

Sandia
National
Laboratories

Exascale Ready Molecular Dynamics Simulations With LAMMPS; Application to Fluid Instabilities at Liquid-Vapor Coexistence

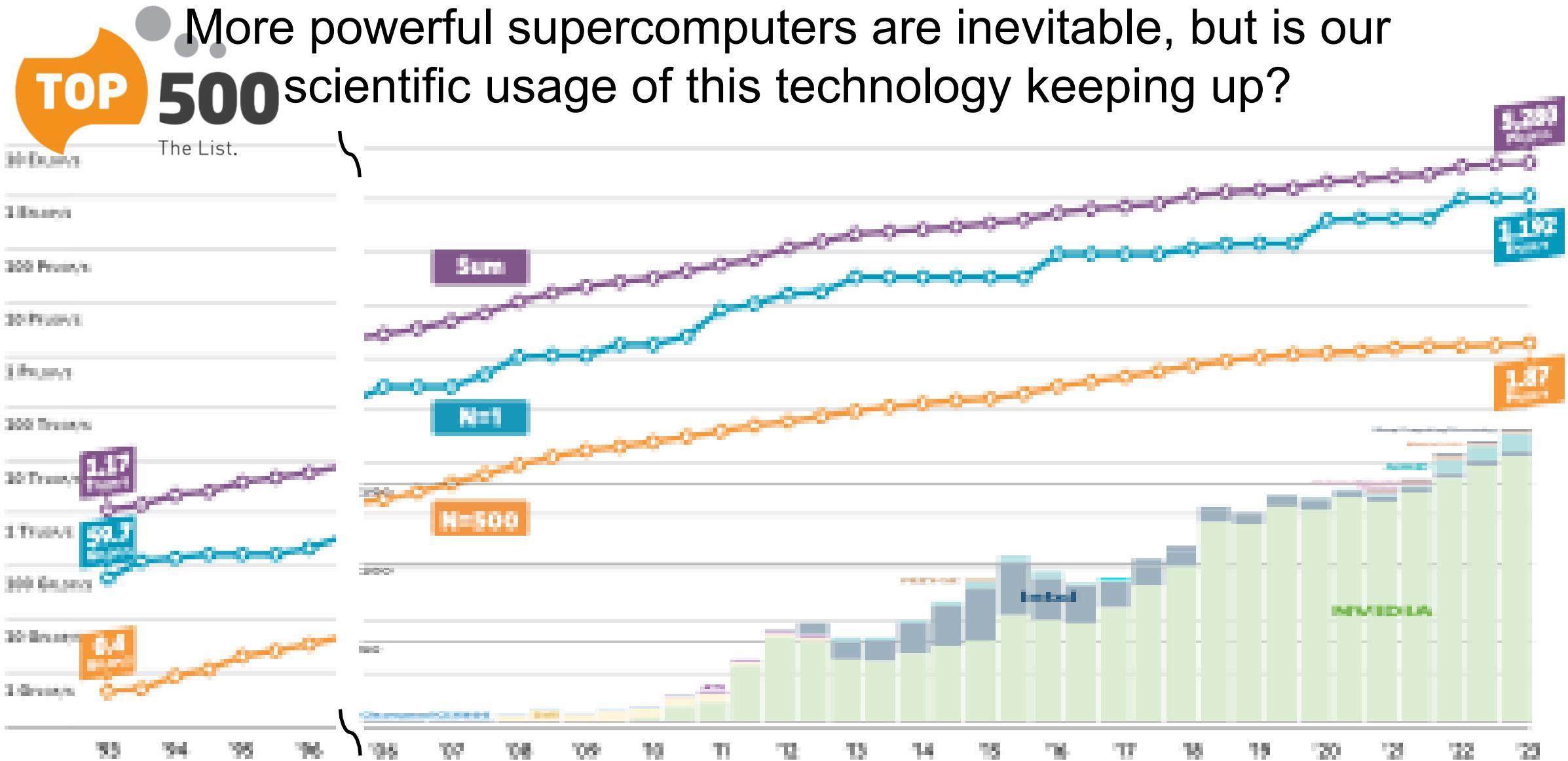
Mitchell Wood

Center for Computing Research, Sandia National Labs

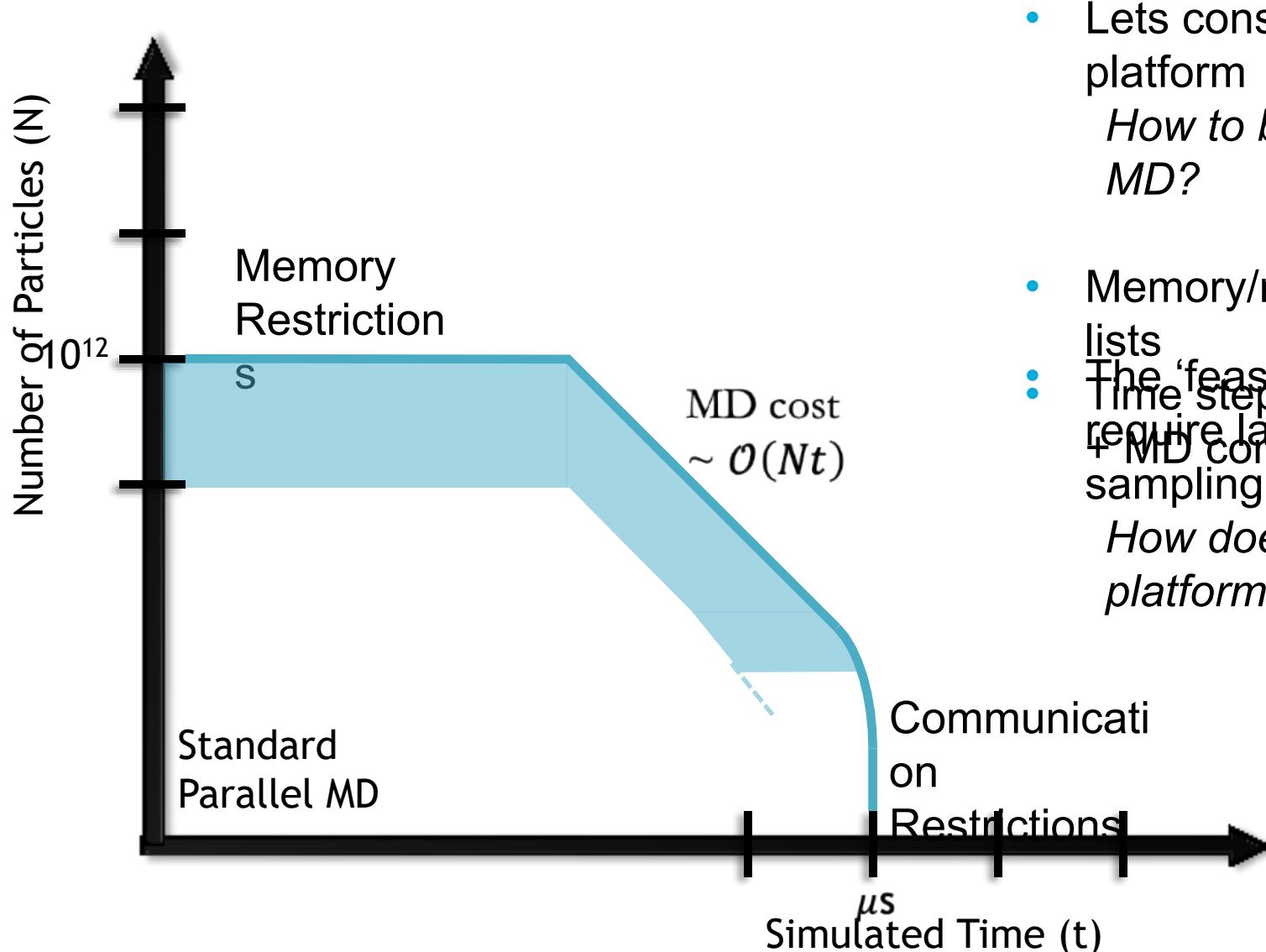
DSFD 2023 Meeting

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. U.S. DEPARTMENT OF ENERGY NNSA

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.



What is possible for MD at the Exascale?



- Lets consider a 24hr allocation on a leadership platform
How to best spend this computational budget on MD?
- Memory/node \sim particles/processor + neighbor lists
- The ‘feasibility envelope’ favors problems that require large atom counts over long time sampling
How does this affect the research done on these platforms?

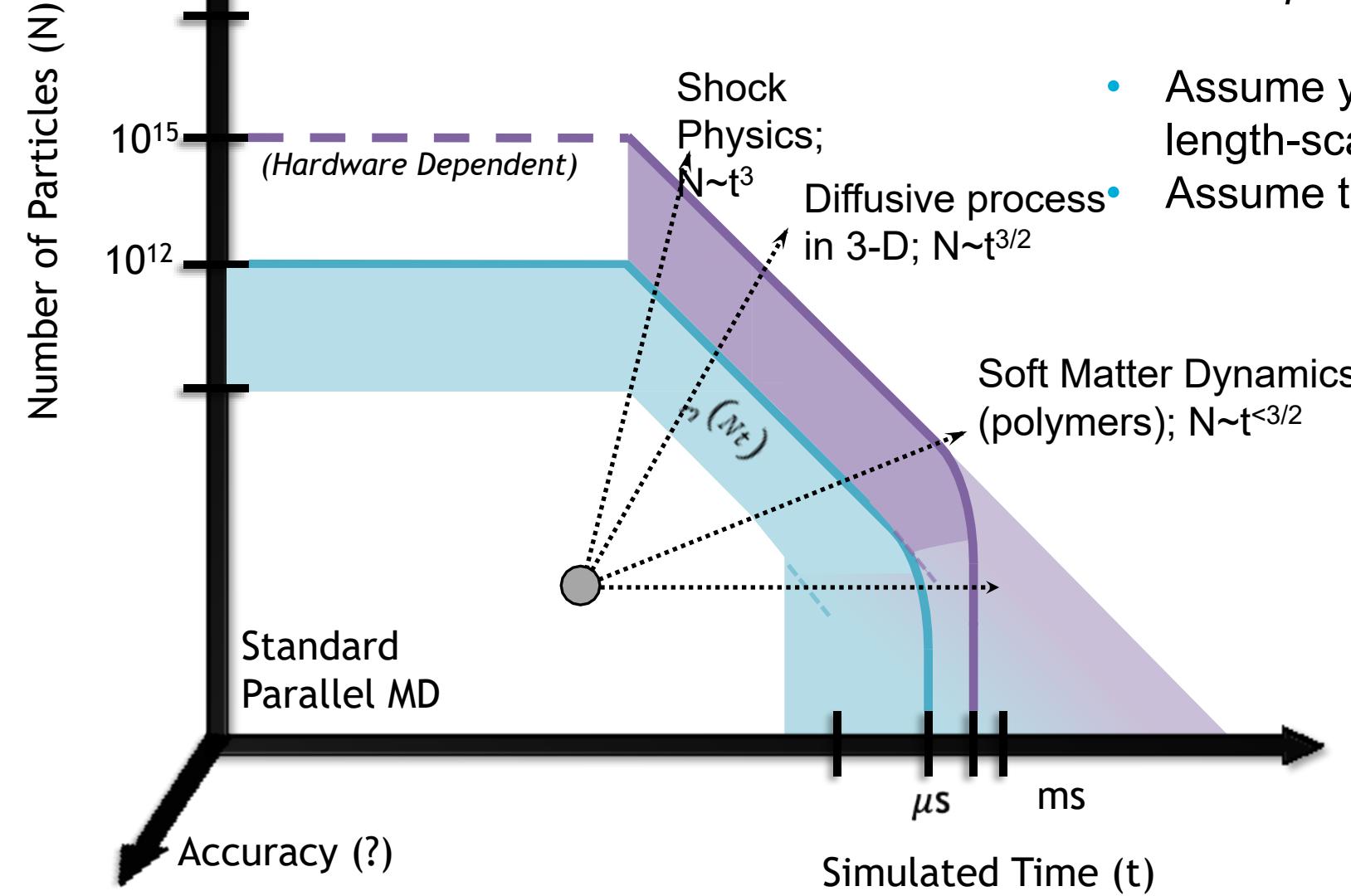
$$\frac{d\mathbf{r}_i}{dt} = \mathbf{v}_i$$

$$\frac{d\mathbf{v}_i}{dt} = \frac{\mathbf{F}_i}{m_i}$$

$$\mathbf{F}_i = -\frac{d}{d\mathbf{r}_i} V(\mathbf{r}^N)$$

Newton's Equations:

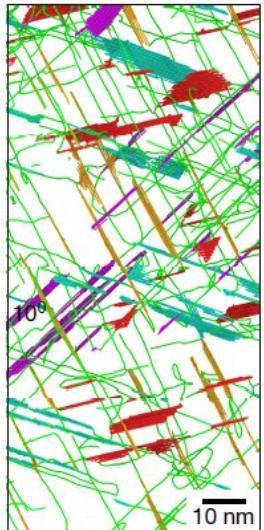
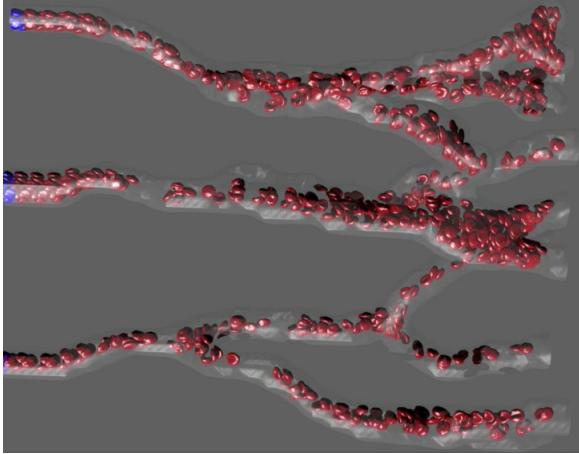
The Master Plot



- How does this affect the research done on these platforms?
- Assume your problem has some specified length-scale dependence : $N \sim L^\alpha$
- Assume the associated time-scale goes as $t \sim L^\gamma$
- But what if you care about a system governed by rare event dynamics?

