SAND2023-07387

SANDIA REPORT

SAND2023-07387 Sandia
Printed August 2023 National
Laboratories

Thrifty Array Format (TAF) file
specifications

Daniel H. Dolan
Sandia National Laboratories
P.O. Box 5800
Albuquerque, NM 87185-1189

Prepared by

Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National
Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports @osti.gov

Online ordering: http://www.osti.gov/scitech
Auvailable to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road

Alexandria, VA 22312

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders @ntis.gov

Online order: https://classic.ntis.gov/help/order-methods

NYSH

National Nyclear Security Adminisfration

ABSTRACT

Thrifty Array Foram (TAF) files store numeric data in a binary format, minimizing storage
requirements while preserving quick read access. Real data of any size and dimensionality can be
stored in this format at varying degrees of numeric precision. Implicit array are associated with
each dimension, eliminating the need to explicitly store uniformly-spaced grid vectors. Unlimited
text comments may be included with the array for user documentation, and every file begins with
a text synopsis of the binary structure. The format is deliberately designed for memory mapping,
where portions of the array can be read without loading the entire file at once.

ACKNOWLEDGEMENTS

Thomas Gardiner provided critical advice for the final design of the binary file format described
here. Thomas Hartsfield helped prepare this report and served as a guinea pig.

CONTENTS

L. IntrodUuCtiOnt e e e e 9
L1, MOUVALION . ..ottt et e e e e e e e e e e e e 9
L2, OVEIVIEW . .ottt e e e e e e e 10

2. Format SpecifiCationsttt e 11
2.0 OPCNING . .o ee ettt e e e e 11
2.2, Dataheader 12
230 BInary data.o e 13
2.4. Optional teXt COMIMENLS\ttt ettt ettt e e e 13

3. Working with *.taf files 13
3.1, Creating filesot 14
3.2, Reading files 17
3.3, Modifying files e 18

S © 11053 W) 155 215) 1 19

5. Summary and workarounds 19

Referenceso 20

LIST OF FIGURES

Figure 2-1. TAF Opening teXtottt ittt ettt et 11

Figure 3-1. Minimal MATLAB filereader 15

Figure 3-2. Minimal Python filereader 16

LIST OF TABLES

Table 2-1. Thrifty Array Format structureottt 10

Table 3-1. TAF file Operations.ttt e e e 14

1. INTRODUCTION

Data storage is a recurring challenge in experimental science, where numerical information must
be stored, transferred, and processed in a practical manner. Text files are grossly inefficient for
large datasets, and the innumerable number of binary file formats are mutually incompatible.
Electrical digitizers are a notorious example: each vendor uses their own binary format with
extensions such as *.bin, *.trc, and *.wfm. One motivation of the SMASH toolbox [1] is to make
this cacophony of binary formats accessible in MATLAB. [2]

The Hierarchical Data Format version 5 (HDF5 [3]) addresses many of the above challenges, but
its flexibility is both a blessing and a curse. Virtually anything can be written to an *.h5 file,
meaning that one must be prepared to read almost anything from that file. Subsets of HDF5, such
as the Sandia Data Archive (SDA), [4] define specific file organization, but several problems
remain.

* Direct file access is largely opaque—operations must be handled through library routines.
These libraries are available for virtually all computer platforms/languages but have a
reputation for being slow.

* Information cannot be efficiently removed from an HDFS5 file. For example, overwriting a
large data set with a smaller data set does not reduce file size. The standard trick—creating
a new file and copying it over the source file—is inefficient for large data sets.

* Variable-size arrays and lossless compression—key benefits of using HDF5— require
chunked datasets that cannot be easily mapped to memory.

This report describes a binary format specifically designed to avoid these shortcomings.

1.1. Motivation

Consider an 8-bit digitizer that has acquired 1 billion samples; at present, this is neither a
hypothetical nor particularly extreme signal. The minimum storage requirement for that signal is
8 billon bytes (about 7.45 GB). Representing the signal as floating-point values increases storage
requirements by 4-8, or 30 GB for single precision (32 bits per point) and more than 60 GB (64
bits per point) for double precision. Storing the complete time base doubles storage requirements,
with 1 billion samples requiring over 120 GB.

