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Motivation




Climate Interventions

Solar Climate Threat of climate change has led to
Intervention Methods proposed interventions...

RS A e Stratospheric aerosol injections

3) Increasing the amount of PY Mar—ine ClOUd brightening

stratospheric aerosol (SAl) 5) Decreasing the

amount of high
altitude cirrus

clouds (CCT) e Cirrus cloud thinning
10-16 km

Tropopause

e efc.

What are the downstream effects of
2nceazing thereflactivity such mitigation strategies?

1) Surface albedo of marine clouds (MCB)
enhancement

A4 Altering reflection of shortwave radiation

Image source: https://eos.org/science-updates/improving-models-for-solar-climate-intervention-research
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https://eos.org/science-updates/improving-models-for-solar-climate-intervention-research

Our Objective

Develop algorithms to characterize (i.e., quantify) relationships between climate variables related to a climate event
(in observed data)
Example

e Mount Pinatubo eruption in 1991

e Released 18-19 Tg of sulfur dioxide

e Proxy for anthropogenic stratospheric aerosol
injection

M| >



Mount Pintabuo Pathway

Sulfur dioxide
® |njection of sulfur dioxide (18-19 Tg) into atmosphere [1]
\ 4
Aerosol optical depth (AOD)

® Vertically integrated measure of aerosols in air from surface to
stratosphere [2]

® AOD increased as a result of injection of sulfur dioxide [1; 2]

4
Stratospheric temperature

® Temperatures at pressure levels of 30-50 mb rose 2.5-3.5

degrees centigrade compared to 20-year mean [3]

Figure generated using Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA- 2) data [4]
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Our Approach

Use machine learning...

Step 1: Model climate event variables with echo state

network

Allow complex machine learning model to capture
complex variable relationships

Stratospheric
temperature

Aerosol
optical depth

at times
1,2,.,t—1T

Echo State

Network

Stratospheric
temperature

at time
t

Step 2: Quantify relationships via explainability

Apply feature importance to understand relationships
captured by model

Feature
Importance
(global
average)

Stratospheric

w'\/_—— temperature

Time t

M|’



Approach




Echo-State Networks

Overview
e Machine learning model for temporal data
O Sibling to recurrent neural network (RNN)
e Computationally efficient model
O Compared to RNNs and spatio-temporal statistical models

O ESN reservoir parameters randomly sampled instead of

estimated

* Previous work using ESN for long-term spatio-
temporal forecasting

O McDermott and Wikle [5]

Single-Layer Echo State Network
Output stage: ridge regression

y,=Vhi+e& e ~ N(0,0¢I)

Hidden stage: nonlinear stochastic transformation

V ~
h; = gy (‘)\—‘Whtl + UXtT)

- o / / / !
Xt—7 = [Xt_Ta Xt rogrrees 7xt—7'—m7'*]

Note: Only parameters estimated are in V.
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Echo-State Networks

Stratospheric
temperature

at times
1,2,...,.t—T

Echo State

Network

Stratospheric
temperature

at time
t
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Echo-State Networks: Spatio-Temporal Context

Recall that we are working with spatio-temporal data...

Latitude

Latitude

AOD Monthly Climatologies (1991)

Climatology
B3

Echo State

Longitude
Stratospheric Temperature Monthly Climatologies (1991)

Climatology
|

-100 0 100 200 -100 100 200 -100

|

Latitude

Stratospheric Temperature Monthly Climatologies (1991)

Jul

501

.50 4

-100 0 100 200
Longitude

Climatology
|
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Echo-State Networks: Spatio-Temporal Context

Spatio-temporal processes at spatial locations {s; € D C R%i=1,... ,N}overtimest=1,...,T..