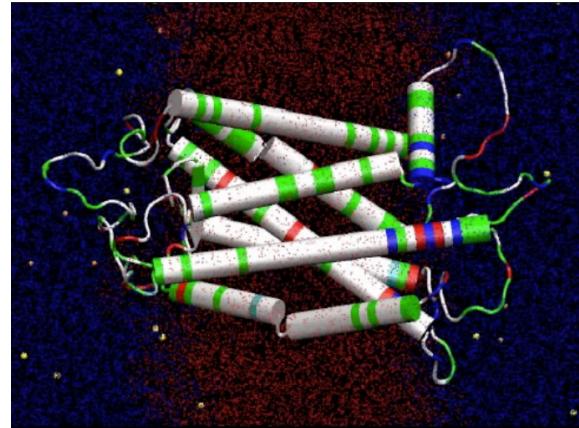
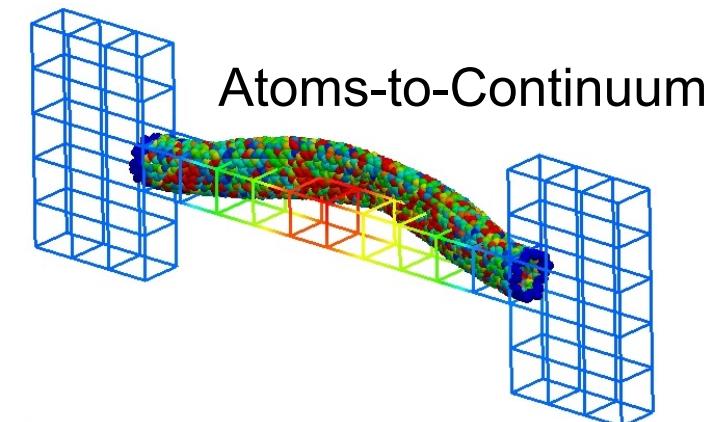
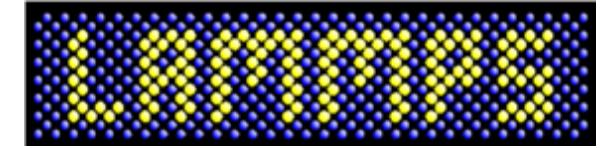
What is LAMMPS?

- Large-scale Atomic/Molecular Massively Parallel Simulator
<http://lammps.sandia.gov>
- Open source, highly portable C++, free under GPL license
- Well documented with many examples, easily extendable for user specific
- Variety of boundary conditions, constraints, ensemble sampling methods
- Parallelism through spatial decomposition of simulation domain
- Short and long ranged interactions allowed/included
- CPU cost is (N/P) and communication is $(N/P)^{2/3}$



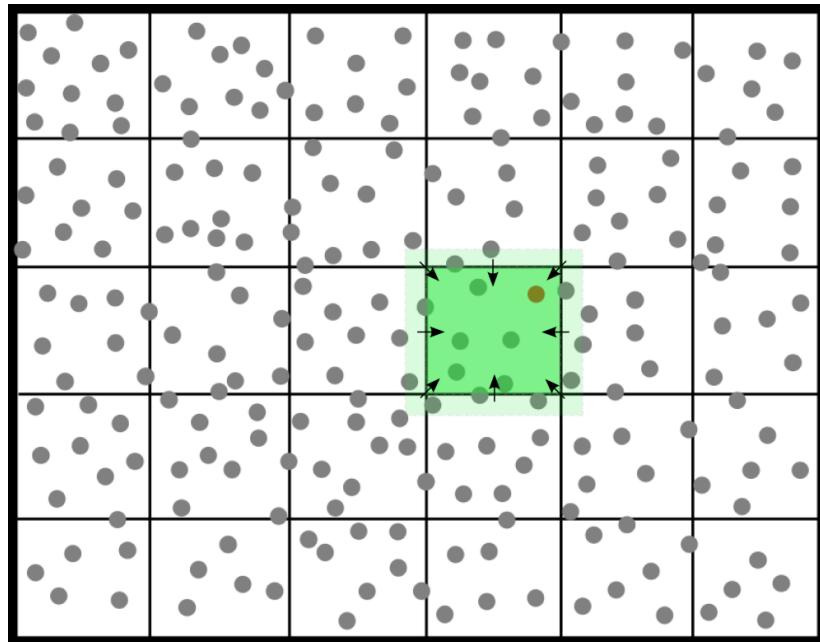
Dislocations in Materials

Proteins and Biophysics



6 Parallel in Space, Time

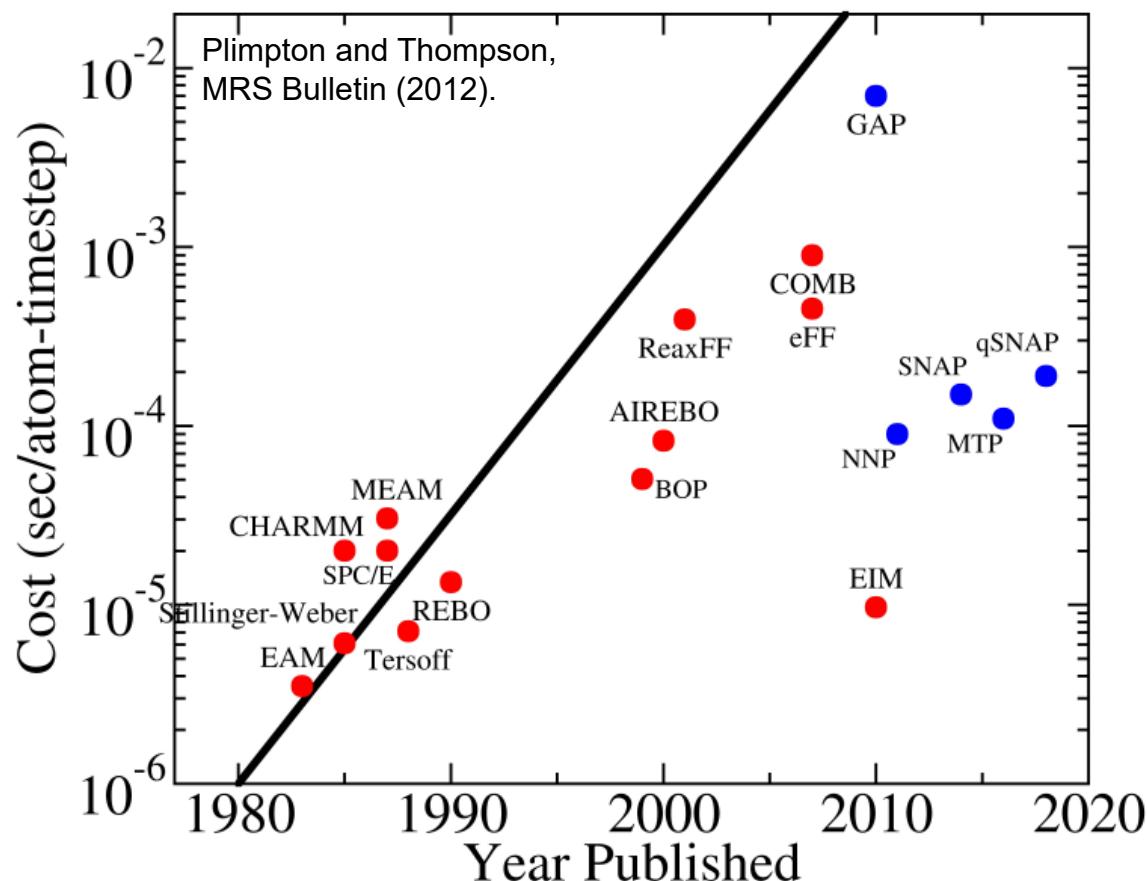
- Atoms/particles in space can be distributed across processors
- Need to track particles in nearby domains, reconstruct neighbor lists as particles move
- for all time;
Compute forces, update atom positions



- The goal is to generate statistically correct state-to-state trajectories

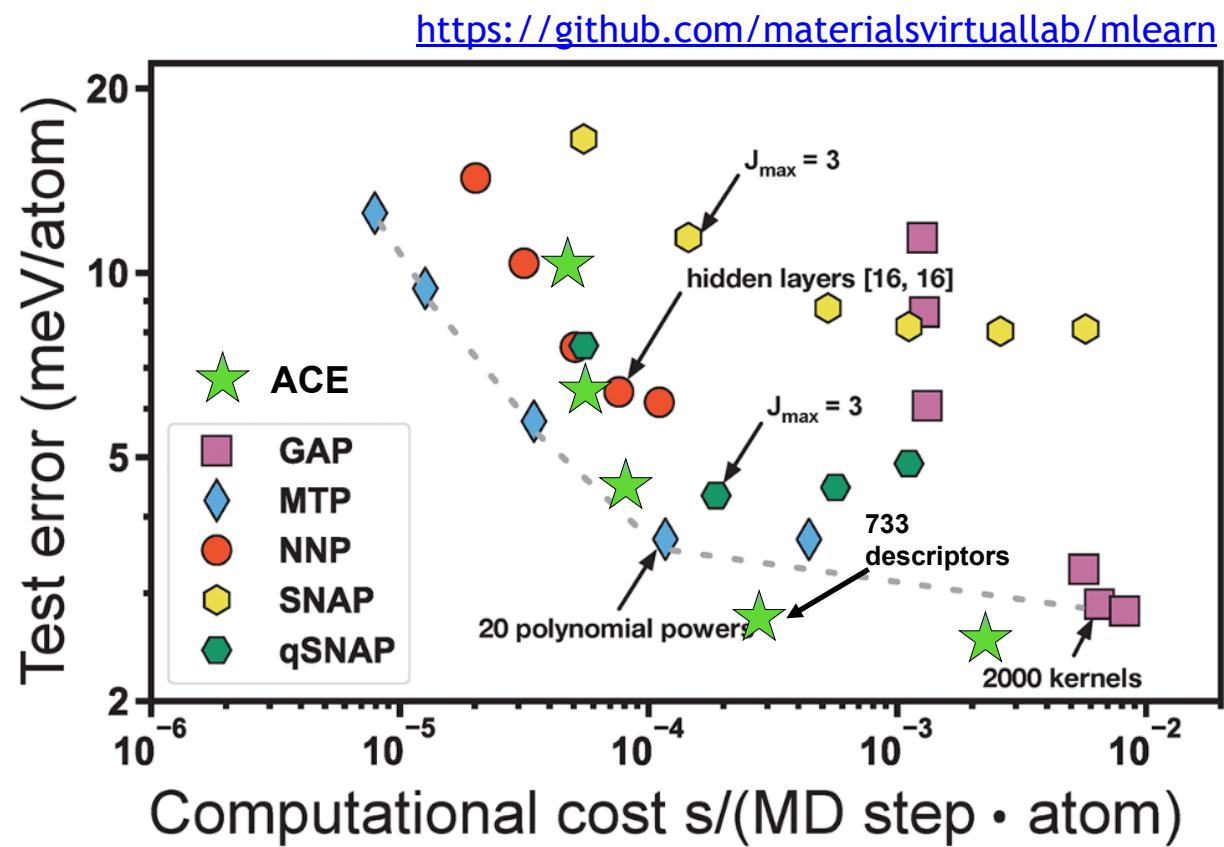


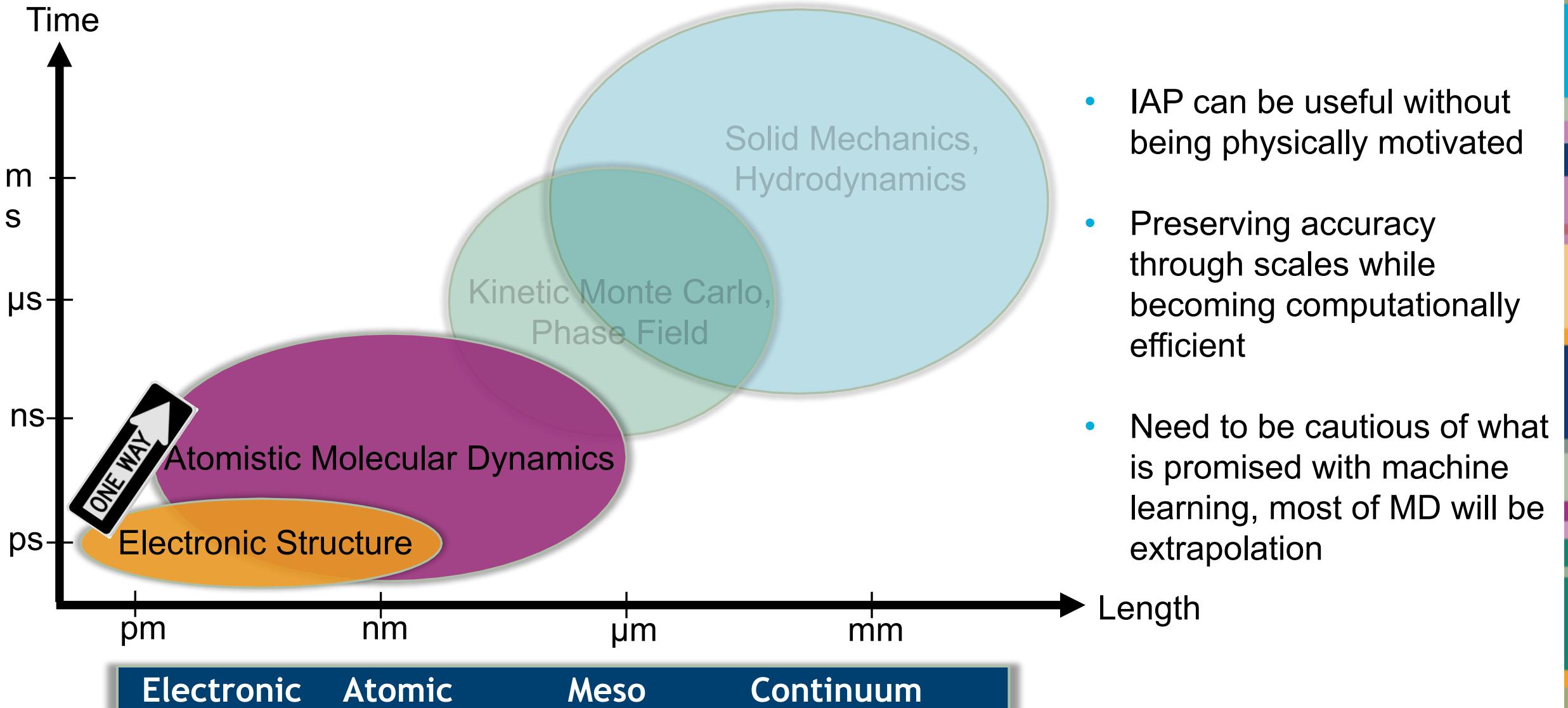
Twobody (B.C.)	Manybody (1980s)	Advanced (90s-2000s)	Big Data / Deep / Machine Learning (2010s)
Lennard-Jones, Hard Sphere, Coulomb, Bonded	Stillinger-Weber, Tersoff, Embedded Atom Method	REBO, BOP, COMB, ReaxFF	GAP, SNAP, NN, ...