The irony is that many forms of signal analysis do not require the entire dataset at any one time.
For example, short time Fourier transforms (STFTs) use only local regions for each calculation,
but processing can be burdened by having the entire signal in memory. Memory mapping—where
array elements link directly to specific file locations—is optimal for such analysis. However, that
feature cannot be implemented in many HDFS5 files and is difficult to manage across different
vendor binary formats.

Table 2-1 Thrifty Array Format structure with decimal offsets/sizes

Byte offset Description
0 Magic string
8 Format synopsis text
1024 Data type (8 characters)
1032 Data mapping intercept a (double)
1040 Data mapping slope b (double)
1048 Number of array dimensions N > 2 (uint64)
0, = 1056 Dimension 1 length L (uint64)
01+8 Dimension 1 grid start u; (double)
01+ 16 Dimension 1 grid step A; (double)
Q1+24(N—-1) Dimension N length Ly (uint64)
Q1+24(N—1)+8 Dimension N grid start uy (double)
Q1+24(N—1)+16 Dimension N grid step Ay (double)
0, =01 +24N Data array (M bytes per element)
N

O3=01+M H L; Optional text comments

k=1

1.2 Overview

The Thrifty Array Format (TAF) was explicitly designed for memory-mapped analysis of large

data sets. Efficiency and transparency are important secondary goals.

* Floating point numbers may be stored at different precision levels, avoiding the 2—-8 x size
increase when stored integers are converted to single/double precision. Files can be similar

in size to a vendor binary but much more accessible.

* Implicit vectors eliminate the need to store uniformly spaced grids, further reducing file
size. Simple grid modifications are easily applied without loading the array into memory.

* Every file contains enough documentation for the data array to be read without additional

information.

The file extension *.taf should always be used to indicate this format.

The following discussion is divided into two primary sections. Section 2 describes specifications
for files using the *.taf extension. Example *.taf utilities from the SMASH toolbox are given in
Section 3; similar features could be implemented in any language because the format is not

specific to MATLAB. A brief report summary is given in Section 5.

10

O 0 ~J o U W

10

12
13
14
15
16
17
18
19
20

This file contains a numeric array in little-endian binary format. Starting
at byte offset 1024 is a binary header. The first wvalue:

Data format (8 characters)
indicates how array elements are stored in the file. Short names and bit size
indicate standard integer (uint8, uintl6, etc.) or floating point (f1t32, or
flt64) data types. Null characters (ASCII 0) are used on the right side as
placeholders.

The next two values:
Data intercept (64-bit float)
Data slope (64-bit float)

define linear mapping of stored integers (x) to array data (y).
y=intercept+slopexx

Infinite slope indicates data mapping is xnot* used.

The next value and subsequent 3N values define the array size.
Dimensions N >= 2 (uint64)
Dimension 1 length (uint64)
Dimension 1 grid start (64-bit float)
Dimension 1 grid step (64-bit float)

Array data is stored column wise immediately after the dimension N grid step.

The remainder of the file holds optional text comments.

Figure 2-1 TAF opening text, which starts at byte offset 8. Long lines are
wrapped here for visual clarity

2. FORMAT SPECIFICATIONS

Every *.taf file is organized into four blocks: a (mostly) text opening, a binary header, the binary
data, and optional text comments. Table 2-1 summarizes the details given below.

2.1. Opening

An eight-bit magic string denotes the beginning of a *.taf file. The first four characters are
“TAF ” (ASCII characters 84, 65, 70, and 32), followed by three unsigned 8-bit integers. The
first two integers are major and minor version numbers, and the third integer is the array type
code.! Note that these three numbers are often outside the printable range of ASCII characters.
The magic string ends with a newline character (ASCII 10).

