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Abstract—Low-inertia microgrids experience significant fre-
quency deviations compared to bulk-power systems. In such
microgrids, energy storage systems (ESSs) can be a viable option
to provide fast-frequency support to keep frequency variations
within allowable bounds. A model predictive control (MPC)-
based strategy is one of the efficient control strategies to enable
fast-frequency support through ESSs. MPC provides the capabil-
ity to explicitly incorporate physical constraints of the microgrid
and the ESS into the control formulation while allowing signifi-
cant operational flexibility. MPC allows near-optimal control by
optimizing the system over a rolling horizon based on a predictive
model of the system. However, the effectiveness of MPC relies on
the accuracy of this predictive model. This paper proposes a
data-driven system identification (SI) based approach to obtain
an accurate yet computationally tractable predictive model for
frequency support in microgrids. The proposed data-driven MPC
is compared with the conventional MPC that utilizes a simplified
transfer-function-based predictive model of the system. Results
show that the data-driven MPC offers a better quality of service
in terms of lower frequency deviations and rate-of-change of
frequency (ROCOF).

Index Terms—Model predictive control, energy storage system,
system identification, fast-frequency support.

I. INTRODUCTION

A microgrid is composed of distributed energy resources
(DERs) and loads, with PV and wind integrated via power-
electronic inverters. Utilization of power-electronic inverters
in microgrids reduces the inertia of the system compared to
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traditional rotational generation-based systems. As a result,
frequency variations arise from imbalances between load and
generation, which are more extreme in low-inertia systems.
Failure to restore frequency to its nominal value can lead to
power outages. One of the possible solutions is to provide
frequency support during transients using an energy storage
system (ESS). The ESS can discharge or charge when the grid
experiences low or high frequency based on an appropriate
control mechanism and provide frequency support. This paper
proposes a model predictive control (MPC) to provide such
control actions through an ESS.

MPC provides a flexible framework to support the power
system voltage and frequency in microgrids [1], [2]. MPC
provides near-optimal control actions using a predictive model
of the system. However, finding a suitable predictive model
that accurately represents the system dynamics while being
computationally tractable is challenging. The problem is ex-
acerbated when the faster system dynamics are being modeled
and the MPC needs to be solved in real-time with control time
steps in ms or µs ranges. Finding the right balance between
accuracy and computational feasibility is critical to ensure
the effectiveness of MPC. In [2], the frequency dynamics
of a microgrid system is modeled using a “swing equation”
and the turbine-governor dynamics equation. However, this
model becomes insufficient as the system expands and its
dynamics change over time. Data-driven system identification
techniques, which do not rely on prior assumptions of power
system dynamics offer an alternative approach to modeling the
system. However, previous research in this area has primarily
focused on load frequency control [3], [4]. In [5], data-
driven grid-supporting control for islanded microgrids using
an H∞ filter is presented; nevertheless, the H∞ filter lacks
the flexibility to adjust parameters as effectively as MPC.
The authors in [6] proposed an online frequency character-
istic estimator and an online optimization controller designed
based on MPC. However, the authors have only considered
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frequency deviation as a controllable state. In contrast, our
research goes beyond this work by incorporating the rate-of-
change of frequency (ROCOF) as an additional controllable
parameter. Leveraging the inherent flexibility of MPC, our
methodology allows for prioritization and customization of the
states and control signals according to specific requirements
and objectives as mentioned in [2].

In this paper, we propose a data-driven MPC for fast-
frequency support. The main contributions of this paper are
as follows:

1) Developed a system identification based approach to
obtain a data-driven model of microgrid using an appro-
priate excitation signal.

2) Presented specific requirements for the design of the
aforementioned excitation signal to extract the frequency
dynamics of microgrid systems.

3) Developed a data-driven MPC-based approach for pro-
viding fast-frequency support utilizing ESS with better
quality of service in terms of frequency and ROCOF
minimization.

The paper is organized as follows: Section II describes the
SI methodology in which the chirp signal design and param-
eters are explained. MPC-based frequency support approach
along with the base case and formulation is presented in
Section III. Sections IV and V show the model validation and
results respectively. Finally, Section VI concludes the paper.