Advanced (90s-2000s)
REBO, BOP, COMB, ReaxFF

Big Data / Deep / Machine Learning (2010s)
GAP, SNAP, NN, ...



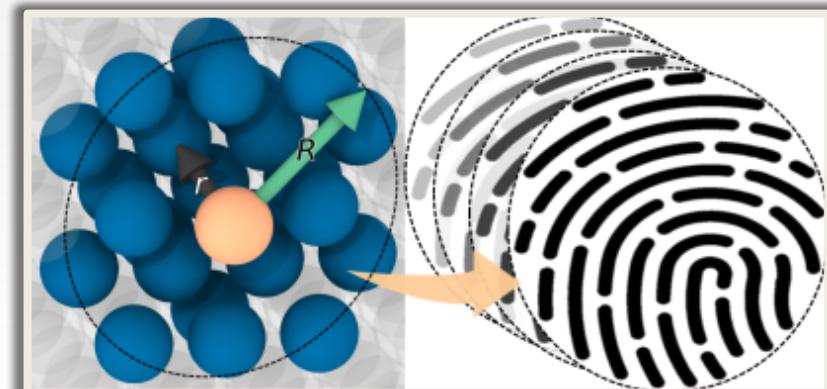


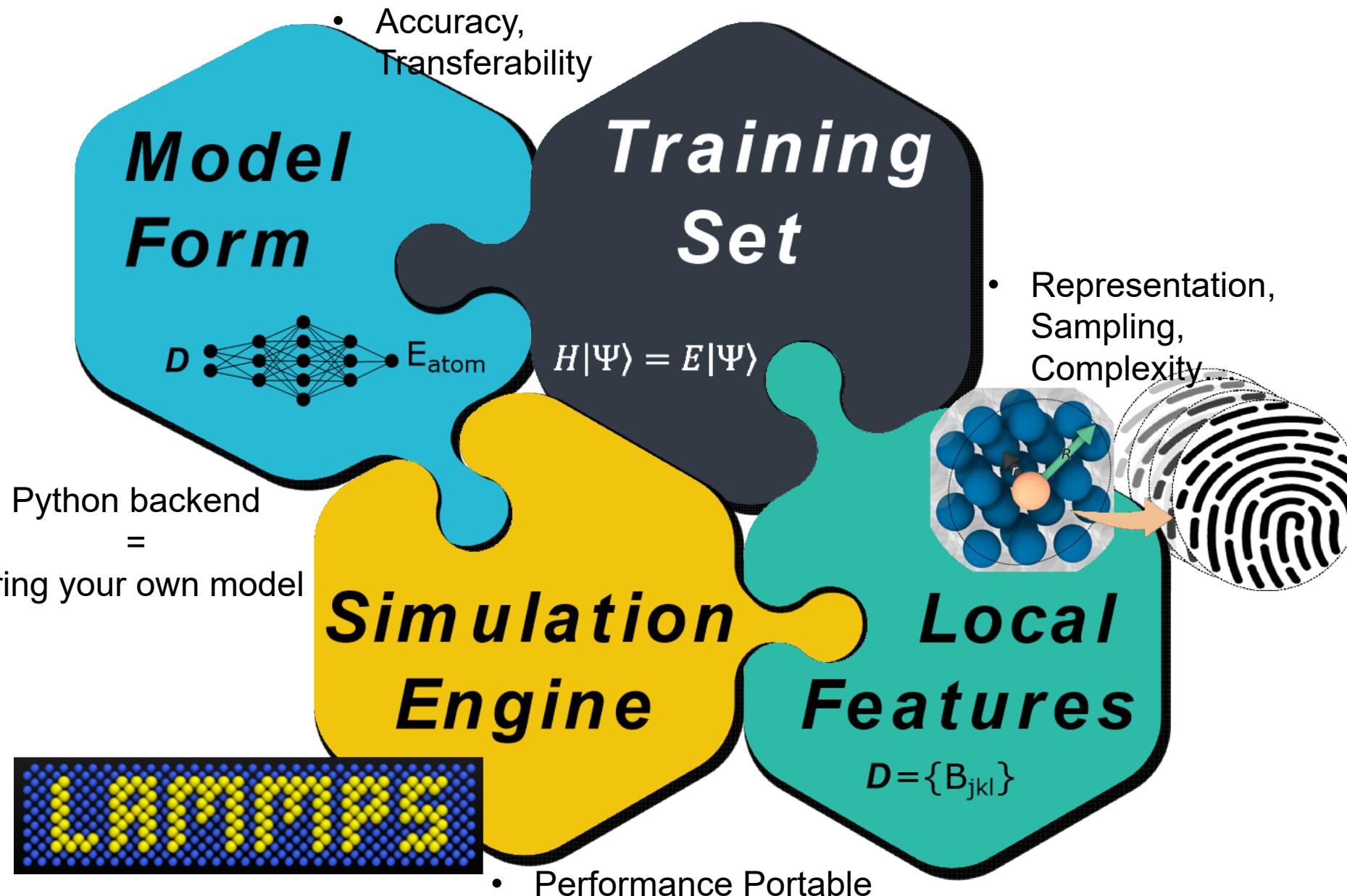
Classical, Empirical Potentials

- Metals
 - EAM: Assume spherical electron density
$$E_i = F_\alpha \left(\sum_{j \neq i} \rho_\beta(r_{ij}) \right) + \frac{1}{2} \sum_{j \neq i} \phi_{\alpha\beta}(r_{ij})$$
- Inorganic
 - Stillinger-Weber: Assume 2,3-body harmonic springs
- Organic
 - ReaxFF: Assume covalent bonding, smooth bond-orders between all interacting atoms

Machine Learned Potentials

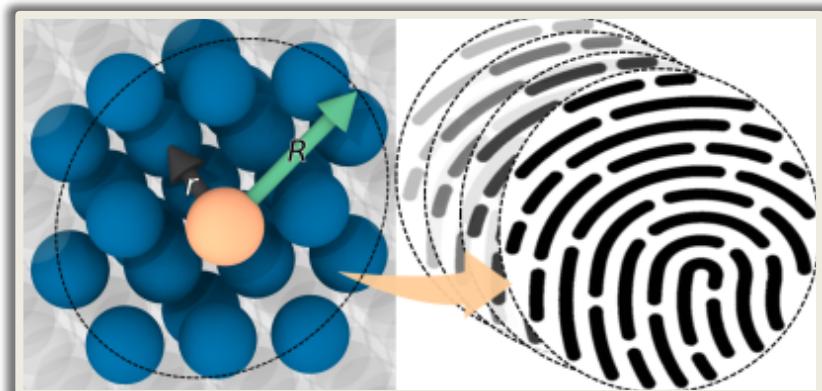
- Metals, Inorganic, Organic, etc.
 - Assume energy and forces are some function of local atomic neighborhood descriptors
- Needs reference data to be properly trained to get the 'right' energies and forces



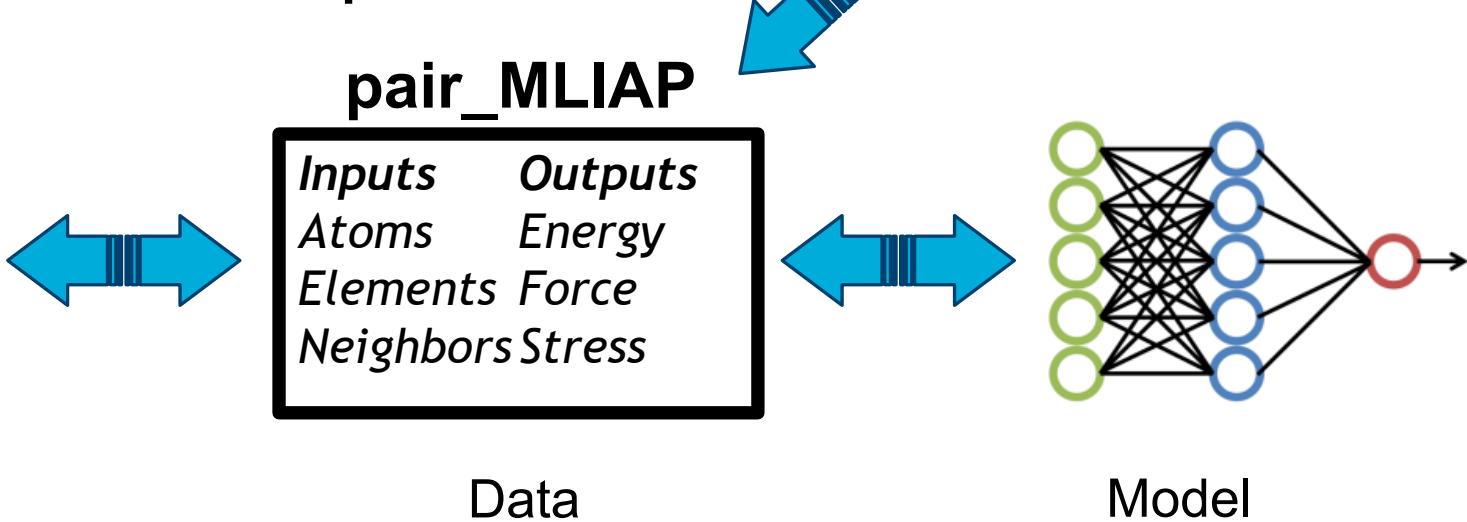


Unified Framework for MLIAP

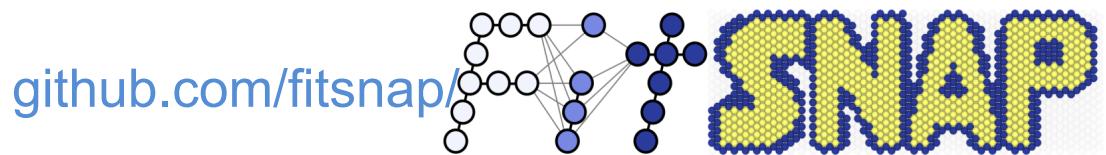
- Provide a common API for many methods
 - Descriptor generates local fingerprint for each atom
 - Model computes energy as function of descriptors
 - Data handles LAMMPS interface and intermediate quantities e.g. gradients
- Descriptor and Model insulated from LAMMPS and each other
- **Allows mix-and-matching of Models and Descriptors**



Descriptors

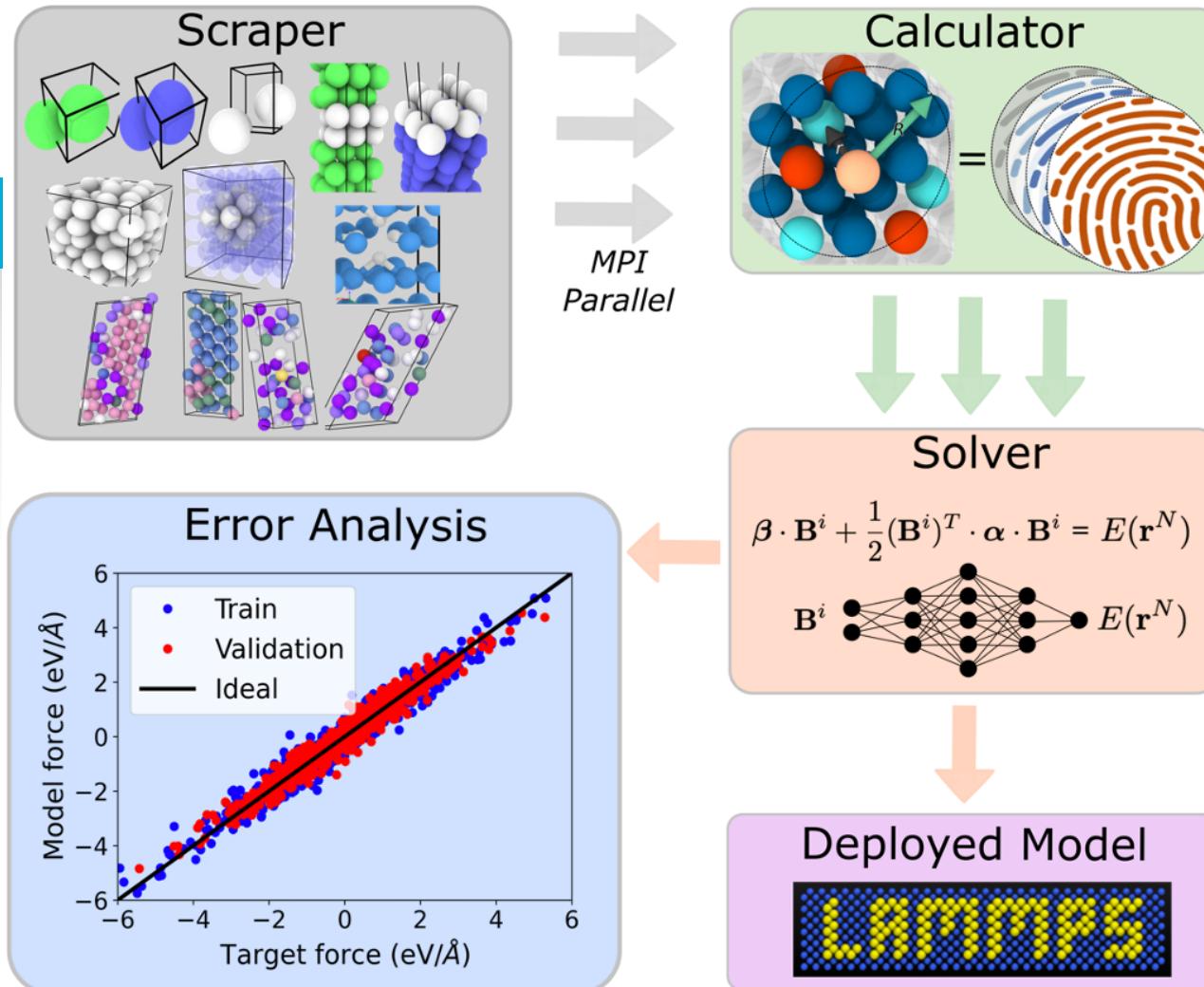


Accelerating Model Development



Modular Code Structure

- Three main classes : Scrape, Calculate, Solve
- **Scaper** : Collects ground truth values from files on disk → (stores in dataframe)
- **Calculator** : Converts atomic structures into set of descriptors → (stores in dataframe)
- **Solver** : Performs regression commensurate with model form
- Adding functionality does not disrupt code flow because of object oriented structure
- Classes, and items thereof, can be called

