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Context and motivations




Numerical simulation of challenging mechanical contact problems

Localized contact, impact, touching surfaces, sliding, bolted/fastener joint, ...
- presence of nonlinearities and lack of smoothness

Y25 SIMULIA . )
ABAQUS Sandia Mechanics Challenge

.
Simu, Tech
‘ GrOLIE
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Numerical simulation of challenging mechanical contact problems

Localized contact, impact, touching surfaces, sliding, bolted/fastener joint, ...
- presence of nonlinearities and lack of smoothness

P SIMULIA . .
ABAQUS Sandia Mechanics Challenge

.
Simu, Tech
‘ GrOLIE

— Need a robust, stable and accurate method for mechanical contact

* accurate prediction of quantities of interest (velocities, contact forces, energies, ...)

« multiscale & multiphysics context (different time integrators, solvers, meshes, material models for different bodies)
« numerical efficiency and robustness

« non-intrusive implementation in existent legacy solvers (e.g. Sierra/Solid Mechanics (Sierra/SM), Albany, ...)
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Numerical simulation of challenging multiscale contact problems

Conventional contact methods

 introduce contact constraints into the variational form
« solve all bodies involved in contact as a "coupled”

system

Penalty method - amount of interpenetration ~ contact pressure
[G. L. Goudreau et al. (1982) | T. Belytschko et al. (1991)]

Lagrange Multipliers method - additional Lagrange constraints
[T. J. R. Hushes. (1976) | K. J. Bathe et al. (1956)]

Perturbed and Augmented Lagrangian methods - constrained
optimization theory, hybrid penalty/LM approach

[]. C Simo et al. (1985, 1992) | R. Glowinski et al. (1989)]

Nitsche method - optimization problem with contact constraints
[F. Chouly et al. (2016) | P. Wriggers et al. (2008)]

+ well-established (proven convergence, ...)
— accuracy and stability often affected by
problem-dependent parameters

— all bodies are coupled and solved
simultaneously

— intrusive implementation

The Dirichlet-Neumann Schwarz alternating method for contact problems in elastodynamics

‘ Daria Koliesnikova



Numerical simulation of challenging multiscale contact problems N\

Conventional contact methods

 introduce contact constraints into the variational form
« solve all bodies involved in contact as a "coupled”
system

Penalty method - amount of interpenetration ~ contact pressure

[G. L. Goudreau et al. (1982) | T. Belytschko et al. (1991)]

Lagrange Multipliers method - additional Lagrange constraints
[T. J. R. Hushes. (1976) | K. J. Bathe et al. (1956)]

Perturbed and Augmented Lagrangian methods - constrained
optimization theory, hybrid penalty/LM approach

[]. C Simo et al. (1985, 1992) | R. Glowinski et al. (1989)]

Nitsche method - optimization problem with contact constraints
[F. Chouly et al. (2016) | P. Wriggers et al. (2008)]

+ well-established (proven convergence, ...)
— accuracy and stability often affected by
problem-dependent parameters

— all bodies are coupled and solved
simultaneously

— intrusive implementation

AN

AN

Schwarz alternating method ~

* treats each body separately (as non-overlapping \
subdomains)

« prevents interpenetration through an
alternating Dirichlet-Neumann iterative process

Domain Decomposition context - solving PDEs on irregular domains by
splitting them into domains of regular shape, overlapping and non-
overlapping approaches [H. Schwarz (1870) | P. I. Lions (1990)]

Multiscale coupling - overlapping approach [A. Mota et al. (2017, 2021)]
Contact/impact dynamics - non-overlapping approach [A. Mota et al. (2023)%]

+ strong theoretical basis (domain
decomposition context)

+ flexible (different time integration
schemes, solvers, meshes, material models
for different bodies)

+ non-intrusive implementation

— iterative process and transfer operators
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Schwarz alternating method
for contact problems
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Schwarz alternating method for contact problems

Before the contact phase:
 solve PDEs in each body separately (different solvers, discretization techniques, time integrators, ...)

check contact criteria at each controller time step (overlap/distance conditions, compression condition, ...)

N\

I
AT : |
| ' ' |
Lo rq
L L e L1 I
I | | 1 | | | | I
t§ t1 t3 =

t ti t5 t3

Controller
time stepper

Time discretization
of the domain Q!

