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Computing Status Report2

More powerful supercomputers are inevitable, but is our 
scientific usage of this technology keeping up?



What is possible for MD at the Exascale?3

• Lets consider a 24hr allocation on a leadership 
platform
How to best spend this computational budget on 
MD?

• Memory/node ~ particles/processor + neighbor 
lists

• Time stepping overhead from network bandwidth 
+ MD comm pattern.
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• The ‘feasibility envelope’ favors problems that 

require large atom counts over long time 
sampling
How does this affect the research done on these 
platforms?

Standard 
Parallel MD

Newton’s 
Equations:



The Master Plot4

• How does this affect the research done on 
these platforms?

• Assume your problem has some specified 
length-scale dependence : N~Lᵯ�  

• Assume the associated time-scale goes as t~Lᵯ�
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(Hardware Dependent)

• But what if you care about a system 
governed by rare event dynamics?Standard 

Parallel MD

Accuracy (?)

Soft Matter Dynamics 
(polymers); N~t<3/2

Diffusive process 
in 3-D; N~t3/2

Shock 
Physics; 
N~t3



What is LAMMPS?5

• Large-scale Atomic/Molecular Massively Parallel Simulator  
http://lammps.sandia.gov 

• Open source, highly portable C++, free under GPL license
• Well documented with many examples, easily extendable for user specific needs
• Variety of boundary conditions, constraints, ensemble sampling methods etc.
• Parallelism through spatial decomposition of simulation domain
• Short and long ranged interactions allowed/included
• CPU cost is (N/P) and communication is (N/P)2/3

Atoms-to-Continuum

Blood Flow

Dislocations in Materials

Proteins and Biophysics

http://lammps.sandia.gov


Parallel in Space, Time6

• Atoms/particles in space can be distributed 
across processors

• Need to track particles in nearby domains, 
reconstruct neighbor lists as particles move

• for all time;
Compute forces, update atom positions

• The goal is to generate 
statistically correct state-to-
state trajectories

[Le Bris, Lelievre, Luskin, and Perez, MCMA 18, 119 
(2012)] 



Resources are limited, which is your best choice?

Computational Cost
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Qualitative Properties

Near QM Accuracy

Twobody (B.C.)
Lennard-Jones, Hard 
Sphere, Coulomb, 
Bonded

Manybody (1980s)
Stillinger-Weber, 
Tersoff, Embedded 
Atom Method

Advanced (90s-
2000s)
REBO, BOP, COMB, 
ReaxFF

Big Data / Deep / 
Machine Learning 
(2010s)
GAP, SNAP, NN,…

Plimpton and Thompson, 
MRS Bulletin (2012).

MD Approximations Change Over Time7 http://lammps.sandia.gov
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733 
descriptors

ACE

https://github.com/materialsvirtuallab/mlearn

https://github.com/materialsvirtuallab/mlearn


Solid Mechanics,
 Hydrodynamics

Kinetic Monte Carlo, 
Phase Field

Interatomic Potentials as Multi-Scaling8

• IAP can be useful without 
being physically motivated

• Preserving accuracy 
through scales while 
becoming computationally 
efficient

• Need to be cautious of what 
is promised with machine 
learning, most of MD will be 
extrapolation
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Electronic   Atomic  Meso Continuum

Atomistic Molecular Dynamics

Electronic Structure



Classical, Empirical Potentials

9

Machine Learned Potentials

Machine Learning to Bridge Electronic-Atomic

• Metals, Inorganic, Organic, etc.
o Assume energy and forces are 

some function of local atomic 
neighborhood descriptors

• Needs reference data to be properly 
trained to get the ‘right’ energies and 
forces



Components of ML-MD10
https://github.com/FitSNAP/FitSNAP 

http://lammps.sandia.gov

• Python backend 
= 

Bring your own model

• Accuracy, 
Transferability

• Representation, 
Sampling, 
Complexity…

• Performance Portable 
Kernels

https://github.com/FitSNAP/FitSNAP
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Inputs
Atoms
Elements
Neighbors

Outputs
Energy 
Force
Stress

pair_MLIAP

Descriptors Data Model

Unified Framework for MLIAP

• Provide a common API for many methods
Descriptor generates local fingerprint for each atom
Model computes energy as function of descriptors 
Data handles LAMMPS interface and intermediate quantities 
e.g. gradients

• Descriptor and Model insulated from LAMMPS and each other 

• Allows mix-and-matching of Models and Descriptors



12 Accelerating Model Development

github.com/fitsnap/

• Three main classes : Scrape, Calculate, 
Solve

• Scraper : Collects ground truth values from 
files on disk → (stores in dataframe)

• Calculator : Converts atomic structures 
into set of descriptors → (stores in 
dataframe)

• Solver : Performs regression 
commensurate with model form

• Adding functionality does not disrupt code 
flow because of object oriented structure 

• Classes, and items thereof, can be called 
from outside codes utilizing FitSNAP as a 
library

Modular Code Structure

A. Rohskopf (2023), Journal of Open 
Source Software

Quick Install : 
      conda install -c conda-forge lammps 
fitsnap3



13 Calculator – Descriptor Sets

• Calculator class calls LAMMPS to convert 
atomic coordinates into descriptors.

• Thread parallel implementation via Mpi4Py 
and LAMMPS python library interface.

