This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do SAND2023-06141C
not necessarily represent the views of the U.S. Department of Energy or the United States Government. sSandia

National

Nanophotonic structures to control propagation, ="
emission and topological behavior of light

Ganapathi Subramania

Sandia National Laboratories, Albuguerque, NM 87185, USA

META 2023, Paris, France
July18-21, 2023

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology & Engineering Solutions of Sandia,
LLC (NTESS), a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security
Administration (DOE/NNSA) under contract DE-NA0003525. This written work is authored by an employee of NTESS. The employee, not

o= NTESS, owns the right, title and interest in and to the written work and is responsible for its contents. Any subjective views or opinions that
& || (““N\\, might be expressed in the written work do not necessarily represent the views of the U.S. Government. The publisher acknowledges that

_‘u[\]]' | U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to pubhsh or reproduce the published form of this wril < Y #.\

Sandia National Laboratories CSandla National Uaboratofies is'a multimission Iaboratory managed and operated by National Technology &1 Engmeermg Solutions of Sandla LLC awhollyss tO results ()f federally Sponsored researc]
\ owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract
_©ENERey NOSA | DENA0003525.

T -



Sandia
National

Collaborators/Acknowledgements s

SNL

* Nicholas Karl

* Keshab Sapkota

* George Wang

* lgal Brener

e Zachary Meinelt
* Jason Dominguez
 Anthony James

P. Duke Anderson(Leonardo DRS)
Stavroula Foteinopoulou (UNM)
Daniel Feezell (UNM)

Elizabeth Delong (UNM)



Sandia
National

Topological Protection

Topological Protection: Approaches that exploit topological properties of the phase space of a system can offer

stability and robustness to the system of interest from external disturbances such as scattering, decoherence etc.
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* Need to create a topological transition to affect the system.

» Non-trivial topological system can provide new ways of control in electronics and photonics. (Eg. Loss-less
unidirectional, scatter-free transport )

L. Lu, J. D. Joannopoulos, and M. Soljacic, "Topological photonics," Nat Photon 8, 821-829 (2014).
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Topological Systems in Electronics

Electronic Topological Insulators : Systems exhibiting Quantum Hall Effect > 2DEGs

*» Time reversal symmetry is broken by applying magnetic (B) field

« Discrete highly degenerate Landau Levels

 Conducting edge states within insulator gap * Needs high B fields

» Low temperatures
« Topologically protected “one way” electronic transport
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Topological Photonics Research Activities

PHYSICAL REVIEW A T8, 033834 (2008)

Analogs of quantum-Hall-effect edge states in photonic crystals

S. Raghu*
Department of Physics, Stanford University, Stanford, California 94305-4043, USA

F. D. M. Haldane
Department of Physics, Princeton University, Princeton, New Jersey 08544-0708, USA

One- way transport at
microwave frequency

Topological Photonics
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One-way edge transport

K.Fang, Z. Yu, S.H.Fan,

Nat. Phot. 6 , (2012)

3D All dielectric PTI

A. Slobozhanyuk, et.al. , Nat
Photon 11 (2), 130-136 (2017).
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Topological edge states in
-V

Barik, S. et al.. Science 359,
666 (2018).

Topological Photonics in Si PhC
A
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Metamaterial PTI

A. B. Khanikaev et.al. Nat Mater
12 (3), 233-239 (2013).

Valley PhC WG

M.l.Shalaev et. al., Nature
Nanotechnology 14 (1), 31 (2019).

Review: S. Iwamoto, Y. Ota, and Y.
Arakawa, "Recent progress in topological
waveguides and nanocavities in a
semiconductor photonic crystal platform
[Invited]," Optical Materials Express 11,
319-337 (2021)



Thin-slab Honeycomb Photonic Crystal Design

Calculated with FDTD (Lumerical ®)

a/R=3.0
r=0.13a
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Modification off Honeycomb Lattice

Compressed lattice a/R = 3.1 l:;_xp a;')d?dlllattlcera./ Blzpi.cg
Topologically Trivial PhC Opologically non-frivia
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P. D. Anderson and G.Subramania, Optics Express 25 (19), 23293 (2017).
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Circular Hole Array Honeycomb Lattice Photonic Crystal

Hole radius ‘r’ dependence Membrane thickness ‘h’
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Reasonable operational bandwidth possible at the telecom frequencies

P. D. Anderson and G.Subramania, Optics Express 25 (19), 23293 (2017).
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Unidirectional Edge State Propagation

Zig-zag interface
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P. D. Anderson and G.Subramania, Optics Express 25 (19), 23293 (2017).



Unidirectional Propagation with Helical Sources
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Barik, S., et al. (2018). "A topological quantum optics interface." Science 359(6376): 666.
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Demonstrating Topological Behavior in a Waveguide System

a/\A ~0.557 a/\A ~0.552 a/A ~0.543

» Direct edge coupling
» Coupling not optimal

11
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Fabrication on Silicon on Insulator (SOI) - Membrane
Pattern transfer to Si

e ~50nmSiO2 is used as hardmask for pattern transfer
* Highly selective HBr based RIE for Si etch
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Optical Measurement
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Topological edge state in honeycomb lattice structure in [11-Ni e

Modeling
Band Structure

Spin-down state
a/A =0.618

H
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Spin-up state

a/A = 0.60
ky (2n/a) R
» Opens up possibility of topological light g_t')
E

emission and lasing in the visible and
ultraviolet



Light emission from photonic topological structures

PTl lasing Nonilinear light generation

Sergey Kruk, et. Al. Nature Nanotechnology
14, 126 (2019).