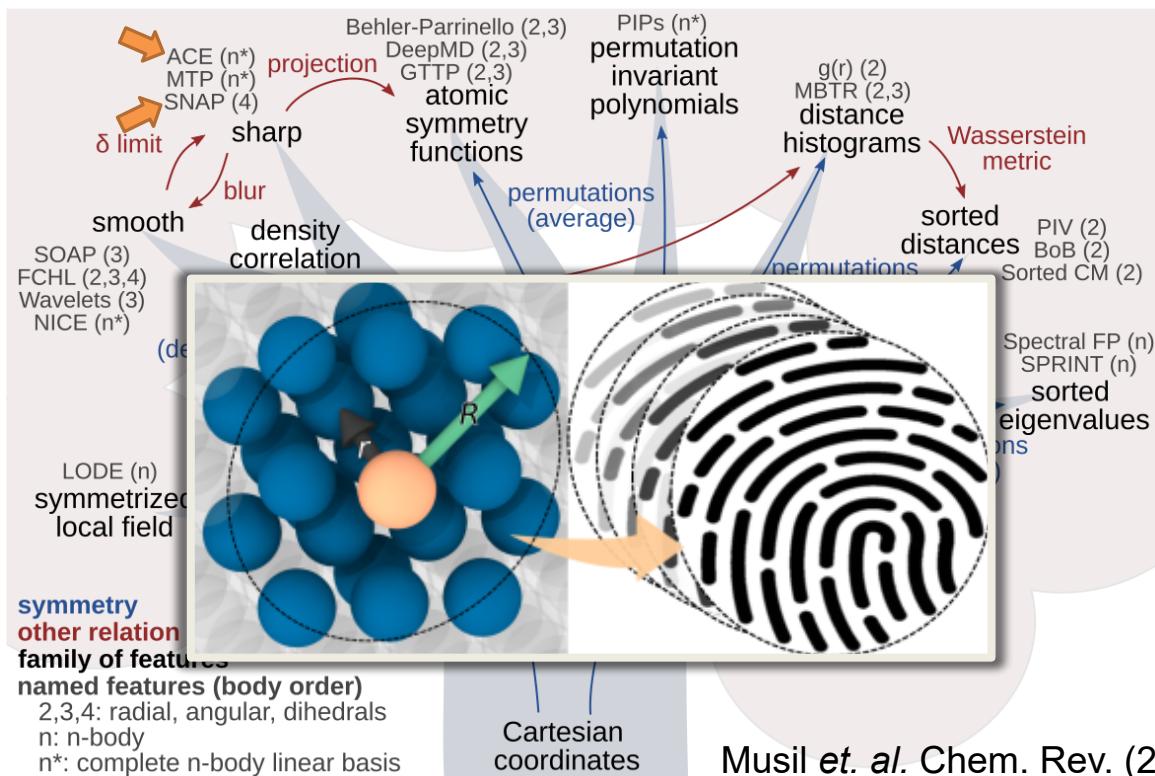


Quick Install :
conda install -c conda-forge lammmps

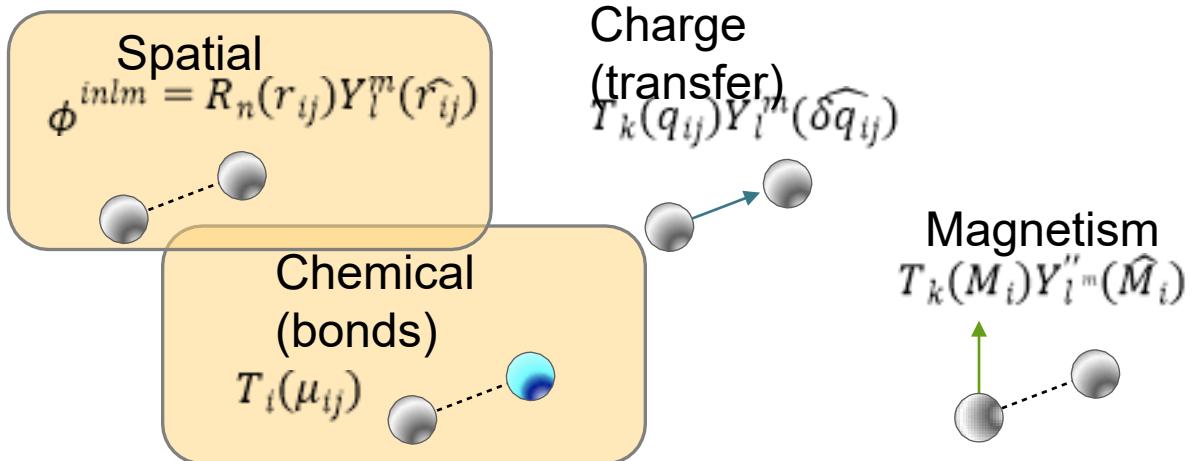
Calculator – Descriptor Sets

LAMMPS Breakdown

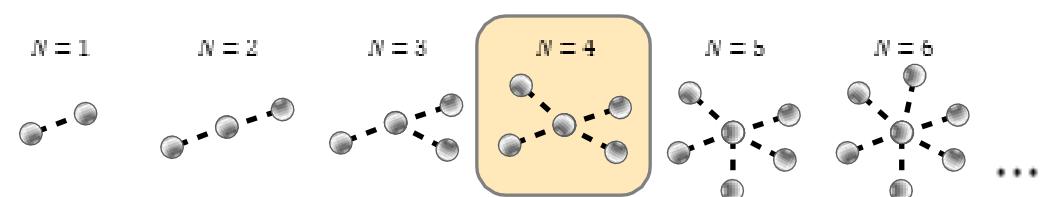
- Calculator class calls LAMMPS to convert atomic coordinates into descriptors.
- Thread parallel implementation via Mpi4Py and LAMMPS python library interface.



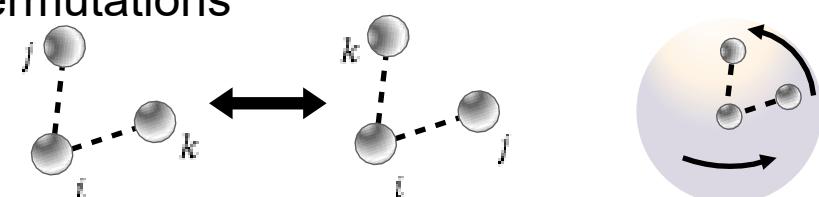
Complete, generalizable single-bond basis



Form a complete N-bond basis



Impose invariance w.r.t. rotations and permutations



Descriptor Improvements and Scalability

Flexible Model Form

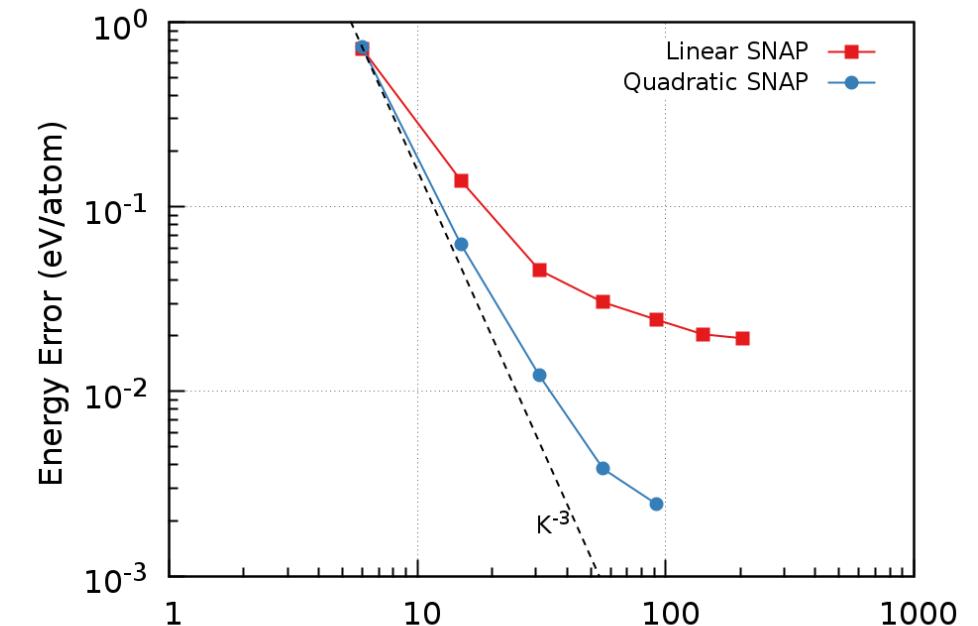
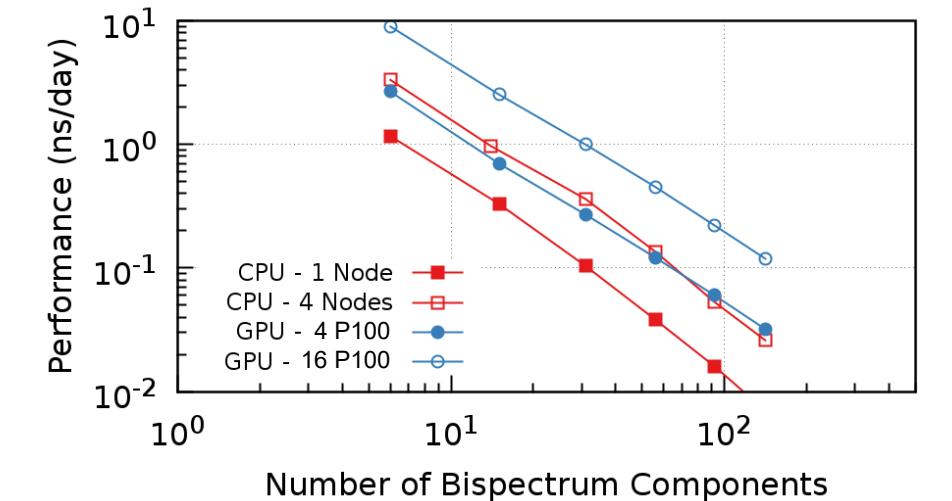
- Energy (and forces) can be expressed as higher moments of the bispectrum (B_k^i)

$$E_{SNAP}^i = \alpha_0 + \sum_k \left[\alpha_k^{(1)} (B_k^i - B_{k_0}) + \alpha_k^{(n)} (\dots)^n \right]$$

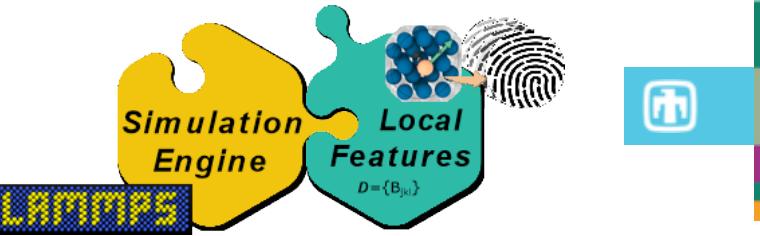
- Linear regression kernel can still be used for $\alpha_k^{(n)}$

Accuracy-Cost Tradeoff

- Cost of higher moment expansion is much cheaper than extending the sum on k . Accuracy gains either way.
- GPU portable, 1 NVIDIA P100 \sim 1 Intel Dual-Broadwell