Figure 2-1 shows the text starting at file byte offset 8. This synopsis contains sufficient
information for the file to be read in any computer language. One important detail stated in the
synopsis is that multibyte values use the IEEE little-endian convention (least significant byte
first). Space characters (ASCII 32) are written after the synopsis through file byte 1023.

I'The default type code 0 indicates a generic array. Values 1 through 255 are reserved for future applications.

11

2.2. Data header

The data header starting at byte 1024 describes the stored array. Every header entry uses eight
byte storage as described below. There are always four header entries plus three additional entries
per array dimension.

The first header entry indicates how array elements are stored. Data type is denoted by eight
characters denoting storage type and size, padded with ASCII O characters on the right. Signed
(intX) and unsigned (uintX) integers using X=8/16/32/64 bits consistent with the

C99 standard [5] are supported; common examples are uint 8 and uint16. Single-precision
(£1t 32) and double-precision (£1t 64) floating point values consistent with IEEE 754 [6] are
also supported. Legacy *.taf files have a different convention, where the first eight header bytes
are interpreted as an unsigned 64-bit integer.”

The next two header entries contain the intercept a and slope b needed for mapping stored values
X to array elements y.

y=a+bx ()

Linear mapping is used when floating point values are stored in an integer format, saving file
space for data with limited resolution. For example, a signal digitized with 8 bits might be shifted
and scaled to represent voltage, but storing that information as floating point values leads to files
4-8 x larger than necessary. Linear mapping is disabled for infinite intercept and slope

(a = b =), i.e. numeric values are read exactly as they were stored in the file. Infinity is
represented by the hexadecimal value 0x7££0000000000000 according to the IEEE 754
standard.

The fourth byte of the data header indicates the array dimensionality. This value N must be
greater than one to distinguish column vectors (L x 1) from row vectors (1 X L); N = 2 in both
cases. The remaining 24N header bytes describe each array dimensions in three-value groups.
* The first value indicates the array length L; along dimension k.
* The next value is the implicit grid start u.
* The final value is the implicit grid step Ag.
The implicit uniform grids for each dimension span:

Vi = ug + (i —1)A ()

wherei=1... ;.

2Only four data types are present in legacy files: value=8 denotes uint8; value=16 denotes uint16; value=32 denotes
single precision; and value=64 denotes double precision. This obsolete convention should not be used in new *.taf
files.

12

2.3. Binary data

The data array is stored immediately after the data header, starting at byte offset

Q1 = 1056 +24N. Array elements use the binary format described in the previous section,
mapping floating values to integers as needed. The type size X (intX, uintX, or £1tX) dictates
the number of bytes M = X /8 per data element; for example, eight bytes are used for double
precision (64 bit) arrays. A total of:

N
ML« &)
k=1

bytes are used to store the complete array.

The array is written in column-wise manner, following subscript conventions used by MATLAB
(and Fortran). A L x L, matrix is stored in sequential groups of L; values: first column 1, then
column 2, and so forth through column L;. In this two-dimensional example, array element (m,n)
is binary value (m — 1)Ly +n. The 3 x 2 array:

a1 N
o W

NN

would be stored as the column vector [1 42 5 3 6]7 within a *.taf file. Array transposes may be
needed when this array is read into a row-wise language such as C.

2.4. Optional text comments

The remainder of the file is reserved for optional text comments. Starting at byte offset:

N
02 =1024+24N+M [] Ly 4)
k=1

ASCII characters may be used to document the file’s content. Newline characters (ASCII 10) are
the recommended separator between comments.

3. WORKING WITH *.TAF FILES

Figures 3-1-3-2 show minimal TAF file readers for MATLAB and Python; the former uses
C-syntax and can be easily converted to C/C++ by the reader. In both causes, TAF files are
opened with read access, moving the position indicator to byte offset 1024. Eight characters are
read to determine data type, stripping off white space and converting floating point abbreviations
to MATLAB convention. Two 64-bit reads are then performed for linear mapping intercept and
slope; recall that these may be NaN values.

