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Computing Status Report

© More powerful supercomputers are inevitable, but is our
sooscientific usage of this technology keeping up?
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Number qf Particles (N)

What is possible for MD at the Exascale?

012

Memory
Restriction
S

Standard
Parallel MD

MD cost
~ O(Nt)

S
Simuéted Time (t)
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Lets consider a 24hr allocation on a leadership
platform
How to best spend this computational budget on
MD?

Memory/node ~ particles/processor + neighbor
lists

Thfie'SRBINY Stwslers ﬁ%Yﬂrﬁe‘{’W&‘ﬁ'B‘én%hth
lepiy e lage @%}ﬁounts over long time

sampling
How does this affect the research done on these
platforms?
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4+ I The Master Plot

Number of Particles (N)
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(Hardware Dependent)

Standard
Parallel MD

Accuracy (?)
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*  How does this affect the research done on
these platforms?
Shock * Assume your problem has some specified
Physics; length-scale dependence : N~L«

Diffusive process® Assume the associated time-scale goes as t~L
Ain 3-D; N~t372

Soft Matter Dynamics
~ (polymers); N~t<3/2
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- But what if you care about a system
governed by rare event dynamics?

Simulated Time (t)



s 1 What is LAMMPS?

» Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov

* Open source, highly portable C++, free under GPL license 7

*  Well documented with many examples, easily extendable for user specific

- Variety of boundary conditions, constraints, ensemble sampling methods

- Parallelism through spatial decomposition of simulation domain

- Short and long ranged interactions allowed/included

* CPU cost is @b afg,fommunication is (N/P)?73
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http://lammps.sandia.gov

o I Parallel in Space, Time

* Atoms/particles in space can be distributed
across processors
* Need to track particles in nearby domains,
reconstruct neighbor lists as particles move
« for all time;
Compute forces, update atom positions

The goal is to generate
statistically correct state-to-
state trajectories
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[Le Bris, Lelievre, Luskin, and Perez, MCMA 18, 119
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7 I MD Approximations Change Over Time

Twobody (B.C.) Manybody (1980s) Advanced (90s- Big Data / Deep /
Lennard-Jones, Hard Stillinger-Weber, 2000s) Machine Learning
Sphere, Coulomb, Tersoff, Embedded REBO, BOP, COMB, (2010s)
~Bonded Atom Method ReaxFF GAP, SNAP, NN, ...
D Plilmpton and Tholmpson,l ! ' ! https://github.com/materialsvirtuallab/mlearn
10 ~E MRS Bulletin (2012). ° 3 20+
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https://github.com/materialsvirtuallab/mlearn

s I Interatomic Potentials as Multi-Scaling

Time |

* |AP can be useful without
being physically motivated |

m

S * Preserving accuracy ]
through scales while

us Monte Carlo, becoming computationally

s.Field efficient

NS +  Need to be cautious of what
is promised with machine
learning, most of MD will be |

PS Electronic Structure extrapolation |

Length ‘
pm nm um mm

| Electronic Atomic Meso Continuum



9 I Machine Learning to Bridge Electronic-Atomic

Classical, Empirical Potentials

* Metals
o EAM: Assume spherical electron density

E; = Fo(Xj2ipp(7ij)) + 32 ji Bap(rij)

* Inorganic
o Stillinger-Weber: Assume 2,3-body
harmonic springs

* Organic
o0 ReaxFF: Assume covalent bonding,
smooth bond-orders between all
interacting atoms

Machine Learned Potentials

* Metals, Inorganic, Organic, etc.

o Assume energy and forces are
some function of local atomic ‘
neighborhood descriptors

Needs reference data to be properly

trained to get the ‘right’ energies and

forces




https://github.com/FitSNAP/FitSNAP
http://lammps.sandia.gov

10 I Components of ML-MD

« Accuracy,
ansferability

Training
Set |

* Representation,

Sampling,

H|¥) = E|¥) YW Complexity—.

= .