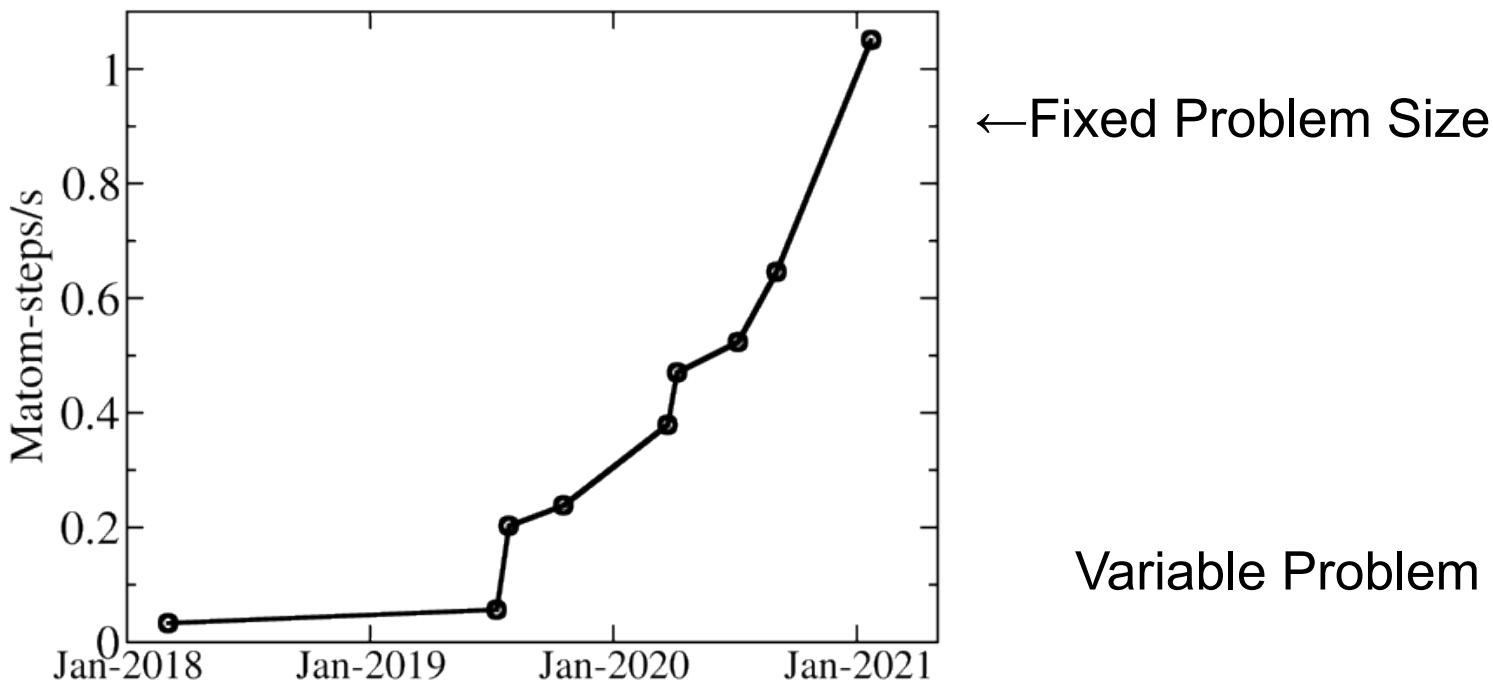


Exascale Ready Models

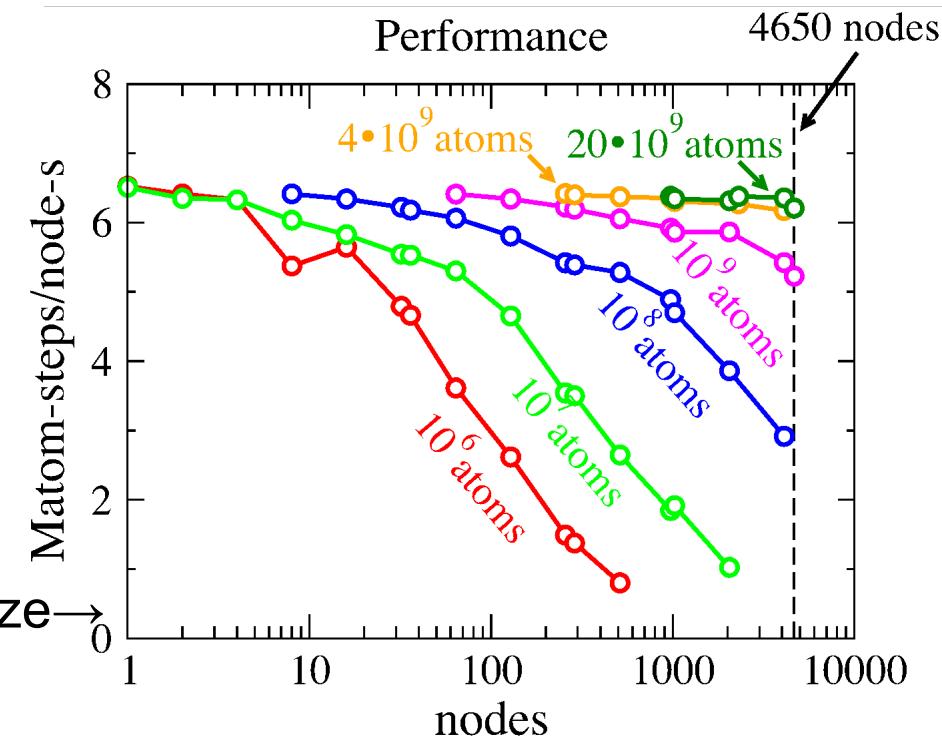


SNAP Performance

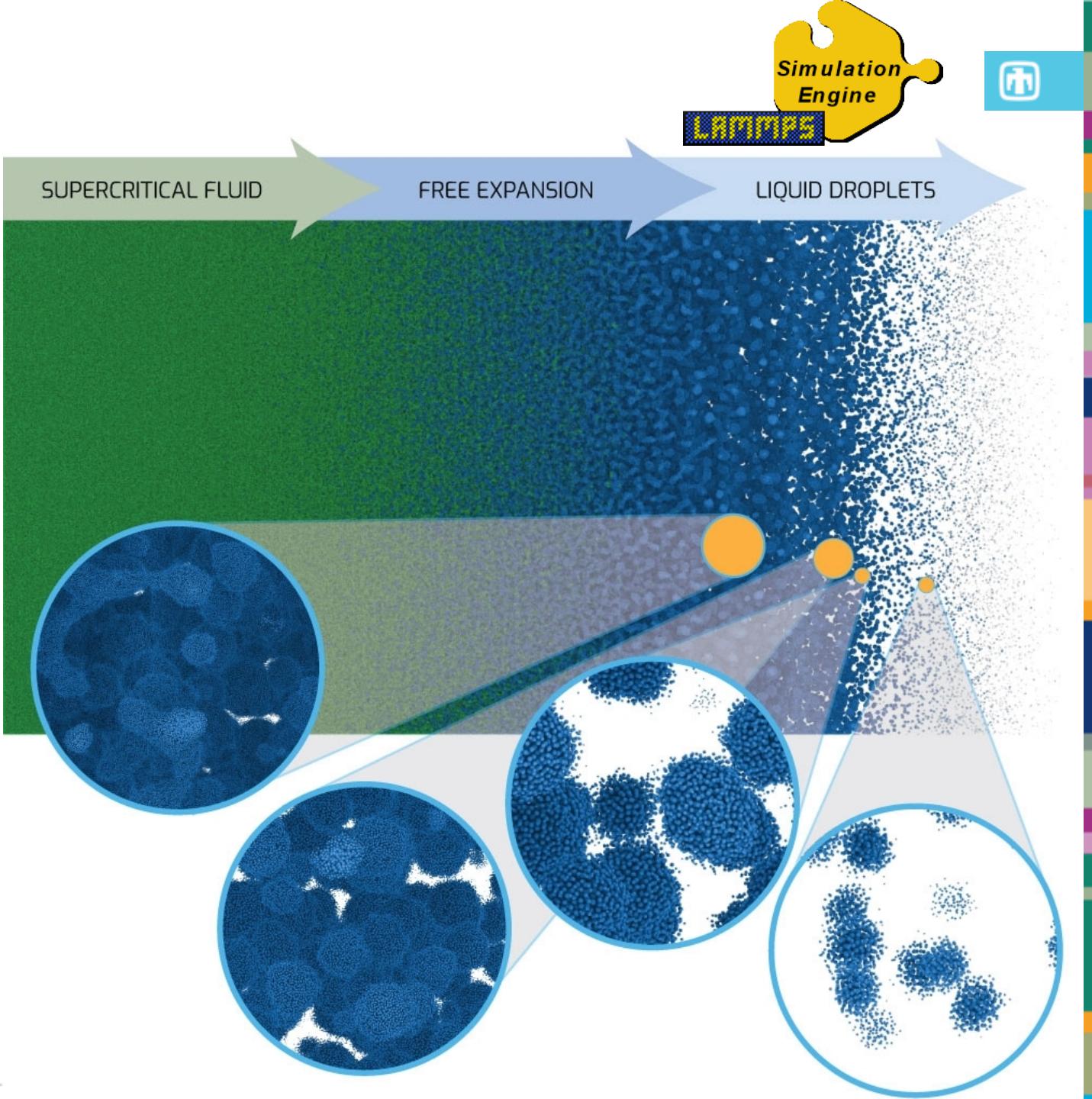
- ML-IAP cost will be dictated by the descriptors of the local atom environment
- Gordon Bell Finalist team from USF, Sandia, NERSC, NVIDIA, KTH : doi.org/10.1145/3458817.3487400



Variable Problem Size



Some Good Publicity

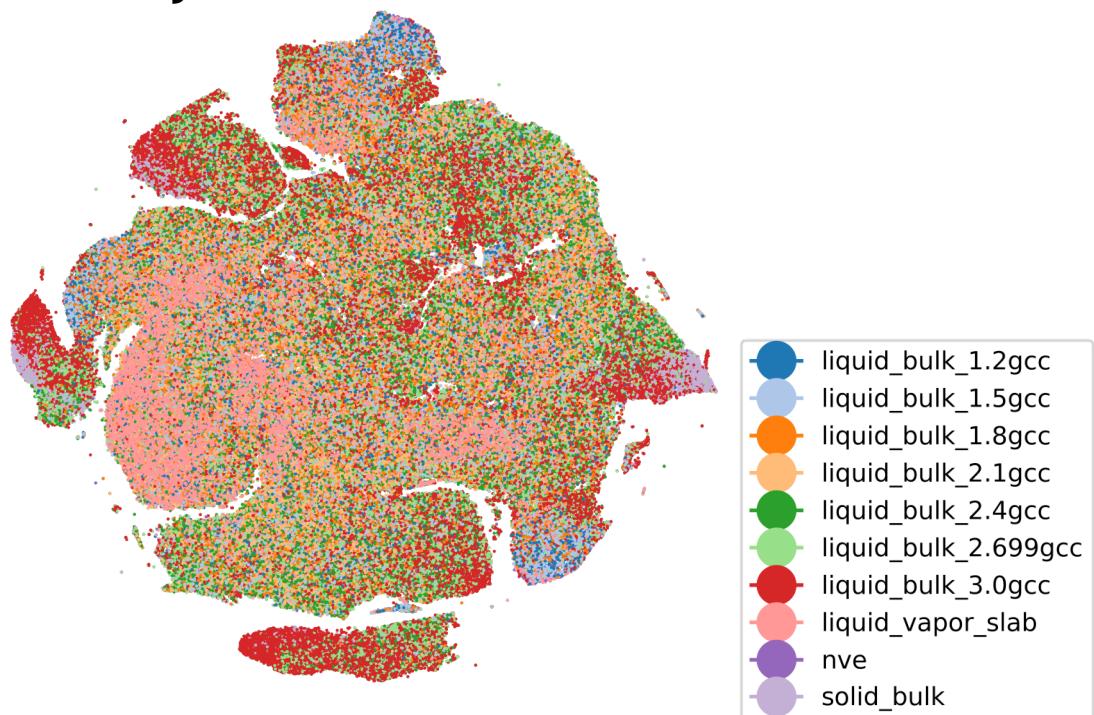
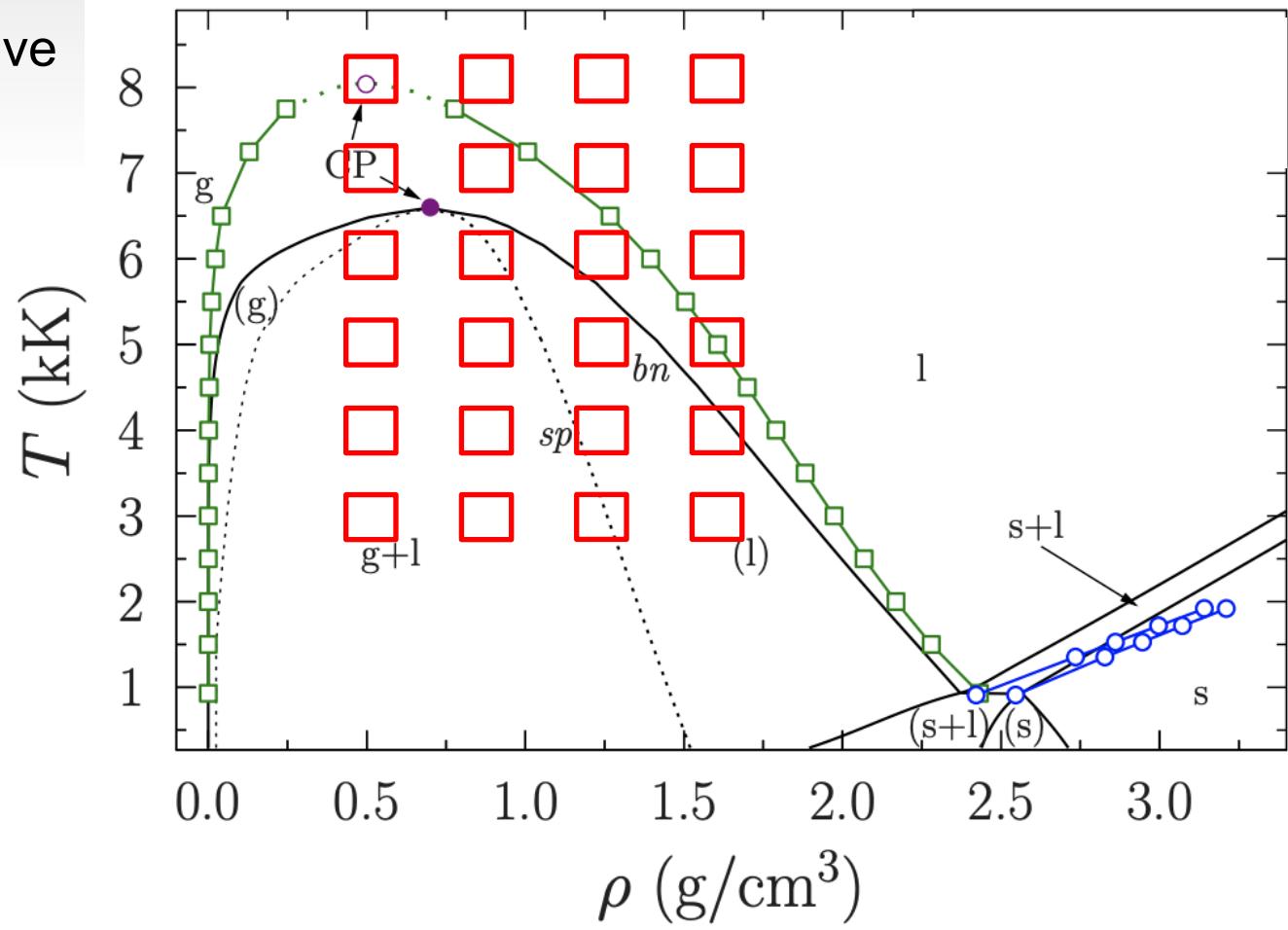