Time discretization
of the domain Q2
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Schwarz alternating method for contact problems

During the contact phase:

 solve PDEs in each body separately (different solvers, discretization techniques, time integrators, ...)

« prevent interpenetration through an iterative process based on the Dirichlet-Neumann contact boundary conditions
« check contact criteria at each controller time step (overlap/distance conditions, compression condition, ...)

_— <

Contact boundaries I'' and 1?2

Limpact Contact phase Crelease
| I Controller
| ————- i | time stepper
o o | Time discretization
----- “ 1
| T of the domain Q
Time discretization
-+t -—-- —— of the domain Q2
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Schwarz alternating method for contact problems N\

During the contact phase:

 solve PDEs in each body separately (different solvers, discretization techniques, time integrators, ...)

AN

« prevent interpenetration through an iterative process based on the Dirichlet-Neumann contact boundary conditions \

« check contact criteria at each controller time step (overlap/distance conditions, compression condition, ...)

‘ Daria Koliesnikova

—

<

ﬂE

Contact boundaries I'* and r?

Timpact Contact phase

L release
I Controller
} | time stepper

Time discretization

one controller time step

of the domain Q!

Time discretization
of the domain Q2
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Schwarz alternating method for contact problems

__9 <

Contact boundaries I'! and I'?

Ly I Lk+1

| I

| |
’?"time step for the domain Q1

1] y |

1 I | I
1r?“time step for the domain Q?

51 I

ﬂ"‘}| | : |
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AN

Schwarz alternating method for contact problems L

Notations \
displacement @ Mmass density
p
acceleration (0 body force pB \
Contact boundaries I'' and Ir?
Piola-Kirchoff stress P traction T
( div P = pno™ in 01 Dynamic problem
div P" + pB = p@ in 0" X1, y P
. " (x,t) =y on a;pﬂl><fk Regular Dirichlet BCs
Lk I lr+1 2" P'"N =T on drQ'xI, Regular Neumnann BCs
I I k‘Pn(x: t) = ?g-z_,p)xik?n_l(nz; t) onT'XI Contact Dirichlet BCs

Use implicit or explicit time
integrator to advance Q!

ﬂ 1 I | I
I | I .
A AX A Transfer displacement,
; S . velocity and acceleration
i | to impose contact
02 Dirichlet BCs on I'?
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Schwarz alternating method for contact problems

é—
ﬂE

At boundaries I'' and I'?

Lﬁ I.H: LJ!-.' +1
l |
| |
I I (div P" + pB = pp"
Q' ; ) | @m0 = x
I A~ | Transfer traction n* )
i o o] P"N=T
NG "1 to impose contact =
! ! 2 nar T N
.v Y. N v Neumann BCson T’ k;:r N = j}([‘i—»FZ]kaTn(n t)
ﬂ 2

Use implicit or explicit time
integrator to advance Q2

AN

N

Notations
displacement @ Mmass density p
acceleration ¢ body force pB \

Piola-Kirchoff stress P traction T

in nzx;k Dynamic problem

on 0,02xI), Regular Dirichlet BCs
on d7Q%XI, Regular Neumann BCs
on I'*XI, Contact Neumann BCs
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Schwarz alternating method for contact problems

—é <

ﬂE

Contact boundaries I't and 12

L I Tk +1

|r_estart the Schwarz iterative process
_______________________ ;
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div P" + pB = p¢™ in Q'xI,
o' (x,t) =y on 9,0 X1
P'"N=T on d;Q1XI,
Q" (x,t) = ?g,z%rl)x[kfp"‘l(ﬂz, t) onT'xI,
div P" + pB = p¢" in Q?xI,
e (x,t) =y on 9,0 X1,
P'"N=T on d; 0% XI,
PN = P12y, T (@, 1) on I'2xI,,

Dynamic problem
Regular Dirichlet BCs
Regular Neumann BCs

Contact Dirichlet BCs

Dynamic problem
Regular Dirichlet BCs
Regular Neumann BCs

Contact Neumann BCs

lterate until Schwarz convergence criteria are satisfied
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Schwarz alternating method for contact problems