II. SYSTEM IDENTIFICATION METHODOLOGY

System identification (SI) refers to building a mathematical
model of a dynamic system based on the observed data from
the system [7]. The process of SI of a dynamic system is
shown in Fig. 1. The system is excited with an input signal and
the output data is observed. Then, the data are used to identify
the system through a transfer function (TF) representation.

Fig. 1: System identification (SI) basic concept – using the input-
output data to estimate the transfer function of a system.

A. Design of Excitation Signal

The design of the input signal (excitation signal) of the
system plays a significant role in exciting the dynamics of
interest and ensuring that the desired information of the system
behavior can be extracted. The excitation signal should be
able to provide an accurate estimate of the system while
maintaining safe operation of the power system. Desired
characteristics for an excitation signal design include – a
high signal-to-noise ratio (SNR), a longer-duration signal with
excitation in frequencies of interest for the desired application,

and a sampling rate high enough to represent all frequencies
of interest [8]. Considering the aforementioned factors, in this
work the system is excited using a chirp signal, which covers a
wide frequency range. More specifically, a logarithmic square
chirp signal is selected because square signals, with their rich
harmonic content, can be useful for capturing the dynamic
response of a system across a wider frequency range. In [9],
different chirp signals were used to perturb a commercial off-
the-shelf inverter. Among different signals, the logarithmic
square chirp signal performed the best to extract the dynamics
of the inverter.

The design parameters of a logarithmic chirp signal are the
lower frequency fl, the higher frequency fh, the time to reach
from fl to fh, T , and the amplitude A as illustrated in Fig. 2.
Algorithm 1 shows the chirp signal design and calculates the
frequency of interest of the system. First, to calculate fl,
the settling time of the system is obtained by exciting the
system with a step signal. In our case, we have an input step
signal of amplitude 0.05 p.u. with which we perturbed the
microgrid system. The objective is to observe the system’s
output response and identify the settling time. The output
(micorgrid’s frequency) is observed using a phase-locked loop
(PLL) which gives noisy measurements. The settling time of
the system can be calculated measuring the time it takes for the
system’s output response curve to stabilize within a specified
range (typically 2% or 5%) of the final steady-state value [10].
The settling time of the frequency response after applying the
step input is 40s.

Next, the computed settling time of the frequency response
curve is utilized to calculate the most significant time constant.
According to the rule of thumb, the most significant time
constant is approximately one-fifth of the settling time. This
rule provides a rough estimation of the dominant time constant
in the system based on the time it takes for the frequency
response to stabilize. The reciprocal of the time constant gives
the lower frequency fl as 0.02Hz.

Fig. 2: Logarithmic Chirp Signal Parameters.

Next, the value of fh needs to be calculated. Algorithm 1,
calculates the value of fh by using an iterative process and
requires an initial guess. However, due to the limit in the
bandwidth of PLL, the estimate of fh can diverge instead
of converging to a specific value. To address this issue, it is
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Algorithm 1: Chirp Signal Design Algorithm
1. Excite the system using step signal
2. Calculate the fl based on the settling time
3. Guess fh and calculate T
4. Design excitation signal using fl, fh
for Excitation signal do

Run the model
Calculate the transfer function and eigenvalues
Use the Eigenvalues to calculate new fh,new
limit fh,new in fmax

Design excitation signal with new fh,new
Whilefh ̸= fh,new

necessary to impose an upper limit fmax on the estimate of
fh by considering the PLL’s bandwidth. To determine fmax, a
3−ϕ signal with a frequency of 60 Hz is applied to the PLL,
and the input and output signals are tracked and recorded.
Fig. 3 shows the bode plot of the PLL’s response when the
bandwidth of the PLL is varied from 0.01 Hz to 25 Hz. Ideally,
the gain and phase of the bode plot must be 0 dB and 0◦

respectively for perfect tracking. As we increase the frequency,
the gain and phase of the response starts to deviate from its
ideal value. In this particular case, the frequency value at a
gain of 20 log

(
1.05
1

)
= 0.41 dB (5% deviation) is used which

gives us 3.47Hz as the fmax value in Algorithm 1.

Fig. 3: Bode Plot of PLL.