Google → Sandia HPC Annual Report
sandia.gov/news/publications/hpc-annual-reports/

Training Set Construction

- Generated by running ab initio MD at various densities and temperatures
- How should we efficiently plan this expensive step?

t-SNE Projection:

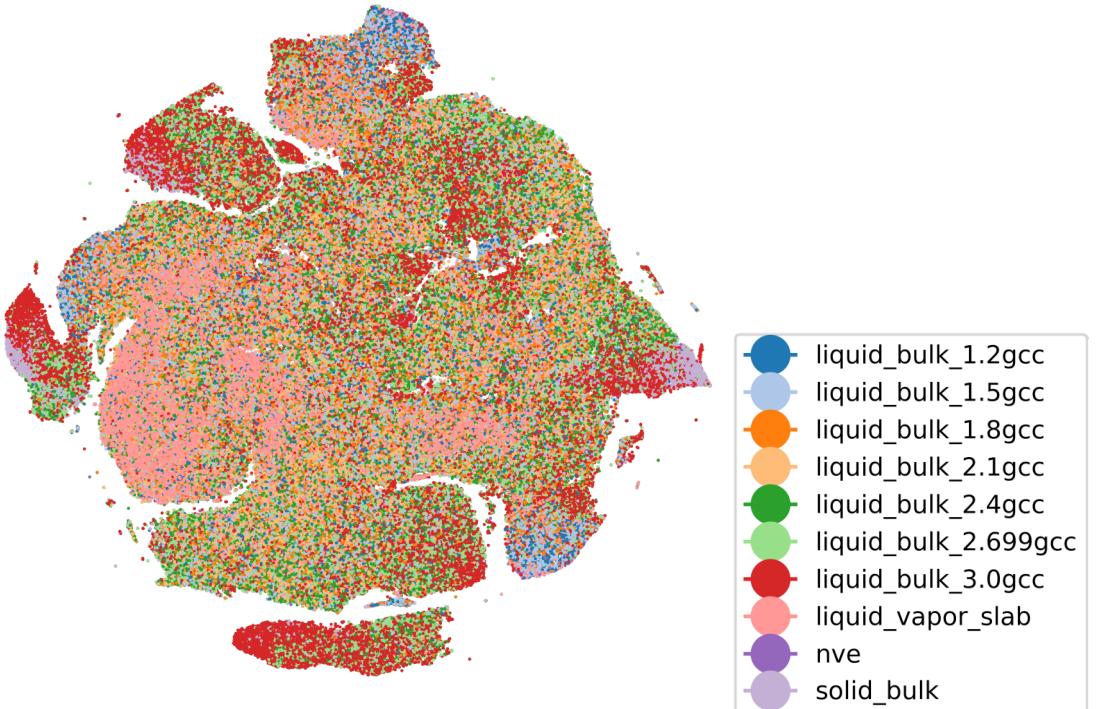
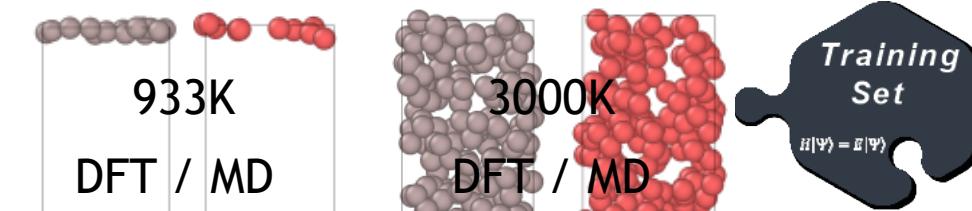
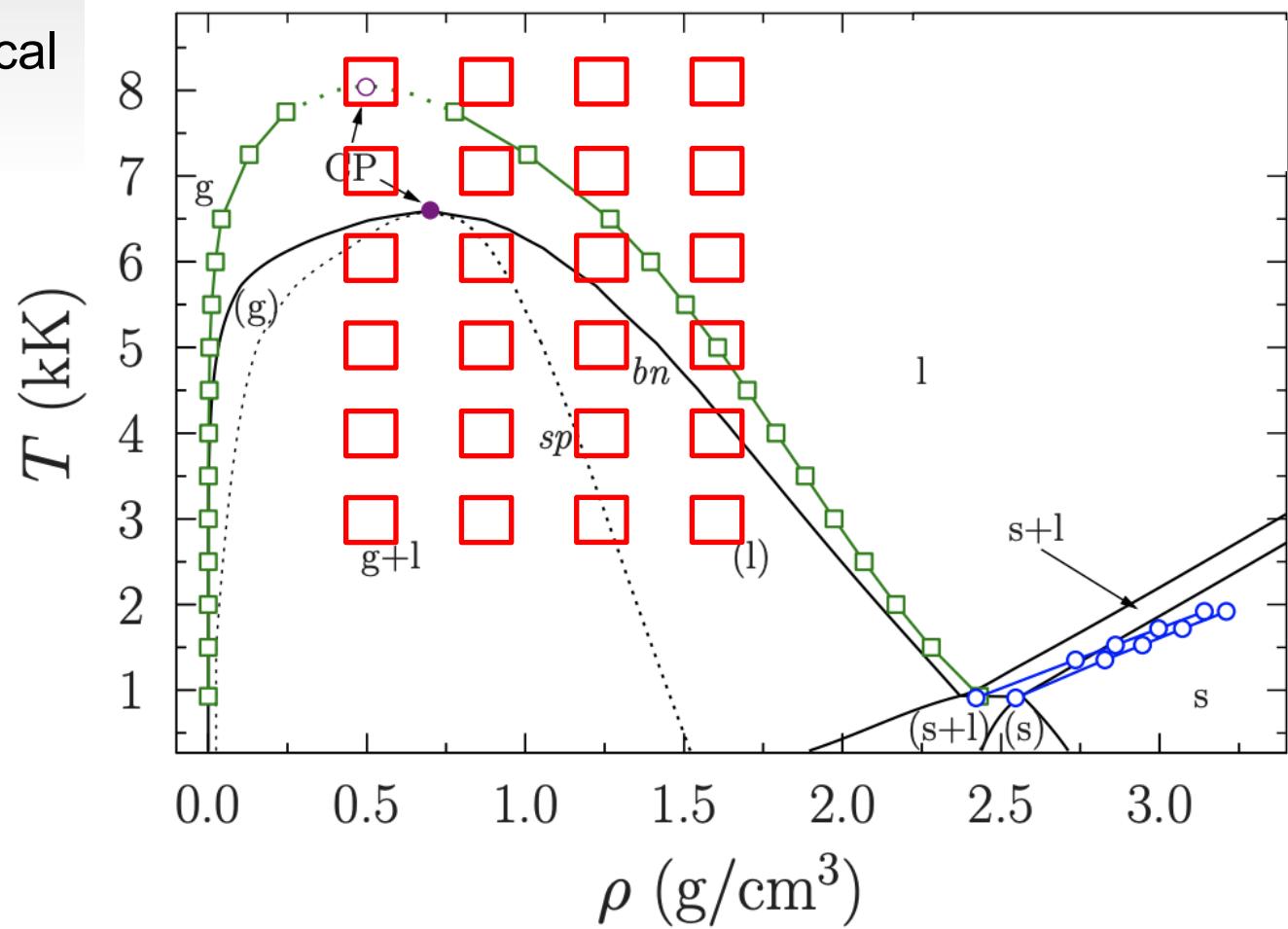


Trained to What?

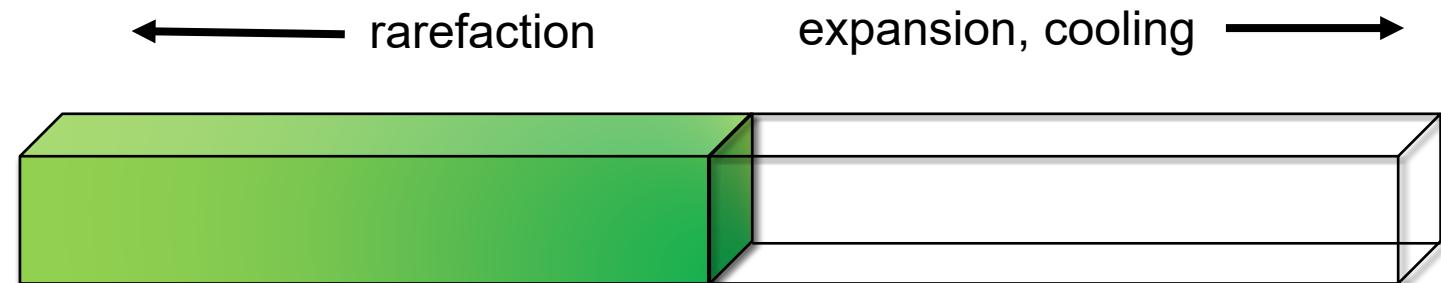
Optimization

- Evaluated by ~30k atom simulations to map out the liquid-vapor coexistence region
- T_c and ρ_c were fit using universal Ising critical exponent $\beta \approx 0.326$ and law of rectilinear diameter

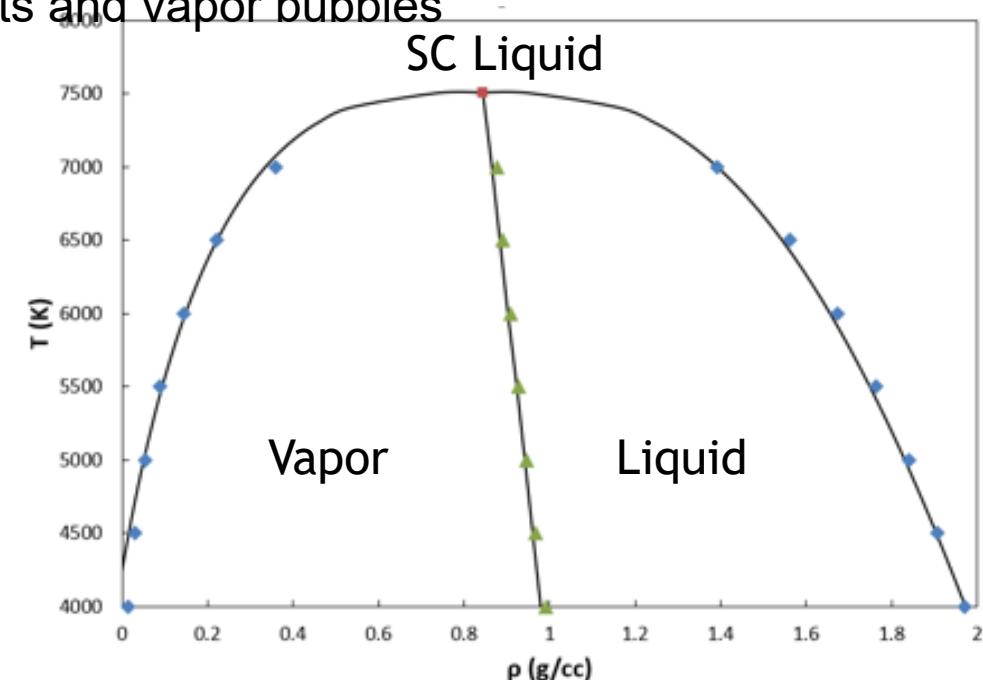
t-SNE Projection:



- NNSA's ATS-2 Sierra Supercomputer
- 4320 nodes, 4 V100-16GB GPUs per node, IBM Power 9 CPUs