' rIx ’-: ‘

* Python backend v - ’“u}
. | \ \\\\/f

Bring your own model

Simulation
Engine

 Performance Portable


https://github.com/FitSNAP/FitSNAP

) Unified Framework for MLIAP

* Provide a common API for many methods
Descriptor generates local fingerprint for each atom
Model computes energy as function of descriptors

Data handles LAMMPS interface and intermediate quantities
e.g. gradients

* Descriptor and Model insulated from LAMMPS and each other

« Allows mix-and-matching of Models and Descriptors

pair_MLIAP

Inputs  Outputs
Atoms  Energy
Elements Force

Neighbors Stress

Descriptors



12 I Accelerating Model Development

github.com/fitsnapr‘
Modular Code Structure

 Three main classes : Scrape, Calculate,
Solve

« Scraper : Collects ground truth values from
files on disk — (stores in dataframe)

« Calculator : Converts atomic structures
into set of descriptors — (stores in
dataframe)

« Solver : Performs regression
commensurate with model form

» Adding functionality does not disrupt code
flow because of object oriented structure

o (lacecpne anAd itamce tharanf ~ran hea ~allad

Model force (eV/A)

|
B

A. Rohskopf (2023), Journal of Open
Source Software

Scraper Calculator

MPI
Parallel
Solver
Error Analysis B-B'+ (BY) B = ")
* Validation N\
2] — |deal
01 . E

|
N

Deployed Model

|
o

6 -4 -2 0 2 4 6
Target force (eV/A)

Quick Install :
conda install -c conda-forge lammps

I i Em B



13

LAMMPS Breakdown Spatial

arxiv.org/abs/2208.01756

Calculator — Descriptor Sets

Complete, generalizable single-bond
basis

Charge
transfer
gwk?fi"a;}}rf?)l(ga};}

,i,imm = Rn(ruj}r?l(ﬁj]

J. Goff (2022), E
o (Calculator class calls LAMMPS to convert i
I

atomic coordinates into descriptors. o @ @ |
. o . @ Magnetism
* Thread parallel implementation via Mpi4Py Chemical T (M)Y]~(M,)
and LAMMPS python library interface. (bonds) @
% Behler-Parrinello (2,3) PIPs (n*) TI (.[‘!'Ij) @ ““““
ACE (M) projection PGB 133 Pomanane” a0 @)
MTP (n*) e invariant MBTR (2.3)
@SNAP (4t)1 ST polynomials distance _
0 limit /' shap functions histograms \Wasser_stem .
. metric Form a complete N-bond basis
/blur \J%rmutatm;'ls ted p
smooth density average sore PIV (2)
. 333{’2,(3,)4) correlation e .mﬁnnq:'St%ncegofe%BéfA) @) N=1 N=z N=b
( S‘éepférFN'iTnS“) @” @ -9
rt 1
2isgseonv?':llues ®
ODE (n) ' i i i
il | Impose Invariance w.r.t. rotations and
local field RN ) Y permutations ®
symmetry R X \ ’ j@ k : @}
h I i e o - [ ] ! - -
?;m'?.’i%:‘f‘;:t _— @__@ ) - @.—GDJ_ @
T oot ahachals | | | .- —
n: n-body Cartesian i [

n*: complete n-body linear basis coordinates Musil et. al. Chem. Rev. (2021) 121,



14 | Descriptor Improvements and Scalability

! 0 —
Flexible Model Form 107 N - nesr suap o
N uadratic —o—
* Energy (and forces) can be expressed as higher E '
moments of the bispectrum (B},) ;rg_ 10!
Q
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15 I Exascale Ready Models Simulation
. Engine

Breakdown of timing: fEpTn

SNAP Performance

 ML-IAP cost will be dictated by the
descriptors of the local atom environment

 Gordon Bell Finalist team from USF,
Sandia, NERSC, NVIDIA, KTH :
doi.org/10.1145/3458817.3487400
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https://doi.org/10.1145/3458817.3487400

SUPERCRITICAL FLUID FREE EXPANSION LIQUID DROPLETS

e
. Simulation _
16 I Some Good Publicity Engine E

LARGE-SCALE
ATOMISTIC
SIMULATIONS
INVESTIGATE
EXPANSION OF
MOLTEN METAL

sandia.gov/news/publicatio
ns/hpc-annual-reports/




Training

17 I Trained to What? Set

H[¥y=E%)