Output variable (stratospheric temperature):

Zy; = (Zy(s1), Zy +(s2), - - -, Zy ¢(sn))’

Input variables (e.g., lagged aerosol optical depth and
stratospheric temperature):

Zk,t = (Zk,t(sl)a Zk,t(s2)7 sy Zk,t(SN))/
fork=1,..., K

Stage Formula
Output data stage Zy; ~ Pyy,

Output stage y, = Vh; + ¢

Hidden stage h; = gy (P\—V'Wht—l + Ui’ct_T)

Input data stage  Zkt ~ ®rxk:  where x; = [x]

Description
Basis function decomposition (e.g., PCA)

Ridge regression

Nonlinear stochastic transformation

.o ,X'K,t]' Basis function decomposition (e.g., PCA)
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Feature Importance for ESNs

Goal In particular...
e Feature importance aims to Compute feature importance on trained ESN model for:
quantify effect of input variable on a
model's predictions e input variable over block of times
Background e on forecasts of response variable at a time

AOD Monthly Climatologies (1991)
an

e Permutation feature importance [6]
e Pixel absence affect with ESNs [7]

d Climatology
p3

Latitude

0
-
LI

e Temporal permutation feature
importance [8]

o 100 Lon;‘mde W00 200 400 0 100 200 EChO State
ure Monthly Climatologies (1991) Network
Feb Mar

Our Work

Climatology
52

0
s

2 | Climatology
| K

Latitude

El
iz

e Adapt for ESNs in context of spatio-
temporal data

@|13



Feature Importance for ESNs

Concept: "Adjust" inputs at times(s) of

Stratosphere temperature
(lagged) \ RMSE interest and quantify effect on model
ESN Stratosphere
temperature performance
Aerosol optical (forecasted)

s e e Permute values: spatio-temporal
permutation feature importance
(StPFI)

o
S
©
o
£
o
(%]

* Set values to zero: spatio-temporal
Stratosphere temperature zeroed feature importance (stZFl)

(lagged) \ RMSE
Stratosphere . .
— temperature Feature |mp0rtance: Difference in
O RMSEs from "adjusted" and observed

AOD adjusted

Aerosol /
optical depth

(lagged) spatial predictions:

RMSEadj,t - RMSEobs,t

Interpretation: Large feature importance indicates "adjusted" inputs lead to a decrease in model performance
indicating the model uses those inputs for prediction (i.e., inputs 'important' to model)
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Mount Pinatubo Example: Data

Source Global Averages (weighted by cos(lat))

AOD: Climatology

* Modern-Era Retrospective Analysis for Research
and Applications, Version 2 (MERRA- 2)

Training Years

* 1980 to 1995

* |ncludes eruptions of Mount Pinatubo (1991) and Statospheric Temperature: Climatology
El Chichdén (1982)

Time Interval
e Monthly

Latitudes

1
1980 1985 1990 1995

e -86 to 86 degrees Date
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Mount Pinatubo Example: Model

ESN Output ESN trained through year shown on row label

2861

* Stratospheric Temperature (50mb) ] pel AL N YU ANV ol et

ESN Inputs 5.

7861

e Lagged Stratospheric Temperature 10

9861

8861

~ Test
----- v ~ Train

eeeteer et e Tt e rae eetrteny eertet i aeenyaeeneet ety e usnneet® Pheneed Py et o ter e P et i SN N

e Lagged AOD % 5.

Forecast Lag

0661

.\'.'if""‘.'y- B i Poree M e
e One month 0 :

2661

Preprocessing (all variables) e e e

7661

e Climatologies 5-

0-— y T T
1980 1985 1990 1995

* Principal components (first 5)
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Mount Pinatubo Example: Feature Importance

Key Point Average global importance of an input variable on one month ahead forecast of stratospheric temperature
Feature Importances with Block Size = 3 months

Peak Of importance fOr AOD Stratospheric Temperature

2.0- : :
AOD (and lack of peak of | |
importance for lagged 197 : I
stratospheric stPFI 10 ! !
temperatures), provides 051 :
evidence that volcanic ool , W '
eruption impact on : :
temperature can be 07 ! !
traced through AOD 151

. tzrl 107 E E

FI Metric ) ! '

