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/" “The time has come,” the walrus said, “to talk of many things”

7

e Comets
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* Regression

* Chile peppers

 C(lassification

* Neural Networks

» Other types of machine learning
* Function Approximation

* Wrap-up
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Regression




7

rd

e

-

/" Orbits Of Comets Are Ellipses
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Legendre 1805
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Ellipses can be described by just 2
numbers

Both Legendre and Gauss showed
how to calculate these two
numbers from observed data

‘Fitting a curve’ with the ‘principle of
least squares’

Gauss 1809
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Least Squares Approach To Fitting A Curve

25

2o ' ;
S U = % Springs settle

15 . . ina

- . ) ’ o minimum
o1 . I g energy state
Q

25

fl\/linimize the square of\
the distance from the
point to the line

15 4

10 1

“Force” everything
towards the mean!

k J 3 ; : ; ; B Sir Francis Galton (1889)




/" Is The Data Well-Organized?
/ CDC Growth Charts: United States
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/" If The Curve Is Unknown, We Can Approximate!

/ Data Radial Basis Function
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/" The Scaled Basis Set Approximates The Curve
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Chiles to

Classification




Chile Peppers! What Kind Are They?

Chimayo
~4.51n

Bell peppers
~3-51n
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Linear Separability
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Red and Orange are good boundaries!
The dashed line is terrible!




Perceptron
inputs weights McCulloch and Pitts 1943 Rosenblatt 1956
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/" Wide Margin Classifier
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Also called a support vector machine




Some Challenges
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/" Logical Relationships
4

OR: XOR:

If you have a degree in 1 A To get to the destination 4 °
Computer Science or you can either take the

Mathematics, then you train or take the bus

are eligible to apply

AND: 1 @ A
If you are a citizen gand
over 18, then you are
eligible to vote




Hard vs Soft Margins
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Transform The Data To Over Come Non-Linearly Separable Spaces
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Or We Can Go To Higher Dimensions!
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Similarity Features
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/i Moons Dataset
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Similarity Features Applied To Moons Dataset
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//Support Vector Machines and Fully Connected Neural
74
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Networks

SVMs can be probed to understand how the decision boundaries are built M.u.
« Atleastin low dimensions, it can be visualized

For non-linearly separable boundaries, you usually need a feature transform
» Features engineering is hard!

« Especially images: what makes a cat image recognizable as a cat?

The same process as the SVM can be implemented in a neural network
- But it gets harder to probe

SVMs almost supplanted a fully connected neural networks in the 90s

Deep Neural networks is a phoenix that rose out of the ashes of the fully connected neural
networks

« Convolutional neural networks automatically learn features
* Graphics Processing Units (GPUs) transformed how neural networks are trained!







/7 What Else Can Machine Learning Do?
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* Reinforcement Learning;:
 How do | learn to act in the world?

« Especially if I don’'t know how the world works

rd

e

« Recommender systems:
- If I have watched a lot of funny cartoons and loved them, what else would | like?

* Forecasting:
« Text prediction

«  Weather forecasting

* Language models

« What do they all have in common?




Function

Approximation




/" Machine Learning Is Function Approximation
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« Asetis a collection of objects/things (called elements)
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 Avrelation is an association between elements of two sets

+ Relations can be represented as pairs:
* (apple, fruit), (tomato, fruit), (carrot, root), etc.

« Afunction is a special kind of relation in which the second element is unique!

- Sometimes functions can be succinctly described, by an expression or an equation
« (1,2),(2,4),(438),(6,12), (10, ?)

« (Can this description be learnt?

« What is the function in:
* Regression

+ Classification
* Reinforcement Learning







/" Wrap-Up

« History of fitting observed data to a description
* Regression

« Machine Learning for Regression
 Classification

« From Neural Networks to Deep Learning

« Other kinds of Machine Learning

* Machine Learning is Function Approximation

« Several common themes and similar challenges!