For the initial guess of fh any initial guess can be selected.
In this case, we have chosen 2 Hz which is below fmax.
Using this initial guess, fh is calculated as 3 Hz. Then, T
is calculated using the frequency range and the rate of the
exponential increase of frequency [11] which is shown in (1)
which results in 250s.

T =
loge(fh/fl)

fl

(
N +

ϕ0

2π

)
(1)

where ϕ0 is the initial phase and is 0, and N = 1
The parameters are summarized in Table I. The amplitude

chosen is 0.05 p.u. (a low amplitude probing signal). The

TABLE I: Parameter of the square log chirp signal
Parameter Value Parameter Value

fl 0.02 Hz T 250 s
fh 3 Hz A 0.05 p.u.

Fig. 4: (a) Logarithmic square chirp having fl = 0.02 Hz and fh =
3 Hz, T = 250s and A = 0.05[p.u.] (b) exponential increase of
frequency with time. f = 0.02Hz at t = 0s and f = 3Hz at t = 250s.

higher amplitude signal creates a higher perturbation signal
which has higher SNR which makes the transfer function
learning process easy. However, it might impact the power
system frequency stability. The designed logarithmic chirp
signal characterized by these parameters is shown in Fig. 4 (a).
Fig. 4 (b) illustrates how the frequency of the signal changes
over time.

III. MODEL PREDICTIVE CONTROL AND KALMAN FILTER
FOR FREQUENCY SUPPORT

The controller’s primary goal is to quickly restore the
frequency of a microgrid system following a frequency event
to lower ROCOF and the frequency deviation. The MPC,
fulfilling system constraints, provides a set of potential future
control actions by minimizing the desired cost function for
a given predictive model. Only the first control action of
the series is applied to the system at a given timestep.
MPC continues to solve the optimization problem at each
sampling instant over a finite horizon. To facilitate MPC’s
operation, a dynamic state estimator is required to estimate
the system states. In [12], various filters were compared for
state and parameter estimation in power system frequency
dynamics. The evaluation focused on the accuracy of state
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Fig. 5: Simulation setup for the fast-frequency support using KF-
MPC approach

and parameter estimation as well as computational costs. The
results highlighted that a Kalman filter (KF) can be utilized
for state estimation if the main objective is to estimate the
states alone. Thus, a KF state estimator is employed in our
approach to estimating the necessary states for MPC using
frequency measurements. The details of the KF are in [12].
Fig. 5 provides an overview of the general MPC-KF-based
approach, where the KF is responsible for state estimation,
while MPC generates the control signal to be applied to the
microgrid.

A. MPC Formulation

Let N be defined as the length of the time horizon and
{0, 1, 2, ..., N − 1} be the set of discrete sample times in the
forward time horizon, xk are the states which will be computed
using SI and yk ( yk = Cxk) be the discretized state equation,
and ∆uk be the control input (ESS inverter power). The MPC
is formulated from [2] as:

min
x, u

J =

N−1∑
k=0

(yTk Qyk +∆uT
kR∆uk) + yTNQyN

subject to
xk+1 = F (xk, uk) ∀ k ∈ {0, 1, 2, ..., N − 1}
|∆uk|≤ Pmax ∀ k ∈ {0, 1, 2, ..., N − 1}

where J is the cost function to be minimized, Pmax is the
limit on the inverter power, and Q and R, are the weighting
matrices for control error penalty and control input penalty,
respectively. The optimization solved over the time horizon
length of N results in ∆u∗

k = {∆u∗
0,∆u∗

1, ...,∆u∗
N} with the

first term of the sequence used as the control signal for the
next sample as ∆uk = ∆u∗

0.

Fig. 6: Transfer function representation of an isolated microgrid [2]

B. MPC Base Case

MPC requires a model that predicts the microgrid frequency
dynamics. Previously, in [13] a state space-based model devel-
oped according to Fig. 6 was used. In contrast, this paper uses
a data-driven SI approach to provide the predictive model for
MPC assuming no prior information on parameters and order
of the system. However, a third-order model obtained through
SI was selected for a fair comparison with an equivalent third-
order model obtained from Fig. 6.

