal input variable 

over the block of times 

on the forecasts of the spatio-temporal response variable at time .

k

{t, t − 1, . . . , t − b + 1}

t + τ
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Feature Importance: Spatio-Temporal Context

Two Approaches: "Adjust" inputs by either

Permutation: spatio-temporal permutation feature importance (stPFI)

Set values to zero: spatio-temporal zeroed feature importance (stZFI)

Feature Importance: Difference in RMSEs from observed and "adjusted" spatial predictions

I
(k,b)
t,t+τ = M(yt+τ , ŷ

(k,b)
t+τ ) −M (yt+τ , ŷt+τ)
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Feature Importance: Spatio-Temporal Context

Visualization: Feature importance of  during times  on forecast of  at time :x1 {t, t − 1, t − 2} yt t + 1
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Simulated response

where

 spatio-temporal covariate

 spatio-temporal random effect

Simulated Data Demonstration

ZY ,t(si) = Z2,t(si)β + δt(si) + ϵt(si)

Z2,t

δt(si)

ϵt(si)
iid
∼ N(0,σ2

ϵ )
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Fit an ESN

Forecast 

Inputs  and

Compute stPFI and stZFI

Blocks of size 1 to 3

Each line represents the importance of the block of lagged times of an input variable on
the forecast at time 

Simulated Data Demonstration

ZY ,t

Z1,t−τ

Z2,t−τ

t
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Simulated Data: Effect of Variability on FI
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Simulated Data: Effect of Variability on FI
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Effect of Correlation on FI
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