LAMMPS Breakdown

Musil et. al. Chem. Rev. (2021) 121, 
9759−9815 

Spatial

Chemical 
(bonds)

Charge 
(transfer)

Magnetism

Complete, generalizable single-bond 
basis

Form a complete N-bond basis

Impose invariance w.r.t. rotations and 
permutations

J. Goff (2022), 
arxiv.org/abs/2208.01756



14 Descriptor Improvements and Scalability

Accuracy-Cost Tradeoff

Flexible Model Form

4 P100
16 P100
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Nodes

Breakdown of timing:

• ML-IAP cost will be dictated by the 
descriptors of the local atom environment

• Gordon Bell Finalist team from USF, 
Sandia, NERSC, NVIDIA, KTH : 
doi.org/10.1145/3458817.3487400

SNAP Performance

Exascale Ready Models

←Fixed Problem Size

Variable Problem Size→

https://doi.org/10.1145/3458817.3487400


Some Good Publicity16

sandia.gov/news/publicatio
ns/hpc-annual-reports/

Google → Sandia HPC Annual Report

Where continuum 

theory breaks down, 

MD to the rescue!



17 Trained to What?

• Generated by running ab initio MD at various 
densities and temperatures

• How should we efficiently plan this expensive 
step?

Training Set Construction

t-SNE Projection:



18 Trained to What?

• Evaluated by ~30k atom simulations to map 
out the liquid-vapor coexistence region

• Tc and ᵰ� c were fit using universal Ising critical 
exponent β ≈ 0.326 and law of rectilinear 
diameter

Optimization

t-SNE Projection:

DFT / MD DFT / MD

933K 3000K
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expansion, coolingrarefaction 

• When the supercritical fluid expands, the 
temperature drops below the critical temperature, 
and the fluid rapidly phase-separates into liquid 
droplets and vapor bubbles

Vapor Liquid

SC Liquid

Computational / Physical Setup

• NNSA’s ATS-2 Sierra Supercomputer
• 4320 nodes, 4 V100-16GB GPUs per 

node, IBM Power 9 CPUs
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• Highly optimized for particle simulations, has 
direct support for LAMMPS output formats

• Produces high quality visualizations with ray 
tracing, ambient occlusion, etc.

• Highly scriptable with Python and useful for 
data post-processing and analysis in general 
(in addition to rendering images)

Visualization

Green : Above Tc Blue : Below Tc

Visual size of an atom is scaled by local density

Computational / Physical Setup



Aluminum Vapor Dome21

expansion, coolingrarefaction

• 1.5B atoms, 8192GPUs (~47% of Sierra)
• ,  1.8um, 0.56ns

captured

Exascale ML-MD



22 Model Form Selection

• Looking at predicted vapor dome, some 
noticeable shortcomings

• EAM, Experiment is taken from Povarnitsyn 
et. al. PRB (2015)

Right Answer, Right Reasons

• Underpredicting 
critical 
temperature

• Overpredicting 
vapor density• Descriptor is a short ranged interaction, 

~0.5nm



23 Descriptor Extrapolation

• Remember, this is what the model sees. 
Not temperature or density 

High Temperature Structures

Low Temperature Structures• Extrapolations should be defined by the 
descriptors, allows for MD to be compared to 
DFT

• Post-processing or real-time analysis of 
MD trajectory is possible to quantify 
extrapolations



Conclusions and Path Forward24

• Data-driven interatomic 
potentials allow for MD 
predictions of challenging 
problems.

• While harder to quantify, 
the fidelity of our MD 
simulations needs to be a 
key consideration at the 
Exascale • Thank you to all my 

collaborators: 
Aidan Thompson, Stan Moore, 
Ember Sikorski, Steve 
Plimpton, Normand Modine, 
Dionysios Sema, Svetoslav 
Nikolov, Charlie Sievers, 
Danny Perez, James Goff, and 
many others!

github.com/FitSNAP/FitSNAP
github.com/lammps/lammps
github.com/materialsvirtuallab/mlearn

Links:

J. Goff (2022) arXiv:2208.01756

Contact Information: mitwood@sandia.gov
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Descriptor

CoefficientComplex D
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Simple 2,3-body 
Descriptor:

Long Range
2-body

Short Range
many-body

Atom type 
encoding

Sim
ple Descr

iptor,

Complex M
odel Form

Model Form Selection



OVITO Parallelism Workaround

28

§ LAMMPS reshuffles atom data between ranks so each rank has a “slice” of 
the simulation data in the x-direction

§ Each rank outputs to a separate file (e.g. 8192 files total)
§ MPI driver program launches separate instances of OVITO on many nodes
§ Each OVITO instance loads atom data from “owned” slices, along with 

neighboring slice data to create a buffer zone to reduce visual edge 
artifacts



OVITO Parallelism Workaround (cont.)

29

§ OVITO renders an image of the slice, including buffer zone, thenthe 
buffer region is cropped off

§ Another MPI driver program stiches all the small slice images 
together in parallel to create a single large composite image



OVITO Parallelism Workaround (cont.)

30

Advantages:
§ Highly scalable: large images are rendered in an (almost) 

embarrassingly parallel manner
§ Can render more than 2 billion atoms
Disadvantages:
§ Minor artifacts in lighting/shadows, but overall produces nice, 

usable images in parallel
§ Can only visualize a single face straight on (so everything lines up), 

no 3D perspective views

§ Would like to also try Paraview in the future (less domain specific, 
but MPI-enabled so requires less workarounds)



Al Linear reduced May 16 – Force and Energy errors on new low 
density configurations31

Included in May 16th 
training set

The May 16th potential performs 
poorly when extrapolating the 
<1 gcc configurations, 
especially on energies at higher 
temperatures.
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