Training Set Construction

* Generated by running ab initio MD at various
densities and temperatures

 How should we efficiently plan this expensive i
step?

t-SNE Projection:

@) liquid_bulk_1.2gcc
liquid_bulk_1.5gcc

) liquid_bulk_1.8gcc
liquid_bulk_2.1gcc s

@) liquid_bulk_2.4gcc L
liqguid_bulk_2.699gcc

@ liquid_bulk_3.0gcc

liguid vapor slab 1'5 20 2-5 30
i o (g/cm3)

T (kK)
— N W = Ot & J o




18 I Trained to What?

Optimization

» Evaluated by ~30k atom simulations to map
out the liquid-vapor coexistence region

« T.and p, were fit using universal Ising critical

exponent B = 0.326 and law of rectilinear
diameter
t-SNE Projection:
N
e
—<
S—
&~
% @ liquid_bulk 1.2gcc
grems liquid_bulk_1.5gcc
) liquid_bulk_1.8gcc
liquid_bulk_2.1gcc

€ liquid_bulk_2.4gcc
liqguid_bulk_2.699gcc
@ liquid_bulk_3.0gcc
liquid_vapor_slab
nve
solid_bulk

= N W &~ Ot O J o

0P Vo aP

Training

933K EReEY. Set
DFT / MD “DF

H[¥y=E%)

! t

1.‘5 2.0 2.5 3.0
p (g/cm?)
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Computational / Physical Setup

NNSA’'s ATS-2 Sierra Supercomputer

4320 nodes, 4 V100-16GB GPUs per
node, IBM Power 9 CPUs

<+——— rgrefaction expansion, cooling =

When the supercritical fluid expands, the
temperature drops below the critical temperature, "
and the fluid rapidly phase-separates into liquid

droplets apd vapor bubbles
SC Liquid

Fa00

Jooa

plg/fecc)



Computational / Physical Setup

20

Visualization

» Highly optimized for particle simulations, has
direct support for LAMMPS output formats

* Produces high quality visualizations with ray
tracing, ambient occlusion, etc.

* Highly scriptable with Python and useful for
data post-processing and analysis in general
(in addition to rendering images)

Visual size of an atom is scaled by local density

Green : Above T, Blue : Below T_ |




21 ‘ Aluminum Vapor Dome

Exascale ML-MD

* 1.5B atoms, 8192GPUs (~47% of Sierra)
« Tog=9000K, pg =1.5 gi"cmg 1.8um, 0.56ns
captured

0.6 0.8 1 1.2 1.4

expansion, cooling —— Temperature




Model Form Selection

22

Right Answer, Right Reasons

* Looking at predicted vapor dome, some

noticeable shortcomings 3 —e— Experimental
 EAM, Experiment is taken from Povarnitsyn —o— EAM
et. al. PRB (2015) . —®— SNAP_linear
—— Allegro
* Underpredicting
critical 6
temperature

* Overpredicting

» Descriptorisas
~0.5nm

Temperature, T [kK]
on

0.0 0.5 1.0 1.5 2.0 2.5
plg/cm?3]




23 I Descriptor Extrapolation

« Remember, this is what the model sees.
Not temperature or density

o

« Extrapolations should be defined by the
descriptors, allows for MD to be compared to
DFT

» Post-processing or real-time analysis of
MD trajectory is possible to quantify
extrapolations

80 A

60

40

20 A

—20 -

_40 -

_60 -




Contact Information: mitwood@sandia.gov

24 I Conclusions and Path Forward
Links:

github.com/FitSNAP/FitSNAP

qgithub.com/lammps/lammps

github.com/materialsvirtuallab/mlearn

« Data-driven interatomic
potentials allow for MD
predictions of challenging
problems.