Bandres, M. A. et al. Science 359, eaar1231
(2018).

Lasing in Top. edge states

Top. lasing in 1D
Top. Interface lasing
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Non-reciprocal lasing

Bahari B, et. al., Science 358, 636 (2017)

Exciton-polariton topological
insulator

- Lasing emission [~
g e Han Cet.al., LightSciAppl 8,40(2019). g™ N = 2 Klembt S et. al., Nature 562:552(2018).
7
St-Jean P, et. al. Nat Photonics,11,651(2017). 0 Top. Nanocavity laser
Shao, Z.-K. et.al. Nat. Nanotech, 15,67 _

(2020).

Review: Y. Ota, K. Takata, T. Ozawa, A. Amo, Z. Jia, B. Kante, M.
Notomi, Y. Arakawa, and S. Iwamoto, "Active topological
photonics," Nanophotonics 9, 547-567 (2020).
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Ota Yy, et. al. Commun Phys 1, 86 (2018).
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Topological/Trivial lattice interface structure in llI-Nitride

I1I-N Nanowires do not have low refractive index cladding to
isolate from the high index substrate which is

* No natural low-index compounds

e Utilize nanoporous interface

17



Nanoporous IlI-N Low Index Layer Nitor

Laboratories
Electrochemical (EC) etching of doped IllI-N layer in chemical bath
- Etching conditions - applied voltage, doping concentration, etching time  ocsource
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Approach is flexible and scalable
* Enables control of porosity a through control of etch conditions

Figures adapted from Mishkat-Ul-Masabih, S et. al. Applied Physics Letters 2018, 112 (4), 041109 18
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Electrochemical Etching Process e .

In collaboration with Prof. Daniel Feezell’s group (UNM)

Doping concentration (cm™) .
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Electrochemical etching of doped GaN layer in acidic solution
* Results in nanoporous region with lower effective refractive index
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Design of Nanowire Resonator Arrays
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» Unique reflectance signature from nanoresonator arrays corresponding to different effective
cladding refractive index

Reflection
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Porosity Characterization

Experiment, a = 440 nm, Radius Sweep

0.5
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(24 V, 12 min)

Blanket wet etch (KOH) +EC etch

Using our characterization
design, the nanowire
resonators show a clear
reflectivity response
enabling porosity/effective
index characterization.

With the additional wet etch the

porosity target enabling our
Huygens’ MS has been achieved!
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Improved EC etching approach e .

o Controlled etch depth
o Indium contact annealed at 150°C
o EC etch 24V, 12min

Considerably improved reflectivity
response from resonators

‘grassy’ surface
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N. Karl et. al. (in-preparation) 22
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Summary .

JTopological photonic behavior in hole array dielectric membrane PhC
JdImplementation in a silicon-on-insulator system
JTopological light emission

dImplementation in lll-nitride

23
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l1I-N Nanowire Array Resonators Laborstories
110 nm GaN
240 nm n+ GaN for isolation . ———
1.5 um GaN template — » o
EBL pattern in Ni evaporation Cl, based dry etch KOH based wet etch

PMMA and lift-off

| de
mm| ETD

Demonstration of cylindrical GaN nanowire array with smooth side walls 26
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Optical Reflectance o e

To Spectrometer [Nlumination i i -
S Iupm EM simulation Optical measurement
Camera
\ . _ .
N ] Simulation a = 450 nm 0.4 E)I(perlmgnt, a ; 430 nlm, Raqlus Svlveep ‘
< E'l ' | ' | ' | 1;0 ~———110nm
130 :m 0.35 - -~ 120nm |
osl 120 nm | | I 130 nm |
~110nm 03 140 nm
Polarizer
g 0 § 025+ 7
/i— —b-/ O LED L: "il]'l}_‘.l § ' % 02
& 2
T o4 & 0.15
Objective 0.1 b |
02r iy
0.05 E
‘r O 1 L L 1 L 1 L
O 1 1 L 1 L 1
Sample 400 450 500 550 600 650 700 750 800 400 450 500 550 600~ 650 700 750
Wavelength (nm)

Wavelength (nm)

» Weak reflectivity response made porosity characterization
difficult

27
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Opportunities in InGaN MQW/GaN system hratres
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P. D Anderson, et. al.Optical Materials Express, 7 , 3634(2017).

J.B. Wright, et. al. Sci. Rep., 3, 2982 (2013).
28
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Huygen’s Metasurface Design

Fitl:1:h = 291 nm, Radius = 123.6 nm, Thickness = 110 nm, Gap Index =1;;|5
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Photoelectrochemical Etching (PEC)
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J.; Koleske, D.

Electrochemical etch is performed under laser illumination

Laser wavelength is selected such that it is shorter than the
energy gap of 16% InGaN but longer than that of 10% InGaN

Selective etching of 16% InGaN MQW

Creates low index cladding layer
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8~ Ptelectrode
2 MH,S0,
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InGaN QW

s* Removal of InGaN QWs by PEC reduces cladding
layer index but procedure is challenging
+* Hard to scale for thicker cladding

D.; Gunning, B. P.; Subramania, G., Optical Materials Express 2018, 8 (11), 3543-3550. 30