—é <

ﬂE

Contact boundaries I't and 12

(div P™ + pB = p@™ in Q'XI, Dynamic problem
P (x,t) = x on d,Q' X[}, Regular Dirichlet BCs
1
L Iy, Ui +1 Q\P'N=T on 07Xy Regular Neumnann BCs
— DY -102 1
I I k‘P"(xr t) = "P(rzqu)x;kfpn (Q%¢) onT XIy Contact Dirichlet BCs
T (div P + pB = p$p™ in Q?xI, Dynamic problem
n! I : I 02, Q" (x,t) =x on a;pnthc Regular Dirichlet BCs
?0 P"N =T on 0rQ°XIy  Regular Neumann BCs
e nny — pT 1 2
qé P"N = ?(rl—»rz)xfan(n ,t) on I*XI Contact Neumann BCs
0° S k
=

lterate until Schwarz convergence criteria are satisfied
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Schwarz alternating method for contact problems

__9 <

N

N\

Contact boundaries I'! and I'?

(div P™ + pB = p@™ in Q'XI, Dynamic problem
: e (x,t) =y on a,pnlek Regular Dirichlet BCs
Lk I Lk+1 Q\P'N=T on A7 Q' XI, Regular Neumann BCs
I I ktp"(x, t) = "Pg-z_.rl)x;k‘pn_l(nz* t) onl'Xl, Contact Dirichlet BCs
(div P™ + pB = p" in Q?xI, Dynamic problem
n? I : I 02 Q" (x,t) =x on a(pnlek Regular Dirichlet BCs
\P"N=T on 07 Q% X1y Regular Neumann BCs
) | LP"N - ?(T;‘larz)xfkim(nl*t) on T2 X Contact Neumann BCs
1

» Dirichlet-Neumann BCs can be swapped
» (Can be easily coupled with different time integrators - implicit, explicit
Newmark-g, ... schemes
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Schwarz alternating method for contact problems

N

__9 <

N\

Contact boundaries I'! and I'?

(div P™ + pB = p@™ in Q'XI, Dynamic problem
Q" (x,t) =y on 0,0 X[}, Regular Dirichlet BCs
Lk I Lk +1 \P"N=T on A7 Q' XI, Regular Neumann BCs
—_[D? -
I I k‘Pn(x' t) = ‘?(rz—;rl)xfkrpn H(Q58) onT'xI Contact Dirichlet BCs
(div P™ + pB = p" in Q?xI, Dynamic problem
n' I i I 02 P (x,t) = x on 9,0%XI  Regular Dirichlet BCs
\P"N=T on 07 Q% X1y Regular Neumann BCs
— pl 1 2
| LP“N ] ?(Flﬁrz)xfkrl(n t) on I'"X1j Contact Neumann BCs

» Dirichlet-Neumann BCs can be swapped

» (Can be easily coupled with different time integrators - implicit, explicit
Newmark-g, ... schemes

» Challenge: appropriate transfer operators for displacement and traction
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Schwarz alternating method for contact problems

__9 e__

Contact boundaries I's™ and rdst
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Schwarz alternating method for contact problems

__9 | e__

Contact boundaries I'S*® and 9t
- Displacement transfer operator from I'ST¢ to 9st

-1
PP = \ ! gy dst (Ndst)'r dsl \ f Jy-dst (Nsrc:)T dS‘
rdst rdst

- Traction transfer operator from rsre to rdst

l"SI'C

o _ [ [ avas aeseeyr ds] [ [ wasrcﬁds‘_l

rdst

NS¢ and NV 9st - finite elements interpolation functions defined on r's™ and rést
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Schwarz alternating method for contact problems

__9 | e__

Contact boundaries I'S*® and 9t
- Displacement transfer operator from I'ST¢ to 9st

-1
PP = \ ! gy dst (Ndst)'r dsl \ f Jy-dst (Nsrc:)T dS‘
rdst rdst

- Traction transfer operator from rsre to rdst

o _ [ [ avas aeseeyr ds] [ [ wasrcﬁds‘_l

rdst rsre

NS¢ and NV 9st - finite elements interpolation functions defined on r's™ and rést

» Generic (appropriate for different type of geometries, mesh types and sizes, ...)
« Same operator used for all Schwarz iterations within one controller time step
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Schwarz alternating method for contact problems

After the contact phase:
 solve PDEs in each body separately (different solvers, discretization techniques, time integrators, ...)