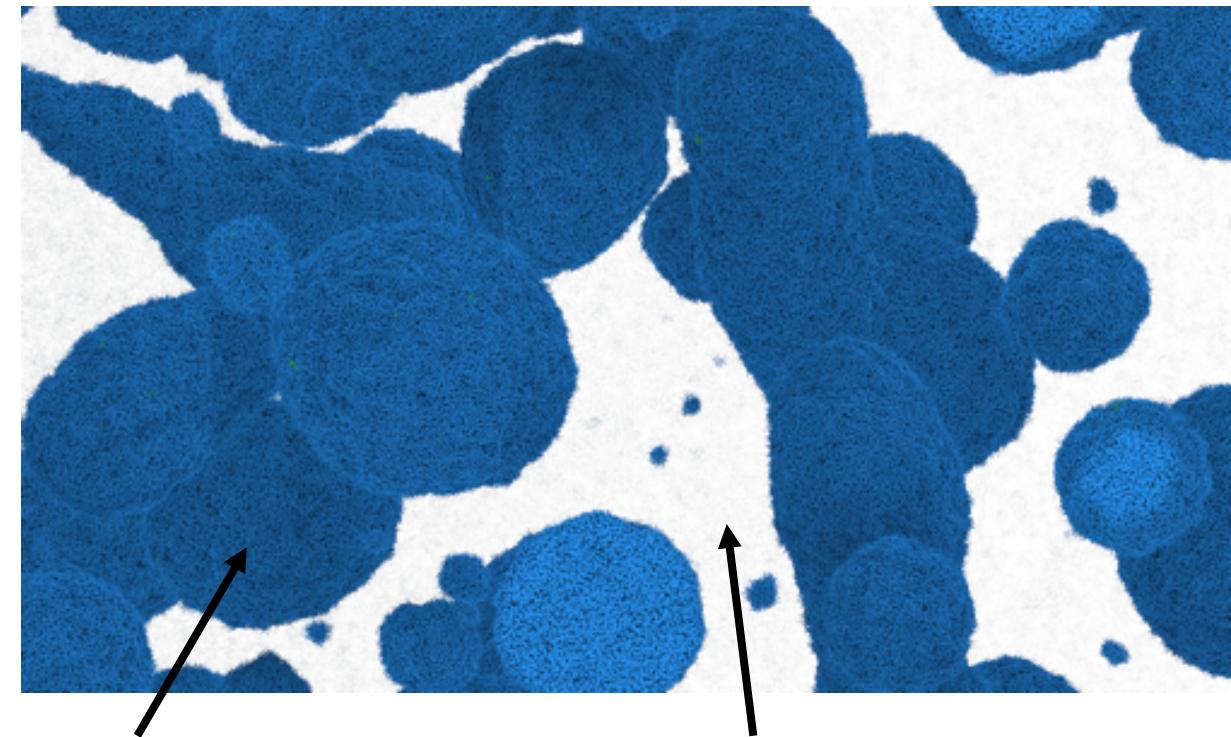
- When the supercritical fluid expands, the temperature drops below the critical temperature, and the fluid rapidly phase-separates into liquid droplets and vapor bubbles



Visualization

- Highly optimized for particle simulations, has direct support for LAMMPS output formats
- Produces high quality visualizations with ray tracing, ambient occlusion, etc.
- Highly scriptable with Python and useful for data post-processing and analysis in general (in addition to rendering images)

Green : Above T_c

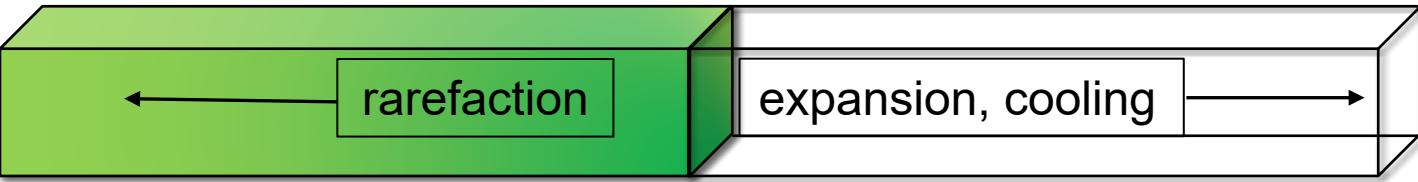
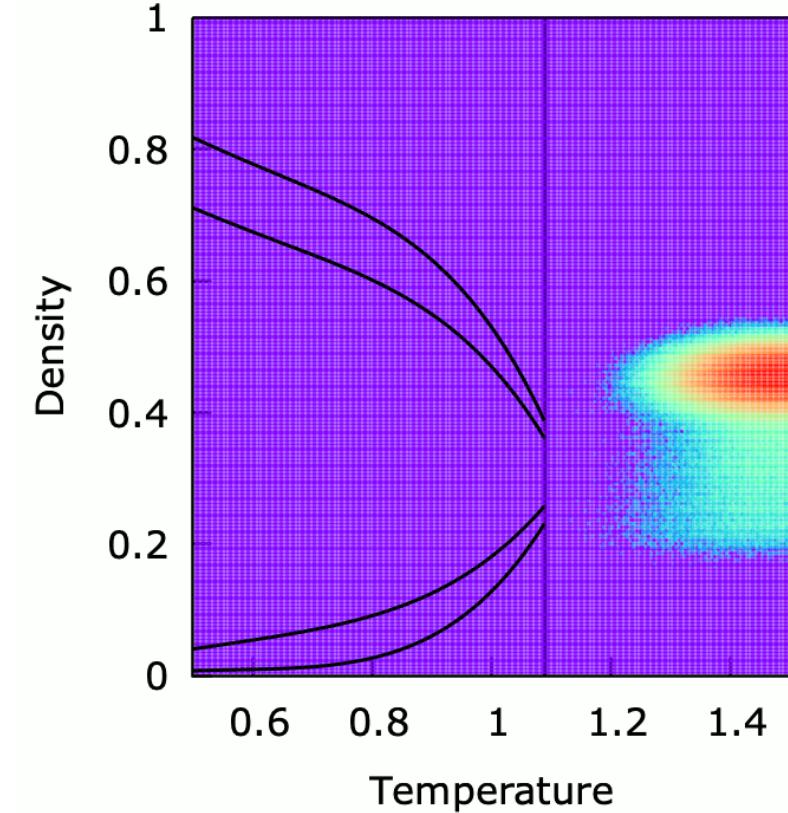


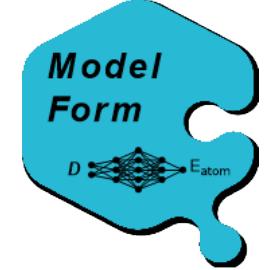
Blue : Below T_c

Aluminum Vapor Dome

Exascale ML-MD

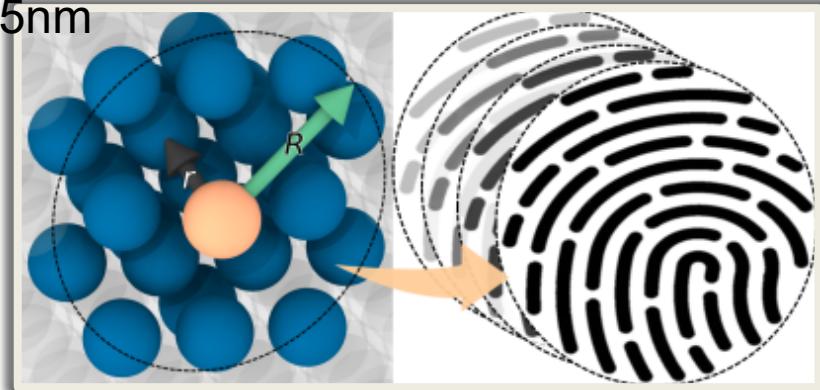
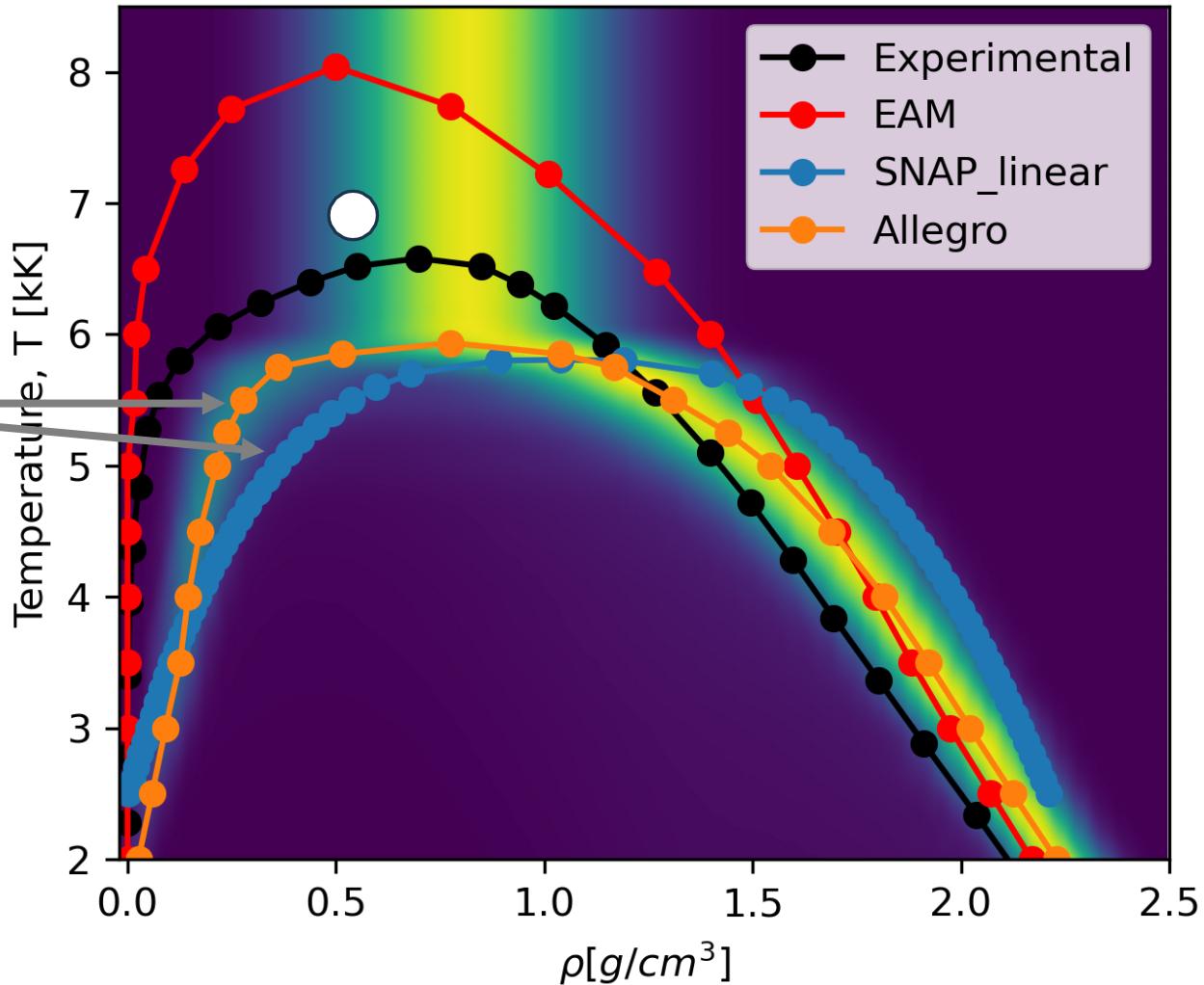
- 1.5B atoms, 8192 GPUs (~47% of Sierra)
- $T_0 = 9000K$, $\rho_0 = 1.5 \text{ g/cm}^3$ 1.8um, 0.56ns captured



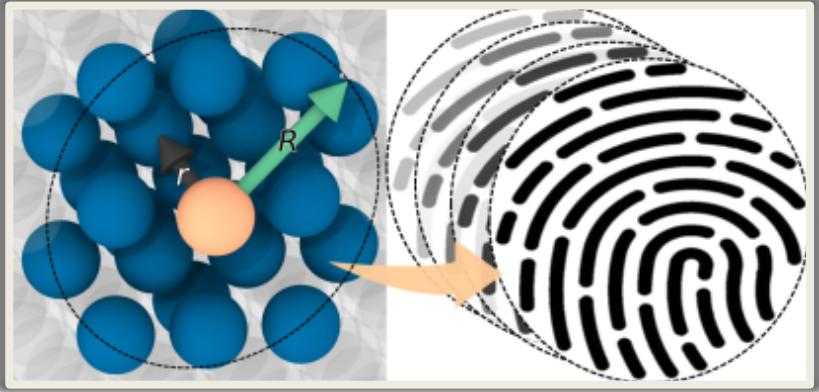


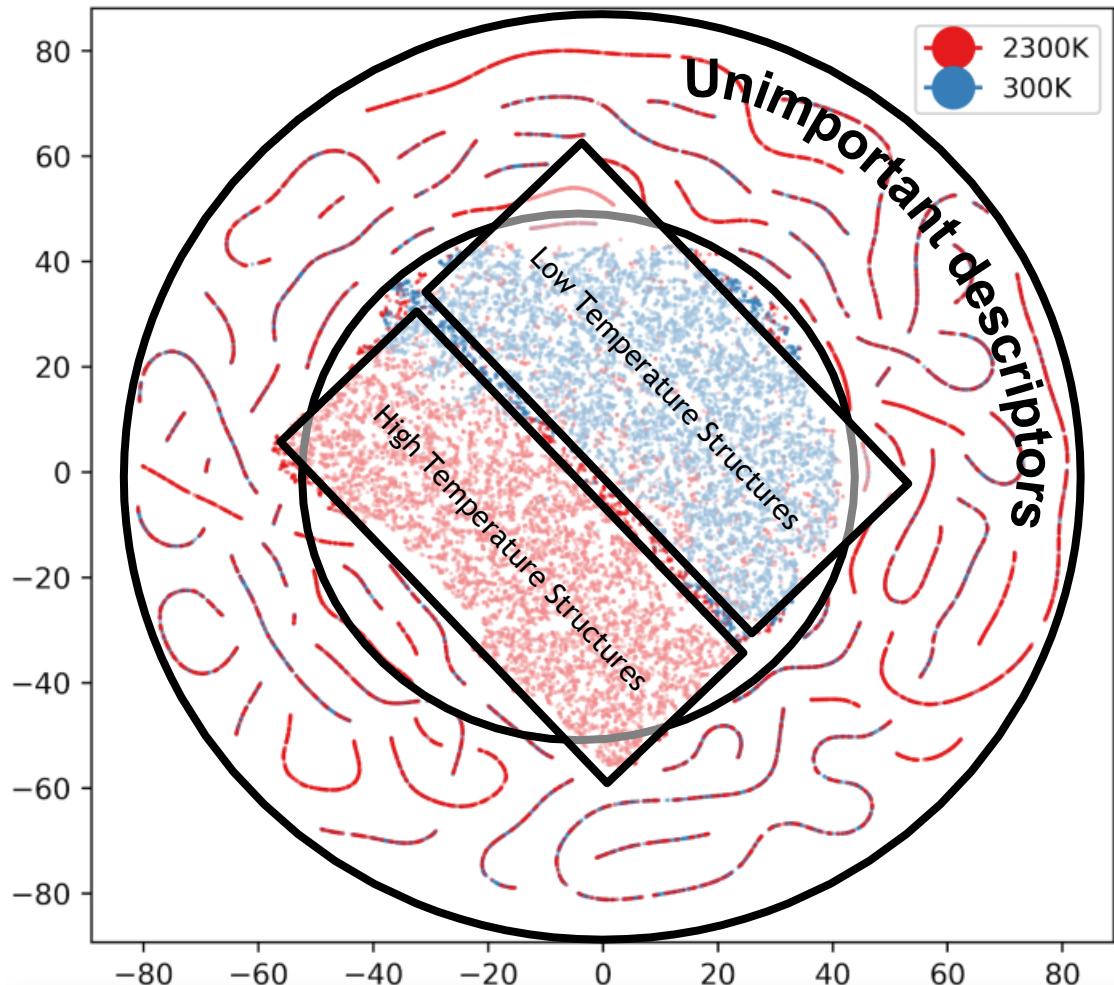
Right Answer, Right Reasons

- Looking at predicted vapor dome, some noticeable shortcomings
- EAM, Experiment is taken from Povarnitsyn et. al. PRB (2015)
 - Underpredicting critical temperature
 - Overpredicting vapor density
- Descriptor is a short ranged interaction, $\sim 0.5\text{nm}$