The next 64-bit read establishes array dimensionality N. Three values (size, start, and step) are
then read for each dimension. A cell array of grid values is generated from this information:

13

Table 3-1 TAF file operations

Operation Notes

addComment Add new file comment

adjust Adjust an implicit grid

append Append data to the array

backup Create backup file

convert Convert vendor binary

create Create file from numeric array

crop Crop array using grid bounds

export Export data to text file

map Map file to memory

permute Permute array dimensions

plot Plot array columns

probe Query file contents

read Read data/grid from file

replace Replace numeric array in existing file
setComment Revise file comment(s)

summarize Statistically summarize file

transpose Swap rows/columns in an existing file

vector {1} are grid points for the first dimension, vector {2} are grid points for the second
dimension, and so forth.

Stored data is initially read as a one-dimensional array based on the established data type; all
remaining bytes (if any) are read as comment characters. Linear mapping is applied to the stored
data as needed, and the array is reshaped to the stored dimension size.

The ArrayFile class of the SMASH.ThriftyAnalysis package provides more general
support for *.taf files. Table 3-1 summarizes operations provided by that class, some of which are
described in the remainder of this section.

3.1. Creating files

The abstract ArrayFile class provides several ways of creating *.taf files. The static create
method writes a specified data array to file.

object=ArrayFile.create(file,data, format);

The optional input “format” defaults to ’single’, i.e. data is written as floating point values with
32 bits. Higher resolution s

Smaller bit values (8 or 16) yield smaller files at the expense of resolution; double precision is
maintained for for 64 bits. Non-finite values, such as inf and nan, are preserved for 32/64 bits
and clipped for 8/16 bits.

14

W o bW N

B W W W W W W W www NN NN NN R R R R R R
P O W 0 J o0 U > W N P O W 0 J o U b W N EFE O W 0w J o U b W N FP O O

function [data,vector, comment]=readTAF (file)
% open file and start reading the header
fid=fopen (file,’'r’);
fseek (fid, 1024, " bof’);
atype=transpose (fread(fid, 8, ' xchar’));
atype=deblank (atype) ;
switch atype
case ' f1lt32’
atype=’single’;
case 'flte4d’
atype=’'double’;
end

intercept=fread(fid, 1, "double’);
slope=fread(fid, 1, "double’);

% determine array size and create grid vectors

N=fread (fid,1,’uinte64d’);

L=nan (1, N);

vector=cell (1,N);

for n=1:N
L(n)=fread (fid, 1, "uint64’);
start=fread(fid, 1, "double’);
step=fread(fid, 1, ’double’);
vector{n}=start+stepx (0:L(n)-1);

end

% read array

LT=prod (L) ;

data=fread (fid, LT, atype);

comment=transpose (fread (fid, inf’,’ xchar’));

fclose (fid) ;

% convert array type and size

if slope ~= 0
data=intercept+slopexcast (data,’double’);

end

data=reshape (data, L) ;

end

Figure 3-1 Minimal TAF file reader for MATLAB

15

W W J o U b w N

W wWwWwWwwwwwwhnnnomwnmNt N DR 2 P oo e e e e
® 9 o0 s W R O WO do0EsWN PO WO do U W N O

basic TAF access
def probe (file): # returns header information as dict
import numpy as np
report=dict () ;
dt=np.dtype ([(' Format’,’S8’), (' Intercept’,’<d’), ('Slope’,’'<d’),\
('Dimensions’,np.uint64)1]);
k=1024;
buffer=np.fromfile (file, offset=k, count=1,dtype=dt) ;
DataFormat=buffer [’ Format’].tobytes () .decode();
DataFormat=DataFormat.replace (' \x00’,"");
if flt’ in DataFormat:
DataFormat=DataFormat.replace (' flt’,"float’);
report ['Format’]=DataFormat;
report [Intercept’]=buffer [’ Intercept’].item();
report [’ Slope’]=buffer [’ Slope’].item();
report [/ Dimensions’]=buffer[’/'Dimensions’].item();
dt=np.dtype ([(' Length’ ,np.uint64), (' Start’,’'<d’), (' Step’,’'<d")1);
k=k+32;
buffer=np.fromfile (file, offset=k, count=report[’'Dimensions’],dtype=dt);
report [’/ Length’]=buffer ([’ Length’];
report [/ Start’]=buffer|[’Start’];
report [’ Step’]=buffer[’ Step’];
report ['DataOffset’]=np.uint64 (k+3xreport[’'Dimensions’]1%8);
report ['Points’]=np.uint64 (report [’ Length’].prod());
return report