0.5 ! :
Weighted RMSE 00 Mo | ot e, Mol A
(weighted by cosine of 1980 1985 1900 1980 1985 1900
the latitude) Date
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Conclusions and Future Work



Summary and Conclusions

Summary
* Interested in quantifying relationships between climate variables associated with pathway of climate event
* Motivated by increasing possibility of climate interventions
e Our machine learning approach:
o Use ESN to model variable relationships
o Understand variable relationships using proposed spatio-temporal feature importance
Conclusion

e Approach provided evidence of AOD being an intermediate variable in Mount Pinatubo climate pathway
affecting stratospheric temperature

@lZO



Future (Current) Work

ESN extensions

e Addition of multiple layers
e ESN ensembles
* Bayesian ESNs

Spatio-temporal feature importance

e Implement proposed retraining technique [9] to lessen detection of spurious relationships due to correlation

e Adapt to visualize on spatial scale
e Comparison to other newly proposed explainability techniques for ESNs (layer-wise relevance propagation) [10]

Mount Pinatubo application

* Inclusion of additional pathway variables (e.g., SO2, radiative flux, surface temperature)
e Importance of grouped variables
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ESN Details

Quadratic Echo State Network

Output Stage: Ridge regression

Y;: = V1‘l‘1t + Vz‘lﬁ-}— € € ~ Gau (O, a?I)

AN

Response matrix:
Principal component
scores (time series)
that capture spatial
trends

Rldg‘? R'dg'? Ridge
regression regression -
- o regression
coefficients coefficients .
) . error variance
(linear) (quadratic)

Embedding Vector: Inputs

7]

= __ / ! ! !
Xy = [xt,xt#*,xt_zﬂ ceey Xy K,

Number of previous
times to include in
embedding vector

!

Lag between
embedding
vector times

Hidden Stage:
Nonlinear
stochastic
transformation of
input vectors)

Scaling parameter:

amount of memory in
the system (between 0
and 1 for stability)

Helps control the

Embedding
vector
(covariates):

Previous time's
hidden units

Principal
component
scares

//_

/

Nonlinear
activation function
(e.g., sigmoidal
function such as a
hyperbolic tangent
function)

—
~

Reservoir weight matrices:
Determine which and to what

Spectral radius:
Largest
eigenvalue of W

degree, past embeddings and
current embeddings will be
used to construct features h,

for the quadratic regression

Reservoir Weight Matrices: Details

Previous time hidden unit weight matrix: Can be thought of analogously
to a transition matrix in a vector autoregressive model in that it can capture
transition dynamic interactions between various inputs

Indicator
variables

Wm wig = 7;5Uni f(aw, aw) + (1 — 7;)d0 ’Y;”J"N/E’ern(ww)
U = [uj i Uij = 1f;,-'ﬂ_;ﬂ'“m ay) + (1 _/’Y;fj),‘so Vi Nﬁ”ﬂ)

—

/

é,——"'

Uniform distribution
parameters: Set to
small values to help

prevent overfitting

Dirac function

Bernoulli distribution parameters:

Can be thought of as the probability

of including a particular weight in the

model (set to small values to create a
sparse network)
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ESN Details

Quadratic Echo State Network

Output Stage: Ridge regression

Y; = Vih; + Voh! + € € ~ Gau (0,021)

Response matrix: - .
Principal component Ridge Ridge Ridge
scores (time series) rEgression Tl regression
that capture spatial coefficients coefficients e
trends (linear) (quadratic)

= __ ! f
e = [xt,xt#*,x

! I}

v
h; = gp (|)\—Wht_1 + Uit)

W = [w; iy
U = [u; j; 5

wi) = 72.‘3Unif(*am, aw) + (1 — %?UJ)JD

ui,j — 'y;ijnif(—Gm au) + (1 o "Y:;,)‘SD

iy ~ Bern(my)

i ~ Bern(m,)
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ESN Details

Quadratic Echo State Network

Y: = Vih, + Vohi + & € ~ Gau (0,021)