« prevent interpenetration through an iterative process based on the Dirichlet-Neumann contact boundary conditions
« check contact criteria at each controller time step (overlap/distance conditions, compression condition, ...)

e —

| Iy - 1| Controller

I === | | time stepper
In—1 Iy

| C Time discretization
I r r — === — | of the domain Q!
— Time discretization
=== H— \ of the domain Q2
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Academic benchmark

Schwarz contact method vs
conventional methods
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Impact of two 1D linear elastic prismatic rods

1
’-!.?D___)

» Analytical solution available in [Carpenter et al., 1991]

» Newmark-g time integrator

* Numerical comparison: Schwarz method vs conventional contact methods
o implicit and explicit Lagrange multiplier methods
o implicit and explicit penalty methods

o explicit-explicit, implicit-implicit, implicit-explicit Schwarz methods
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Contact point position

Impact time Release time
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[ ~nalytical solution
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Contact point position
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Contact point position N\
AN

»

0.002 [ 10 \
0.001 |
8 r . .
[ ~nalytical solution

- xR

0.000 S .
2 - Implicit LM
= =
S 5 6 Explicit LM
S —0.001 - c xplici
+— —
£ )
= :

-0.002 |
g g4
— -
c o
S -o0.003 b 2

2 -
-0.004 -
-0.005 7 — — " 0o *
4.00x10° 4.50%10 5.00x10 5.50x10°

Time

« Lagrange Multiplier methods: under-predict the release time
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Contact point position N\
AN

»

0.002 [ 10 \
0.001 -
P o
N 8 F . .
[ ~nalytical solution
5§ 0.000 B .
= e Implicit LM
%] -
o S 6 f ici
S o001 | 2 Explicit LM
£ g B Implicit penalty
O Q .
o =0.002 ¢ v 4 | B Explicit penalty
3 =
c %
S -o0.003 b 2
2 -
-0.004 |
~0.005 L— - - o L
4.00x10” 4.50x10" 5.00x10"" 5.50x10™"

Time

« Lagrange Multiplier methods: under-predict the release time

« Penalty methods: over-predict the contact point position and under-predict the release time
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Contact point position N\
AN

»

0.002 - 10 r \
0.001 |
8 r . .
[ ~nalytical solution
5§ 0.000 B .
= e Implicit LM
%] -
S o001 | S 6 | Explicit LM
E S B Implicit penalty
O (5] .
5 -0.002 - @4 L B Explicit penalty
E © Exp-Exp Schwarz
O )
S -o0.003 - L
! B mp-imp Schwarz
-0.004 B mp-Exp Schwarz
4,00x107* 4.50x107" 5.00x10"" 5.50x10™"

Time

« Lagrange Multiplier methods: under-predict the release time
« Penalty methods: over-predict the contact point position and under-predict the release time

« Schwarz methods: accurately predict the contact point position and release time
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Potential energy
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Potential energy

Potential energy

Potential energy
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Lagrange Multiplier methods: under-predict the
maximum potential energy peak and over-predicts

the energy after release
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Potential energy

Potential energy

Potential energy
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Lagrange Multiplier methods: under-predict the
maximum potential energy peak and over-predicts
the energy after release

Penalty methods: similar behavior as LM methods

N
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Implicit LM
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B Implicit penalty

B Explicit penalty
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Potential energy

Potential energy

Potential energy

1.3 r
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Lagrange Multiplier methods: under-predict the
maximum potential energy peak and over-predicts
the energy after release

Penalty methods: similar behavior as LM methods
Schwarz methods: accurately predicts the
maximum energy peak and better capture the

energy after release
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[ ~nalytical solution
Implicit LM
Explicit LM

B Implicit penalty

B Explicit penalty
Exp-Exp Schwarz

. Imp-Imp Schwarz

. Imp-Exp Schwarz
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Total energy conservation
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 Lagrange Multiplier methods: important energy loss up to 7% (explicit) and 10% (implicit)
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Total energy conservation
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 Lagrange Multiplier methods: important energy loss up to 7% (explicit) and 10% (implicit)