IV. SYSTEM MODELING AND VALIDATION

The simulation setup for evaluating the data-driven MPC
is shown in Fig. 7. The microgrid under study is a modified
microgrid system from Cordova, Alaska [2]. The input and
output of the frequency dynamics model are inverter power
∆Pinv and the change in microgrid frequency ∆ω measured
at the point-of-connection of the ESS. The input signal is a
logarithmic chirp signal shown in Fig. 4. After the system is
probed using an excitation signal, the output data are recorded.
The SI process is an offline process where the data is used to
estimate a transfer function model of the microgrid using SI
instrumental variable estimation. Then, the obtained transfer
function is changed into the state-space (SS) model. The
frequency of the microgrid system is measured using a PLL.
To emulate the real system noise, Gaussian noise with an SNR
of 65 dB is added based on [2]. After obtaining the SI model,
a KF-MPC control approach simulated in MATLAB/Simulink.
The design parameters and design details of the MPC are based
on [2], [13] and described in Section IV-B.

The normalized root-mean-square-error (NRMSE) calcu-
lates the fit of the model as:

NRMSE = 1− ||y − ŷ||
||y −mean(y)||

(3)

where, y, ŷ are output data from the unidentified system, and
output of the SI system respectively.

A. Linear Transformation of State Variables

The state variables that are obtained from the SS model
are not directly related to the physical variables we know. For
better intuition and model interpretability, the state variables
need to be transformed into physical variables. One state
variable we can choose is ∆ω since we know it is the measure-
ment. Since frequency supports require minimizing ROCOF,
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Fig. 7: Simulation setup for the system identification and KF-MPC
frequency support where for SI input is the log square chirp signal
Pinv to ESS and output is ∆ω and for frequency support, KF
estimates the states from the noisy measurement and MPC uses it
to produce reference signal for ESS.

we can choose ROCOF (∆ω̇) as another state variable. We
are free to choose a third-state variable. We have considered
the integral of ∆ω (power angle denoted by ∆δ) as another
state. Then our final state vector is x = [∆δ, ∆ω, ∆ω̇]. The
linear transformation of any state variables can be computed
as follows. Let the SS model of a system be:

ẋ = Ax + Bu
y = Cx + Du

where A, B, C, and D are state space matrices, and x, y, and
u are the states, output, and input of the system respectively.
The system can be transformed into an alternate model having
new matrices Anew,Bnew,Cnew,Dnew and new states z as:

ż = Anewz + Bnewu

y = Cnewz + Dnewu

where z = Tx,Anew = TAT−1,Bnew = TB,Cnew =
CT−1,Dnew = D and T is the transformation matrix.

B. KF-MPC Design Parameters

The MPC design parameters are sample time Ts, horizon
length N , and weighting matrices for control error and control
input Q and R. The eigenvalues obtained in section II-A gives

the time constant of the system. The sample time is calculated
based on the time constant and chosen to be approximately
fifteen times smaller than the time constant [14] which is
0.02s. The horizon length is set for 50 samples (1s based
on [2]. A horizon length should capture the performance of
the frequency dynamics. On the other hand, a higher horizon
length results in longer computational effort. Hence, horizon
length should balance the computational cost and performance
of the controller. For 50 samples, the horizon time is 1s for a
0.02s sample time. This value matches the time scale of the
frequency dynamics of the system.

The matrix Q and R penalize poor system performance,
and the control effect, respectively. In this paper, Q is a
diag(Q11, Q22) where Q11 represents the weight for penaliz-
ing frequency deviation and Q22 is the weight for penalizing
high ROCOF. Similarly, R penalizes the power output from
the inverter. The values of Q11 and Q22 are 0.2 and 0.5 respec-
tively based on [2]. This selection gives priority to minimizing
ROCOF than the frequency deviation. Based on [2], the weight
of R is 0.005.

For KF: a random 65 dB Gaussian measurement noise is
added to the frequency based on [15]: measurement noise
covariance (RKF = 10−7). The best weights are calcu-
lated using a parameter sweep. The objective of the pa-
rameter sweep was to obtain the estimation of the states
as close to the PLL measurement data. The process noise
covariance matrix for data-driven MPC system is QKF =
diag(300×−9, 2× 10−8, 2.5× 10−8, 200× 10−8). The ma-
trix for the simplified transfer function model [13] is QKF =
diag(300×−7, 2× 10−9, 2.5× 10−9, 200× 10−7).