Embedding Vector: Inputs

= ! /
X = [xt,xtif*,x

Number of previous
times to include in
/ embedding vector

! !
PR

Lag between
embedding
vector times

124
h; = g (mWhtl + Uit)

W = [w; )i
U = [u; i

wi,l = "'(:iUn%f(*ﬂw: a"w) + (1 - ’Y:f’l)é‘ﬂ

wij = Vi Unif(—au, au) + (1 = 7;;)d

iy ~ Bern(my)

v;; ~ Bern(my)
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ESN Details

Quadratic Echo State Network

Y: = Vihi + Vohi + & € ~ Gau (0,071)

= ! !
X; = [xt,xt#*,x

' ! !

Hidden Stage:
Nonlinear
stochastic
transformation of
input vectors)

Scaling parameter:
Helps control the
amount of memory in
the system (between 0
and 1 for stability)

/

AN

o - Embedding
Pn?vmus tlr[le s vector
hidden units (covariates):
Principal
component
scores

A

v

e (7™ /o
r

Nonlinear

_—
~_

W = [w;]i
U = [ug )i 5

Reservoir weight matrices:

activation function
(e.g., sigmoidal
function such as a
hyperbolic tangent
function)

Spectral radius:
Largest
eigenvalue of W

Determine which and to what
degree, past embeddings and
current embeddings will be
used to construct features h,

for the quadratic regression

wi,l — ’}’:iUﬂZf(*aw’ a"w) + (1 - ’}l':j’l)JD

iy ~ Bern(my)

v;t; ~ Bern(my)
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ESN Details

Quadratic Echo State Network

Y: = Vih; + Vohi + & € ~ Gau (0,021)

/ ! /
t—277 " ° ’xt7m7"j|

= ! !
X = [xt,xtfﬂ,x

1
h; = gp (mWhtl + Uit)

Reservoir Weight Matrices: Details

Previous time hidden unit weight matrix: Can be thought of analogously Indicator
to a transition matrix in a vector autoregressive model in that it can capture variables
transition dynamic interactions between various inputs /

. uw w"
W = [w,-!ﬂi,; wy = ’Y::}Un’bf(*aw, aw) + (1 - 7;');)50 ’Yi,g"\’/gern(ﬂw)

—_— __— r

U= [ui,j]i,j ui,j%y/f:au, au) ar (1 j}l‘so ’y;fj N/Béﬂ'u)
Z

Uniform distribution
parameters: Set to
small values to help
prevent overfitting

Dirac function

Bernoulli distribution parameters:

Can be thought of as the probability

of including a particular weight in the

model (set to small values to create a
sparse network)
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Feature Importance: Spatio-Temporal Context

Compute Fl on the trained ESN model for...

e spatio-temporal input variable k

e over the block of times {¢,t — 1,...,t —b+ 1}

e on the forecasts of the spatio-temporal response variable at time ¢ 4 7.

X1,t,1 X1tp; | X2,t1 X2,t,P, XK,t1 XK,t,Pg Vit Yo
t=1 t=1
t=2 t=2
t=3 t=3
t=4 t=4
t=T t=T

@lBO



Feature Importance: Spatio-Temporal Context

X1,t1 - XLty | X2,t1 ™ X2,t,P, - XK,t,1 e | XK, tPg Vit Yot
t=1 t=1
t=2 t=2
t=3 t=3
t=4 t=4

Two Approaches: "Adjust" inputs by either
e Permutation: spatio-temporal permutation feature importance (stPFl)
* Set values to zero: spatio-temporal zeroed feature importance (stZFl)

Feature Importance: Difference in RMSEs from observed and "adjusted" spatial predictions

k,b ~ (k,b A~
It(,t—H)' =M (yt—|—7'7 y§+T)> -M (yt—|—7‘7 yt—l—T)
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Feature Importance: Spatio-Temporal Context