Number of Particles (N)

*  While harder to quantify,

References:
J. Goff (2022) arXiv:2208.01756 |
Nguyen-Cong, K. Proc. International Confere
for High Performance Computing (2021). ¥
sandia.gov/news/publications/hpc-annual-reports

the fidelity of our MD
simulations needs to be a
key consideration at the

Standard
Parallel MD

EXAALT

Exascale 4 Simulated Time (t)
ccuracy
_ = A s N
— \([_\) [ - LosAlamos National <
— NATIONAL LABORATORY labﬂratﬂries nVIDIA®

EXASCALE COMPUTING PROJECT EST.1943

\T-x’a U.S. DEPARTMENT OF O-ﬁ-’lce Of %OAK RIDGE 'L‘
/4 ENERGY Science - National Laboratory
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Plimpton, Normand Modine,
Dionysios Sema, Svetoslav
Nikolov, Charlie Sievers,

nny Perez, James Goff, and
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Uses of ParSplice/EXAALT
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Shape evolution of metallic nanoparticles (w. Rao Huang, Art Voter). ~1000
cores, ~100 atoms, ms [JCP 147, 152717 (2017). JMR (in press)]
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27 | Model Form Selection

N ;
3 Egm . Ezef
: Descriptor
1 f
’ Fia = Fia -
Coefficient
qgm ref
0 Waﬁ,s Waﬁ,s
Atom coordinates Descriptors
(neighbors of i) for atom i
gfal energy Atomic force
- t J - E)r} BDL
i i
Y
computes autodiff

E.g. compute snap dgradflag 1

Simple 2,3-body... f
Descriptor: |

Hidden layers

Atom type |
encoding




Sandia

OVITO Parallelism Workaround ) i

LAMMPS reshuffles atom data between ranks so each rank has a “slice” of
the simulation data in the x-direction

Each rank outputs to a separate file (e.g. 8192 files total)
MPI driver program launches separate instances of OVITO on many nodes

Each OVITO instance loads atom data from “owned” slices, along with
neighboring slice data to create a buffer zone to reduce visual edge

artifacts :




i) Resona

OVITO Parallelism Workaround (cont.)

= QVITO renders an image of the slice, including buffer zone, thenthe
buffer region is cropped off

=  Another MPI driver program stiches all the small slice images
together in parallel to crleate a single large composite image
|




OVITO Parallelism Workaround (cont.) i) s

Advantages:

= Highly scalable: large images are rendered in an (almost)
embarrassingly parallel manner

= Can render more than 2 billion atoms
Disadvantages:

= Minor artifacts in lighting/shadows, but overall produces nice,
usable images in parallel

= Can only visualize a single face straight on (so everything lines up),
no 3D perspective views

= Would like to also try Paraview in the future (less domain specific,
but MPI-enabled so requires less workarounds)

30




Al Linear reduced May 16 — Force and Energy errors on new low

density configurations

31

The May 16t potential performs
poorly when extrapolating the

especially on energies at higher
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‘ Examples of Petascale Achievement

Limits of material

Phases of granular systeﬁ\g_ s ’. _ |
Glotzer, Sharon C., and Michael J. 'g -
Solomon. "Anisotropy of building i FCC 5
blocks and their assembly into o g
complex structures." Nature c CRYSTALS BCC £
, i _ [b] .. | i e
materials 6.8 (2007): 557-562. Q 10 PLASTIC Aa
g . CRYSTALS| & | |
= ravais 2 WA A AAAAN A
3 = ® | attice 4
: H S LiQuiD NofBravais- @ v 100 K
H production in = ° ot 1 o
£ |CRYSTALS N \ T TR
Water/Al 5 ’ < -
o) L B Discotic
8 Nematic == Smectic 1 ,000 K
r7 K P4 Glass'
0.2 0.4 0.6 0.8 1.0 0.0 05 1.0 15
5 3 v True strain, -log(L/L
Isoperimetric Quotient L A Zepeda-Ruiz et al. Nature 550, 492—495 (2017)

doi:10.1038/nature23472
Shock Response of coarse grained explosives

Grain Interfaces
I'I..cl.—ﬁ mm*:t Igmnmmmﬁn ,‘ﬂll

= 2 A A
K. Shimamura et al., “Hydrogen-on-Demand Using Metallic Alloy Mattox, Timothy I., et al. "Highly scalable discrete-particle simulations with novel coarse-graining:
Nanoparticles in Water,” Nano Letters, vol. 14, no. 7,2014, pp. accessing the microscale." Molecular Physics 116.15-16 (2018): 2061-2069.
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