V. RESULTS AND ANALYSIS

This section presents and analyzes SI training and testing
result, the obtained state-space model, and MPC-KF frequency
support result. The effect of the excitation signal on system
harmonics is also presented.

Fig. 8: The percent fit is calculated by comparing the actual outputs
from the Cordova system: COI, PLL (true), PLL(noisy) with esti-
mated outputs

In a power system, where different generators are present,
the concept of Center of Inertia (COI) gives the correct
estimation of the frequency. The COI can be calculated as:

COI =

∑Ng

i=1 ωiSi∑Ng

i=1 Si

(4)
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where Ng is the total number of generators in the system, ωi

is the frequency measurement of ith generator, and Si is the
apparent power of the ith generator. Hence both COI and PLL
data are used as a base for comparing the performance of SI.

Fig. 8 shows the process to compare the system identifi-
cation result where the estimated transfer function result is
compared with the COI, PLL true and noisy measurements.

A. System Identification Training and Test Result

TABLE II: % fit of Estimated TF having different poles and zeros
with true PLL Data

Poles
Zeroes 1 2 3

2 63.777 - -
3 63.58 68.527 -
4 16.685 64.286 76.127

TABLE III: %fit of Estimated TF having different poles and zeros
with true COI Data

Poles
Zeroes 1 2 3

2 78.221 - -
3 78.073 87.426 -
4 17.587 76.811 86.557

Tables II and III present the percentage fit of the training
data (trained using PLL measurement only) with the true
PLL and COI data for various poles and zeros. According
to Table II, the best fit was achieved with four poles and
three zeros. However, with the true COI data, the best fit was
obtained with three poles and two zeros, as indicated in the
Table III. Taking into account that the COI provides accurate
measurements, a third-order model with three poles and two
zeros is chosen as the best-fit model. Also, higher-order mod-
els involve more parameters and require more computational
resources to solve the optimization problem at each sampling
instant. This can result in longer computation time in MPC.
The transfer function of the third order is shown in (5). Fig. 9
illustrates the comparison between the poles and zeros of the
SI model and the model presented in [13].

G(s) =
0.3727s2 + 1.299s− 0.02979

s3 + 5.49s2 + 30.50s+ 2.364
(5)

The training and testing results are compared to both the
PLL and COI data. Fig. 11 presents the training and testing
output waveform of PLL with noise, SI, PLL true, and
COI data. The result indicates that utilization of noisy PLL
measurements for training, the SI output exhibits frequency
deviation close to true PLL and COI data.

In Fig. 10(a) percent fit of the training result is presented
while Fig. 10(b) displays the percentage fit of the testing
result for different frequency square wave signals. The result
shows an improved fit to the COI, reflecting the noise in the
PLL output values. As for the testing result, the fit percent is
higher for low-frequency excitation signals. This is because
PLL works better in a low-frequency range rather than a high
one. The fit between the PLL data and COI data for larger
frequencies is low.

Fig. 9: Poles and zeroes of the SI model and model from [13]

Fig. 10: Training and the testing result of SI (a) shows the training
result using log chirp signal (b) shows the testing result for different
frequency square wave

B. State Space Model

The SS model of the transfer function in (5) after trans-
forming into state variables [∆δ ∆ω ∆ω̇]T are shown in (6).
The transformation of the states is calculated as described in
section IV-A.

A =

 0 1 0
0 0 1

−2.36 −30.50 −5.49

 ;B =

 0.0125
0.3727
−0.7474

 (6)

Now, introducing disturbance term Pd also as a state that rep-
resents the disturbance in the system. The term Pd is assumed
as a parameter as it varies very slowly. Pd is augmented as a
state because KF handles parameter estimation by augmenting
parameters to states and setting its derivative to zero [16].
Therefore, the KF estimates the disturbance term as well. The
disturbance of the system can be predicted for a system as
long as the dimension of disturbance is less than or equal
to the measurement [17]. Hence, the new states variables are
[∆δ ∆ω ∆ω̇ Pd]

T for estimation.
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Fig. 11: Training and testing output waveform (a) show the training result (b-d) shows the testing results for 0.5, 1, and 1.5Hz respectively.

