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Wide range of fluid models available
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Ideal/Resistive MHD

∂tρ+∇· (ρu
)= 0

∂t
(
ρu

)+∇· [ρu⊗u+pI
]= J×B

∂tE +∇· [u
(
E +p

)]= J ·E

q = 0

0 = E+u×B− 1

σ
J

∂t B+∇×E = 0

∇×B =µ0J

E = ε+ 1

2
ρu2
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• Magnetosonic wave speed unbounded as ρ→ 0
[
v2

A = B2/(µ0ρ)
]
.

• No Hall term (asymmetry, fast magnetic reconnection).
Ref: N. Shen, Y. Li, D. I. Pullin, R. Samtaney, and V. Wheatley,
On the magnetohydrodynamic limits of the ideal two-fluid plasma equations,
Physics of Plasmas, 25 (2018), p. 122113, doi:10.1063/1.5067387.



Hall/Extended MHD

∂tρ+∇· (ρu
)= 0
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∂tE +∇· [u
(
E +p

)]= J ·E

q = 0

0 = E+u×B− 1
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• Magnetosonic wave speed unbounded as ρ→ 0
[
v2

A = B2/(µ0ρ)
]
.

• Hall term introduces Whistler wave (quadratic dispersion, unbounded).
Ref: N. Shen, Y. Li, D. I. Pullin, R. Samtaney, and V. Wheatley,
On the magnetohydrodynamic limits of the ideal two-fluid plasma equations,
Physics of Plasmas, 25 (2018), p. 122113, doi:10.1063/1.5067387.



PERSEUS quasi-neutral GOL model

∂tρ+∇· (ρu
)= 0

∂t
(
ρu

)+∇· [ρu⊗u+pI
]= J×B

∂tE +∇· [u
(
E +p

)]= J ·E

q = 0

∂t J+∇·
[

u⊗ J+ J⊗u− J⊗ J

ene
− e

me
pe I

]
= e2ne

me
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σ
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2
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• Magnetosonic/Whistler modes bounded by light wave.

• Whistler mode bounded by electron cyclotron resonance.

• Quasi-neutrality requires ∇· J = 0 (not guaranteed).

Ref 1: C. E. Seyler and M. R. Martin, Relaxation model for extended
magnetohydrodynamics: Comparison to magnetohydrodynamics for dense Z-
pinches, Physics of Plasmas, 18 (2011), p. 012703, doi:10.1063/1.3543799.

Ref 2: M. Martin, Generalized Ohm’s Law at the Plasma-Vacuum Interface,
PhD, Cornell University, 2010.



PERSEUS non-neutral GOL model

∂tρ+∇· (ρu
)= 0

∂t
(
ρu

)+∇·
[
ρu⊗u+pI+ me
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(
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• Derived but not originally implemented.

• Unstable for significant charge separation. Ref: M. Martin, Generalized Ohm’s Law at the Plasma-Vacuum Interface,
PhD, Cornell University, 2010.

ξ= 1+ q

ene



Derive an improved non-neutral model

• Only assumption is that me << mα. Model is simplified using the approximation:

1+ Zαme

mα
≈ 1.

• Previous derivations assumed that

ρα

ρ
≈ 1,

ρe

ρ
=O

(
me

mα

)
→ 0.

This approximation is unsuitable for significant charge separation (limit where ρα→ 0).

• Instead, introduce parameter ψ such that

ρα

ρ
≈ψ,

ρe

ρ
≈ 1−ψ.
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Two-temperature non-neutral GOL MHD model

∂tρ+∇· (ρu
)= 0
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Ref: M. M. Crockatt and J. N. Shadid, A non-neutral generalized Ohm’s law model for mag-
netohydrodynamics in the two-fluid regime, Physics of Plasmas, 30 (2023), p. 053902, doi:10.1063/5.0138673.

ξ= 1+ q

ene

ψ= 1+ me q

eρ



Numerical tests

• Problems non-dimensionalized such that

1 = mα = me +mi = ε

1+ε +
1

1+ε .

• Simplified model valid in the limit where ε→ 0.

• Problems parameterized by plasma frequency, Debye length, and cyclotron frequency.

• Compare to existing two-fluid implementation:

M. M. Crockatt, S. Mabuza, J. N. Shadid, S. Conde, T. M. Smith, and R. P. Pawlowski, An implicit monolithic AFC stabilization
method for the CG finite element discretization of the fully-ionized ideal multifluid electromagnetic plasma system, Journal of Computational Physics,
464 (2022), p. 111228, doi:10.1016/j.jcp.2022.111228.
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Sod electrostatic shock
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Brio-Wu electromagnetic shock

• ε= 10−4

• δ scales cyclotron radii/frequency.
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Expanding slab
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Thank you
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