« Penalty methods: important energy loss up to 8% (implicit) and 9% (implicit)
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Total energy conservation
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 Lagrange Multiplier methods: important energy loss up to 7% (explicit) and 10% (implicit)
« Penalty methods: important energy loss up to 8% (implicit) and 9% (implicit)

« Schwarz methods: remarkable energy conservation properties — energy loss less than 0.3%
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Contact point velocity
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Contact point velocity L
ol 50 \
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30 r
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Lagrange Multiplier methods: artificial oscillations
during the contact phase and after the release
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Contact point velocity L
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[ ~nalytical solution
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Explicit LM
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B Explicit penalty
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« Lagrange Multiplier methods: artificial oscillations
during the contact phase and after the release

 Penalty methods: artificial oscillations during the
contact phase and after the release

The Dirichlet-Neumann Schwarz alternating method for contact problems in elastodynamics .,




Contact point velocity
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Lagrange Multiplier methods: artificial oscillations
during the contact phase and after the release
Penalty methods: artificial oscillations during the
contact phase and after the release

Schwarz methods: artificial oscillations during the
contact phase and after the release
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Techniques for reducing artificial oscillations N\
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Techniques for reducing artificial oscillations \

Contact point velocity

Contact point velocity
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Contact point velocity
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[ ~nalytical solution
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Explicit LM
B Implicit penalty
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Exp-Exp Schwarz

. Imp-Imp Schwarz
. Imp-Exp Schwarz

Contact enforcement methods: contact laws in terms of the velocity [M. Jean (1999) | /..
Moreau. (1999)] or position [L. Paoli at al. (2001, 2002)]

Mass redistribution methods: reconstruct the mass matrix with zero mass assigned to
nodes on the contact boundaries, keep unchanged the invariants of original mass matrix
[H. Khenous at al. (2008) | C. Hager et al. (2008)]

Time integrators introducing numerical dissipation: modified variants of the Newmark-
beta scheme [A. Chaudhary et al. (1986) | J. Chung et al. (1994) | B. Tchamwa et al. (1999) | T. C. Fung
et al. (2003)]

Stabilization methods: make the inertia on the contact boundary vanish [C. Kane et al. (1999)
| P. Deuflhard et al. (2008) | D. Doyen et al. (2009)]
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Techniques for reducing artificial oscillations
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Significant reduction of artificial oscillations

Global relative error smaller compared to the conventional

methods
Original Schwarz method's accuracy and energy
conservation properties preserved
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3D benchmark

Schwarz contact method
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3D benchmark

Contact boundaries I't and I'?

S e A T S i

Elements type Mesh size Number of nodes Time step Average number of
. : . : . : . . Schwarz iterations
1L il 1L i 1L i 1L L
. Imp-Imp Schwarz HEX8 HEX8 Liz-1o01 189 L-1p—" 7

GRS S5 S R

I s

— -2e-5

-de-5
-be-5
-8e-5
-1.0e-04

iy . ) .
Displacement field in x
Contact point position, P € Q! Contact point velocity, P € 0! Potential energy, 2! Relative total energy error, %
or I I 1ox1¢ F s.0x107% | | or I -
—2.50%10° 7 | 4.0x107° 5001077 F
ol
3.0x107 L00x1072
—5.00x107°
2.0%107"° b
-1.0x10° 1.50x107% |
~7.50%10°° | "
10107 |
2.00x107% |
~Loox10 || i . i “2oac [ . ) i , °r . | . i ) . i . i .
-1.0%x107% 0 1.0%10°° 2.0x10°% 3.0%10°% -1.0x107% 1Lox107® 2.0%107° 3.0x10°° ~1.0%x107% 0 Lox16® 2.0x10°° 3.0x10°° ~1.0%x107° o 1.0%10°° 2.0%107% 3.0%107%
Time Time Time Time
‘ Daria Koliesnikova The Dirichlet-Neumann Schwarz alternating method for contact problems in elastodynamics ;¢
=




3D benchmark

Contact boundaries I't and I'?

.Analytical solution

AN

Elements type Mesh size Number of nodes Time step Average number of \
| p | p . p | p Schwarz iterations
1L il 1L 1t 1L 1t 1L 1L
. Imp-Imp Schwarz HEX8 HEX8 Liz-1o01 189 L-ip—"
. Exp-Exp Schwarz TETRA4 TETRA4 i1t 199 L-10—"

; N\

Contact point velocity, P € 0!