def read(file): # returns data as numpy array

import numpy as np

report=probe (file) ;

dt=np.dtype ([(' Raw’ , report ['Format’])]);

buffer=np.fromfile (file, offset=report[’DataOffset’],dtype=dt, \

count=report[’Points’]);

buffer=buffer|[’'Raw’];

if np.isfinite(report [’ Intercept’]) & np.isfinite(report[’Slope’]):
buffer=buffer.astype (np.float64);
buffer=report [’ Intercept’]+report [’ Slope’] xbuffer;

buffer=buffer.reshape (report|[’Length’],order="F’); # Fortran order

return buffer

Figure 3-2 Minimal TAF file reader for python

16

The create method also creates several example *.taf files.

ArrayFile.create (2);
ArrayFile.create (3);

2D example
3D example

%
%

The two-dimensional example contains a three-column matrix of values that increase linearly,
quadratically, and cubically in time. The three-dimensional example contains the same
information along with three sinusoids evaluated on the same time base. The example array sizes
are 101 x 3 and 101 x 3 x 2, respectively.

The static convert method transforms vendor binary files to TAF.
ArrayFile.convert (source, format) ;

The input “source” can be an individual file or wild card pattern for batch conversion. Converted
files use the same base name as their source, e.g. name.wfm becomes name.taf. Valid binary
formats include:

* ’column’ for text files, where numeric data is delimited by white space with an optional text
header.

* ’dig’ for NTS *.dig files.
* ’lecroy’ for Lecroy *.trc files.

* ’keysight’ for Keysight/Agilent *.bin and *.h5 files. Multi-record files are automatically
converted to individual signal files: name-1.taf, name-2.taf, and so forth.

¢ ’tektronix’ for Tektronix *.isf and *.wfm files.

Source files are not modified or deleted by conversion.

3.2. Reading files

The static probe method accesses information about an existing *.taf file.
info=ArrayFile.probe(file)

The output structure contains information from the data header, all text comments, and various
byte offsets. The static summarize method:

report=ArrayFile.summarize (files);

provides a statistical summary of the data array.

The static read method reads the data array of an existing file.

17

[data,grid]=ArrayFile.read(file);

The stored data is returned as a double precision array. The second output is cell array of
uniformly-spaced grid vectors.

The static map method provides direct memory access to an existing file.
[map, scaleFcn]=ArrayFile.map (file);

Raw data can be read from the file map .Data .Raw property, which accepts array index or
subscript arguments. Values returned by that property have the same format as the stored data.
The scaleFcn function converts stored data to double precision format.

3.3. Modifying files
The most basic modification to a *.taf file is addition of a text comment.
ArrayFile.addComment (file, entry)

New entries are automatically appended with a newline character to distinguish them from
previous comments. The setComment method:

ArrayFile.setComment (file, value)

overwrites all exiting comments with the specified value.

The static adjust method provides several types of file modification.
ArrayFile.adjust (file,dimension, operation, value);

Modifications are performed one dimension (1..N) at a time. Valid operations include:
* ’shift’ adds the specified value to the implicit grid.
* ’scale’ multiples the input grid by the specified value.
* “start’ replaces implicit grid start with the specified value.
 ’step’ replaces the implicit grid spacing by the specified value.
* ’span’ makes the implicit grid cover the specified [min max] range.

