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Wide range of fluid models available
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Wide range of fluid models available
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Ideal /Resistive MHD
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e Magnetosonic wave speed unbounded as p — 0 [v% =B?/(1op)].

Ref: N. SHEN, Y. Li, D. I. PuLLIN, R. SAMTANEY, AND V. WHEATLEY,

H H On the magnetohydrodynamic limits of the ideal two-fluid plasma equations,
b NO Ha” term (asymmetry' faSt magnetlc reconneCtlon)' Physics of Plasmas, 25 (2018), p. 122113, doi:10.1063/1.5067387.



Hall/Extended MHD
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e Magnetosonic wave speed unbounded as p — 0 [v% =B?/(iop)].

Ref: N. SHEN, Y. Li, D. I. PuLLIN, R. SAMTANEY, AND V. WHEATLEY,

e Hall term introduces Whistler wave (quadratic dispersion, unbounded). G e oo e e e ait0 1063/ aeaans, 00"



PERSEUS quasi-neutral GOL model
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e Magnetosonic/Whistler modes bounded by light wave.
o Whistler mode bounded by electron cyclotron resonance. magnetohycrodynamics: Comparison o magnetehyarodynemice for denee 2.
pinches, Physics of Plasmas, 18 (2011), p. 012703, doi:10.1063/1.3543799.
e Quasi-neutrality requires V-J =0 (not guaranteed). R Cornall e e g Ofim's Law at the Plasma-Vacuum Interface



PERSEUS non-neutral GOL model
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e Derived but not originally implemented.

e Unstable for significant charge separation.
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Ref: M. MARTIN, Generalized Ohm’s Law at the Plasma-Vacuum Interface,
PhD, Cornell University, 2010.



Derive an improved non-neutral model

e Only assumption is that m, << my. Model is simplified using the approximation:

Zom
1+=2°~1
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e Previous derivations assumed that

Pa &:O(&)qo_
p p Ma

This approximation is unsuitable for significant charge separation (limit where p, — 0).

e Instead, introduce parameter ¥ such that



Two-temperature non-neutral GOL MHD model
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Ref: M. M. CROCKATT AND J. N. SHADID, A non-neutral generalized Ohm’s law model for mag-
netohydrodynamics in the two-fluid regime, Physics of Plasmas, 30 (2023), p. 053902, doi:10.1063/5.0138673.
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Numerical tests

e Problems non-dimensionalized such that

1 + £ + !
=Myg=Me+MmM; = —+——.
® ¢ " 14+e 1+¢

e Simplified model valid in the limit where € — 0.

e Problems parameterized by plasma frequency, Debye length, and cyclotron frequency.

e Compare to existing two-fluid implementation:

M. M. CrockarT, S. MaBuza, J. N. SHaDID, S. ConDE, T. M. SmiTH, AND R. P. PawLowski1, An implicit monolithic AFC stabilization
method for the CG finite element discretization of the fully-ionized ideal multifluid electromagnetic plasma system, Journal of Computational Physics,
464 (2022), p. 111228, doi:10.1016/j.jcp.2022.111228.



Sod electrostatic shock
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Brio-Wu electromagnetic shock

e e=10"*

e § scales cyclotron radii/frequency.
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Expanding slab

Number Density

Current X
T

Electron Temperature
T T

Ion Temperature
T

T T T
Two-Fluid (ion) --- 1 L Te+1 b=
Te+13 Ff Two-Fluid (e) — 00 e+s e
GOL (ion) -
GOL (e) — 1.0 1e+5 | Teva | e+0
le+12 |
2.0 1e+3 | Te-1 -
Two-Fluid — L
Te+11 i -3.0 GOL — | letd | H4 le+2 W le2 -
R % % % % % % %
Two-Fluid (ion) ---
: — 1 L
Te+13 Two-Fluid (€) — 00 e+5 Te+ Py
GOL (ion) ---
GOL () — a0k 4 tess | le+d |- 1e+0 |
1e+12 !
H -20 - b Te+3 - le-1 -
I
! _ ?N
Two-Fluid —
Te+11 _I',I, 301 GoL — | letd | 4 Tex2 le-2 -
] % % % % % % % % %
Two-Fluid (ion) --- L
h z —_— + +
Te+13 B Two-Fluid () — 00 Te+s Tes1
GOL (ion) -
GOL () — ERS 4 tess Te+d |- 1e+0
le+12 |
2.0 e Te+3 |- Te-1
I
i ﬁ o e
test [ 3.0 TW"'%”(;‘E o lessp 1 e Te2
: ! : : : : : :
Two-Fluid (ion) --- L
. - P -+ +
1e+13 B Two-Fluid (&) — 0o 1e+5 Te+
GOL (ion) ==~
GOL (e) — 0 F 1 tess | le+d | 1e+0
1e+12
=20 - B Te+3 ',/—\—‘ Te-1
I
. B —
e 3.0 TW°'F},“0"E 4 tesal 4 ter2 Te2
! | I ! I I I I I I
0e+0 5e-3 le-2 0e+0 5e-3 1e-2 0e+0 Se-3 Te-2 0e+0 5e-3 Te-2 Oe+0 5e-3 Te-2




Thank you