X1,t,1 X1t,p; | X2,t1 X2,t,P, XK,t,1 XK,t,Pg Yt Yot
t=1 t=1
t=2 t=2
t=3 t=3
t=4 t=4
t=T t=T

Visualization: Feature importance of x; during times {¢,t — 1,¢ — 2} on forecast of y, attimet + 1:

Feoture
j,rv\i)csr%obncc

n s e 7 % 9

T of Fovecost

VO

\
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Simulated Data Demonstration

Simulated response
Zy 1(8i) = Z24(8:)B + 01(si) + €x(s:)
where

* Zy; spatio-temporal covariate
e J;(s;) spatio-temporal random effect

1id (() o )

Spatially averaged values of variables

Variable

1 2 3 4 5 6 7 8 9 10
EEEEEEEmEE
11 12 13 14 15 16 17 18 19 20
EEEETEREEE
21 22 23 24 25 26 27 28 29 30
EEEEERERERER
31 32 33 34 35 36 37 38 39 40
EEREEEEE..
41 42 43 44 45 46 47 48 49 50
J L ard
51 52 53 54 55 56 57 58 59 60
EEEEENEEEN
61 62 63 64 65 66 67 68 69 70
EREREERERNEE

|
Zy.(s) 5 0 20
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Simulated Data Demonstration

Fit an ESN A Zs)

 Forecast Zy 4 1.0

e Inputs Z7, and

0.0 1
Z2,t—7' g
g 1.04
Compute stPFl and stZFl g . _—
.é 051 — Zeroed
* Blocks of size 1 to 3 Bl o T s s i

1.0 1
. WJ\\\\/\/\/\/\/ w
m/«/\\/\/‘

0.04

0 20 40 60 0 20 40 60
Time

Each line represents the importance of the block of lagged times of an input variable on
the forecast at time ¢
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Simulated Data: Effect of Variability on Fl

Feature importance

Feature Importances for ,=4
Note: y-axis scales differ by row

Z4 Z4 22 22
0,=0.2 o= 0,=0.2 o
0.09 A
0.06 it
0.087 M/\\//J\\/V\\F\W\M“M WV\AMMV\ h
0.00 4t e
0.15
0.104 .
O A i | | AR Wi A A M\/\/\JJ\/\W\/\/V\A\’\N\/\ -
0.00 A
0.6
0.4 &
o
021 ’\/V\/\/*N\/\A//M\'\wrw ~
M NNf\WMNWV
0.0 4
1.5
1.0 1 2
1
i AN A A L A W’N\\w
0.0
1.5 1
1.0 8
g
—— T — S~ A AN
0.0 -
2.0 1
1.5 .
1.0 1 i
—— T AN A
0.0_\,/“""'\_/~——~——-’—~——- 3 . -

0 20 40 60

o

20 40 60

Time

0 20 40 60

Permuted
— Zeroed
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Simulated Data: Effect of Variability on Fl

Feature importance

o
1

N
1

Zeroed Feature Importances Only

Z4

Z,

Z,

Z

0,=0.2

o,=4

0,=0.2

o,=4

zo="0

Z2'0=0

Y= 20

Z'0=%0

z0="0

V:gﬁ

7:30

V:g,()

40

60

Block size

1
2
— 3
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Effect of Correlation on Fl

Effect of Correlation on PFI

Correlation between features can lead to biased PFI values dues to the model being forced to extrapolate

* When a correlated variable is permuted, it can lead to observations not in the training data

* Model is forced to extrapolate for that observation

« Extrapolation can lead to a major effect on prediction making a variable seem more important than it is

Example

Data is simulated so that X1 affects Y but X2 does
not;

(Left) Within training data (stars) random forest
correctly determines relationship between X1, X2,
and Y (contour lines) but incorrect outside of training
data

(Right) When X2 is permuted, observation could land

outside training data and lead to change in
prediction (i.e., large PFI)

Source: Hooker, Mentch, and Zhou (2021)

Xo

X
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