Arrays can be cropped one dimension at a time.
ArrayFile.crop(file,dimension,grid, index) ;

18

The inputs “grid” and “index” indicate cropping bounds. The former references the implicit grid
for the requested dimension, e.g. a grid bound of [-inf 0] retains array elements with grid values
less than or equal to zero. Index bounds explicitly specify elements to be retained, e.g. [1 10]
keeps the first ten values. Empty bounds may be used as placeholders to retain all array
elements.

4, OTHER OPERATIONS

Users may find the following methods useful. Refer to the class help for additional details.

* The backup method creates copies of an existing file. This is usually done prior to
irreversible modifications such as crop.

* The append method adds data along the final array dimension. For example, a M x L array
(L > g) can be appended to an M x N array, resulting in a M x (N + L) array. Array
dimensionality is not changed in the process.

* The permute and transpose methods alter the shape an array without change the total
number of elements. These methods can be used in conjunction with the append method to
control where new data is added to an existing array.

* The export method generates a text file from an existing TAF file.
* The plot method generates lines from each column of a TAF file.

* The replace method overwrites an existing array with new data of the same size, leaving
implicit grid values and comments unchanged.

Note that the transpose, export, and plot methods only support two-dimensional arrays.

5. SUMMARY AND WORKAROUNDS

Thrifty Array Format (*.taf) files store numerical data in a compact, accessible manner. Using a
simple data header, arrays of arbitrary dimensionality and size are stored in a binary format
amenable to memory mapping. Partial information can be rapidly extracted from the file without
reading the entire array into memory. These features are designed for experimental data, such as
digitizer measurements, but can useful for any large dataset.

Although TAF does not provide explicit compression, type mapping and implicit gridding allow
the format to rival or exceed HDF5 deflate performance. Digitizer signals, for example, start out
as integers but are almost immediately converted to floating point values for analysis. However,
measured data rarely has more than 8—16 effective bits, so floating-point storage is 2—8 x larger
than the underlying precision supports; naively storing uniformly-spaced time values increase
storage size by another factor of two. HDFS5 deflate can partially compensate for the 4-16x
increase, but only with appropriate chunking and significant write speed reduction.

19

Complex arrays are not directly supported in TAF, but real and imaginary components can always
be written as separate elements, e.g. a M x 1 complex vector would be stored as M x 2 with real
values in the first column and imaginary values in the second column. Sparse matrices must also
be converted for use in TAF, either by conversion to a full matrix or a three-column array ([row
column value]).

REFERENCES

[1] D.H. Dolan and T. Ao. The Sandia Matlab AnalysiS Hierarchy (SMASH) package. Technical
Report SAND2016-6848, Sandia National Laboratories, (2016).

[2] MATLAB software, The Mathworks Inc., Massachusetts, United States.

[3] The HDF Group. Hierarchical Data Format, version 5, (1997-2022).
https://www.hdfgroup.org/HDF5/.

[4] D.H. Dolan and T. Ao. Sandia Data Archive (SDA) file specifications. Technical Report
SAND2015-1118, Sandia National Laboratories, (2015).

[5] ISO. ISO/IEC 9899:2011 Information technology — Programming languages — C.
International Organization for Standardization, Geneva, Switzerland, December (2011).

[6] IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2019 (Revision of IEEE
754-2008) , 1-84 (2019).

20

DISTRIBUTION

Email—Internal

Name

Org.

Sandia Email Address

Technical Library

1911

sanddocs@sandia.gov

21

23

Sandia
National
Laboratories

Sandia National Laboratories
is a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of
Sandia LLC, a wholly owned
subsidiary of Honeywell
International Inc., for the U.S.
Department of Energy’s
National Nuclear Security
Administration under contract
DE-NA0003525.

	Introduction
	Motivation
	Overview

	Format specifications
	Opening
	Data header
	Binary data
	Optional text comments

	Working with *.taf files
	Creating files
	Reading files
	Modifying files

	Other operations
	Summary and workarounds
	References