Fig. 12: (a) Frequency, (b) ROCOF, and (c) peak-power output of ESS for a step-change load in MATLAB/Simulink using simplified TF
prediction model [13] and SI prediction model.

A =


0 1 0 0
0 0 1 0

−2.36 −30.50 −5.49 1
0 0 0 0

 ;B =


0.0125
0.3727
−0.7474

0


(7)

C. MPC Frequency Support Result

Fig. 12 shows a comparison of different models for fre-
quency support. It shows that the two predictive models of
MPC: simplified transfer function model [13] and SI predictive
model we derived using SI, provide fast-frequency support.
The frequency support provided by these models is better
than when there is no MPC. The comparison of the simplified
transfer function model with the SI predictive model shows
SI predictive model has less frequency and ROCOF deviation.
However, if we observe the inverter power in Fig. 12(c), the SI-
based MPC predictive model uses more inverter power than
the simplified TF-based MPC. Although the power curve is
different as shown in fig. 12(c): the peak power difference
between the two is insignificant. Thus, the model obtained
using SI utilizes a slightly higher amount of inverter power to
reduce the frequency deviation.

D. MPC Computation Time

Fig. 13 presents a box plot comparing the computation
time of two prediction models used in MPC. The results

Fig. 13: Box plot showing the computation time of MPC using
simplified TF prediction model [13] and SI prediction model.

indicate that the mean computation time of MPC using the SI
prediction model is approximately 3.30% lower than that of
MPC with a simplified SS model [13]. While this reduction in
computation time is not significant, it can be attributed to the
SI predictive model utilizing a state space matrix with pre-
determined numerical values. In contrast, the model in [13]
calculates each element of the state-space matrix based on
values represented in the transfer function model.

E. Effects of Chirp Signal on System Harmonics

The total harmonics distortion (THD) calculates the ratio
of the root mean square (RMS) of the harmonic content,
which includes harmonic components up to the 50th order
while excluding interharmonics, expressed as a percentage of
the fundamental frequency [18]. According to IEEE standard

7



519 [18], the assessment of very short-time harmonics involves
evaluating their values over a 3-second timeframe. The Fourier
coefficients of 12-cycle windows are calculated for a 60 Hz
power system. Then, the Fourier coefficients of each individ-
ual frequency component are aggregated based on the RMS
calculation, and the THD from aggregated Fourier coefficients
is calculated. This analysis aims to understand and quantify
the harmonic content present during this short duration. The
sampling frequency in our case is 1 MHz and the switching
frequency is 20 kHz.

Fig. 14: very short THD of the system for every 3 seconds without
an inverter, with an idle inverter, and with chirp signal injected to the
inverter.

Fig. 14 illustrates the THD of the system under investiga-
tion, in the absence of an inverter, when the inverter is idle
(chirp signal is not injected into the system), and when the
chirp signal is injected into the system. In accordance with
the guidelines presented in the IEEE Standard 519 [18], it
is recommended that the THD of the source voltage remains
below 5%. The results demonstrate that the THD values
for the system meet the prescribed threshold under all three
conditions: when the inverter is idle, when the system is
excited with the square chirp signal, and when the inverter
is absent from the system.

VI. CONCLUSION

The paper implements system identification in MAT-
LAB/Simulink to predict the model of a microgrid. The model
was validated on testing data and the goodness of fit showed
the third-order model best fitted the data. The model was used
as a predictive model for MPC and was compared with the
third-order simplified model. The result showed that the model
utilizes the control action to produce a better result than the
previous model. Also, the harmonics analysis showed that the
THD with a square chirp signal is within the IEEE standard
limit. In the future, we aim to conduct and compare the
harmonics analysis for different ordered SI prediction models.
The SI process, as it currently stands, is conducted offline.
However, there is potential for future development where the
SI process could be performed online. This would involve
collecting data in real time and estimating the model at a
slower time scale. The resulting model could then be used as
a predictive model within the framework of MPC for effective
frequency control.
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