1.0x10°

-1.0x10° |

—2.0x10° |

a
Contact point position, P € Q!

or '-l-z R AT -

-2.50%10°° |

—5.00x107° |

—1.50x10°° F

~roox107 | i \ i
-1.0%x107% 0 1.0%10°° 2.0x10°%

Time

‘ Daria Koliesnikova

s T S T PN F N P S N
e O e P e

Displacement field in x

3.0%10°% -1.0x107%

Potential energy, 0!

The Dirichlet-Neumann Schwarz alternating method for contact problems in elastodynamics
=

501077 |
4.0%107° | 5.00x1077 F
3.0x107° b 2
‘ (1.00=10°
|‘ VWA =
AL L 1502077
[ |
u 1ox107" |
2.00x107% |
0 3
. A ; . :
3.0x10°° ~1.0%x107% 0 Lox16® 2.0x10°° 3.0x10°°
Time

A e A e s A e

Relative total energy error, %

LMWM.’M%WM&'—

o 1.0%10°° 2.0%107% 3.0%107%

Time

15




AN

. Analytical solution
3 D b e n c h l I l a r k Elements type Mesh size Number of nodes Time step Average number of \
Schwarz iterations
ot 0 0! 02 0! 2 0! 02
Contact boundaries I'* and I'? N
. Imp-Imp Schwarz HEX8 HEXS8 1/2 1074 189 1.10_3 7
B coepschwarz | TETRA4 | TETRA4 1/2.107 199 1.10° 6 \
LP 1.0e-04
Imp-Exp Schwarz HEX8 TETRA4 1/2 , 10-4 189 199 1/2 . 10-8 1. 10-9 6 865
6e-5
: 4e-5
1
1
e e o e o S e AR 2e-5
: D€ SE IS A > .
1
: — -2e-5
1
: -de-5
X 665
o . ) .
! Displacement field in x 8ot
1.0e-04
Contar:t point posntmn P € N' Contact point velocity, P € 0! Potential energy, 2! Relative total energy error, %
or e~ Lox1¢° s.0x107° | : or M
R — iy ‘ J 4.0%107° 5.00%1077 | LﬂM%MM.Mﬂ%
; 1.|:= i |'|| Al H |
| L it ‘ . :
| WH Iy 1“ | [l | 3.0x10° 7 F 1.00x107° |
—5.00x107° | | ‘ |
| | 2.0%107° !
—10x10° [ |l|. li h l”r, , 1.50x1072
—7.50x10°° ‘ | | |' ‘ 1ox107° F
J 2.00x107% |
A e,
s ! -2.0x10° | ot !
=1.00=10 C | L { L i N 1 N L L ] L L { L { L
-1.0%x107% 0 1.0%10°° 2.0x10°% 3.0%10°% -1.0x107% 0 1Lox107® 2.0%107° 3.0x10°° ~1.0%x107% 0 Lox16® 2.0x10°° 3.0x10°° ~1.0%x107° o 1.0%10°° 2.0%107% 3.0%107%
Time Time Time Time
‘ Daria Koliesnikova The Dirichlet-Neumann Schwarz alternating method for contact problems in elastodynamics ;¢
=




3D benchmark
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Summary and perspectives




Summary

« Schwarz contact method: a promising alternative to conventional contact methods
o Accurate predictions of quantities of interest
o Remarkable energy conservation
o Different integrators, times steps, mesh resolutions and mesh types !

pS SIMMULIA

ABAQUS Sandia Mechanics Challenge
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Summary

« Schwarz contact method: a promising alternative to conventional contact methods
o Accurate predictions of quantities of interest
o Remarkable energy conservation
o Different integrators, times steps, mesh resolutions and mesh types !

Ongoing/future work

 Julia prototype for multidimensional Schwarz methods: hitps./github.com/Ixmota/norma
o Schwarz-based contact method
o Schwarz-based coupling/multiphysics algorithm (overlapping and non-overlapping approaches)

« Adding friction, rolling, sliding conditions, ...
* Implementation in the Sandia's production codes (Sierra/SM, Albany)

¥ 3% SIMMULIA

ABAQUS Sandia Mechanics Challenge
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https://github.com/lxmota/norma
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