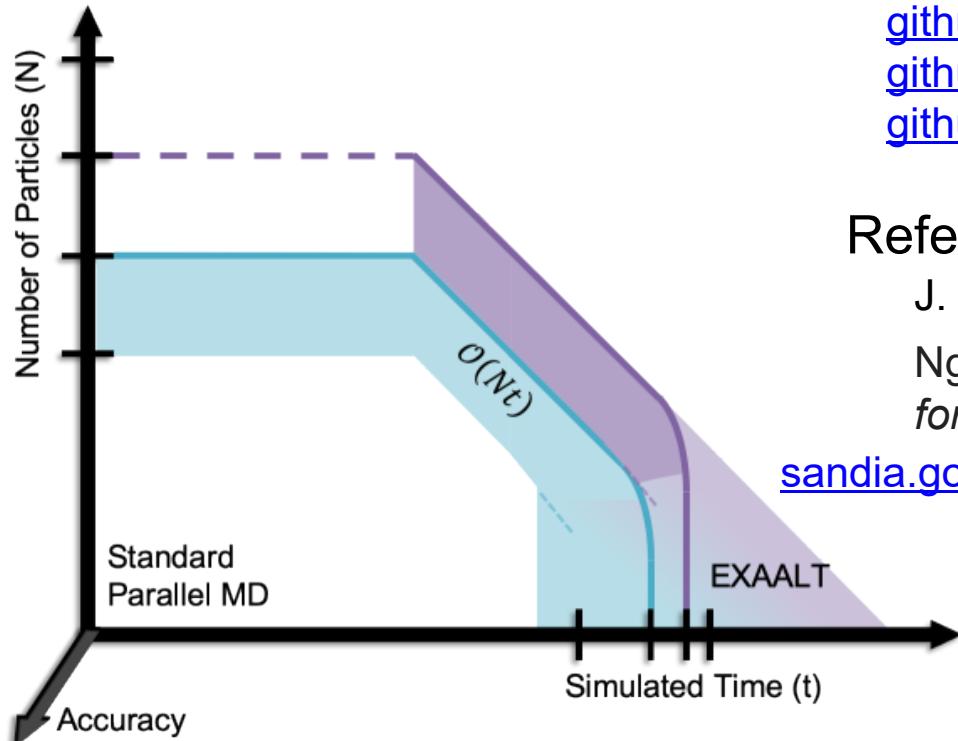
Descriptor Extrapolation

- Remember, this is what the model sees.
Not temperature or density
- 
- Extrapolations should be defined by the descriptors, allows for MD to be compared to DFT
- Post-processing or real-time analysis of MD trajectory is possible to quantify extrapolations**



Conclusions and Path Forward

- Data-driven interatomic potentials allow for MD predictions of challenging problems.
- While harder to quantify, the fidelity of our MD simulations needs to be a key consideration at the Exascale



Links:

github.com/FitSNAP/FitSNAP

github.com/lammps/lammps

github.com/materialsvirtuallab/mlearn

References:

J. Goff (2022) arXiv:2208.01756

Nguyen-Cong, K. *Proc. International Conference for High Performance Computing* (2021).

sandia.gov/news/publications/hpc-annual-reports

- Thank you to all my collaborators:
Aidan Thompson, Stan Moore, Ember Sikorski, Steve Plimpton, Normand Modine, Dionysios Sema, Svetoslav Nikolov, Charlie Sievers, Danny Perez, James Goff, and many others!

U.S. DEPARTMENT OF
ENERGY

Office of
Science

Sandia
National
Laboratories

References and Repositories

Core Algorithms Papers

Plimpton, Steve. Fast parallel algorithms for short-range molecular dynamics. No. SAND-91-1144. Sandia National Labs., (1993).

Plimpton, Steven J., and Aidan P. Thompson. "Computational aspects of many-body potentials." *MRS bulletin* 37.5 (2012): 513-521.

Le Bris, Lelievre, Luskin, and Perez, *MCMA* 18, 119 (2012)

Perez, Cubuk, Waterland, Kaxiras, Voter, *JCTC* 12, 18 (2016)

Niklasson & Cawkwell *JCP* 141,164123 (2014)

Niklasson *JCP* 054103 (2017)

Impressive Particle Method Examples

L A Zepeda-Ruiz *et al.* *Nature* 550, 492–495 (2017) doi:10.1038/nature23472

Glotzer, Sharon C., and Michael J. Solomon. "Anisotropy of building blocks and their assembly into complex structures." *Nature materials* 6.8 (2007): 557-562.

K. Shimamura *et al.*, "Hydrogen-on-Demand Using Metallic Alloy Nanoparticles in Water," *Nano Letters*, vol. 14, no. 7, 2014, pp. 4090–4096

Mattox, Timothy I., *et al.* "Highly scalable discrete-particle simulations with novel coarse-graining: accessing the microscale." *Molecular Physics* 116.15-16 (2018): 2061-2069.

Office of
Science

Contact Information:

mitwood@sandia.gov

Uses of ParSplice/EXAALT

Defect evolution in fusion materials (w. Luis Sandoval, Blas Uberuaga, Art Voter). Up to 100,000 cores, ~10,000 atoms on ms [Sci. Rep. 7, 2522 (2017)]

Jogs in nickel (w. Lauren Smith, Tom Swinburne, Dallas Trinkle), ~1000 cores, ~10,000 atoms, tens of ms

Cation defect evolution in pyrochlores (w. Romain Perriot, Blas Uberuaga, Art Voter), ~200 cores, ~1000 atoms, tens of ms [Nature Comm., 8, 681 (2017)]

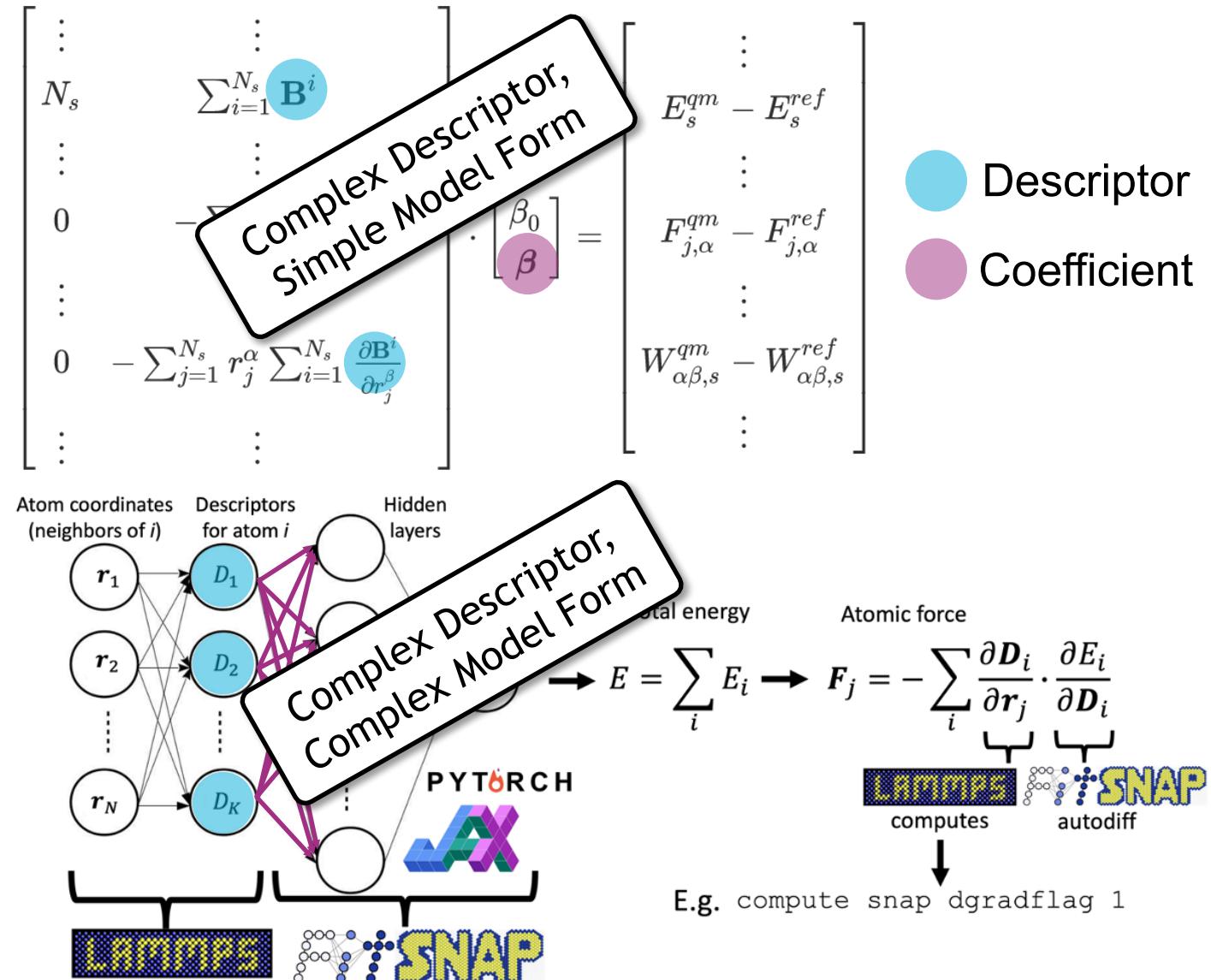
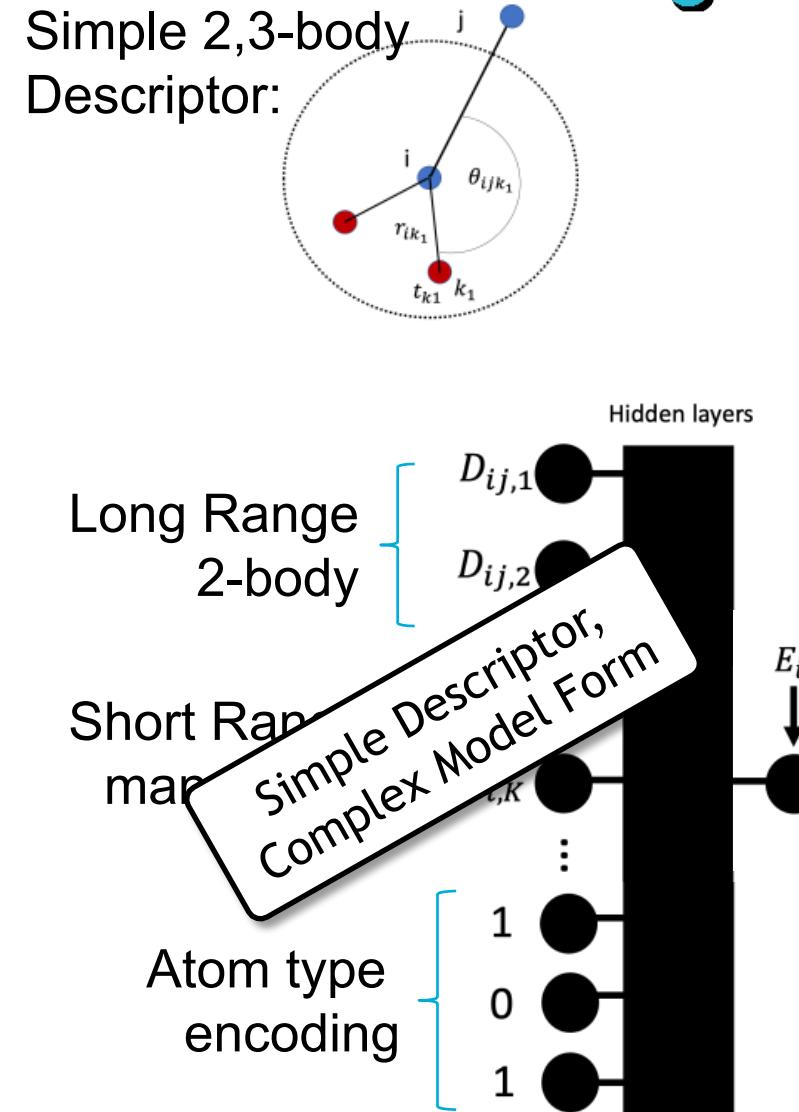
Shape evolution of metallic nanoparticles (w. Rao Huang, Art Voter). ~1000 cores, ~100 atoms, ms [JCP 147, 152717 (2017). JMR (in press)]

<https://gitlab.com/exaalt>

<https://github.com/FitSNAP/FitSNAP>

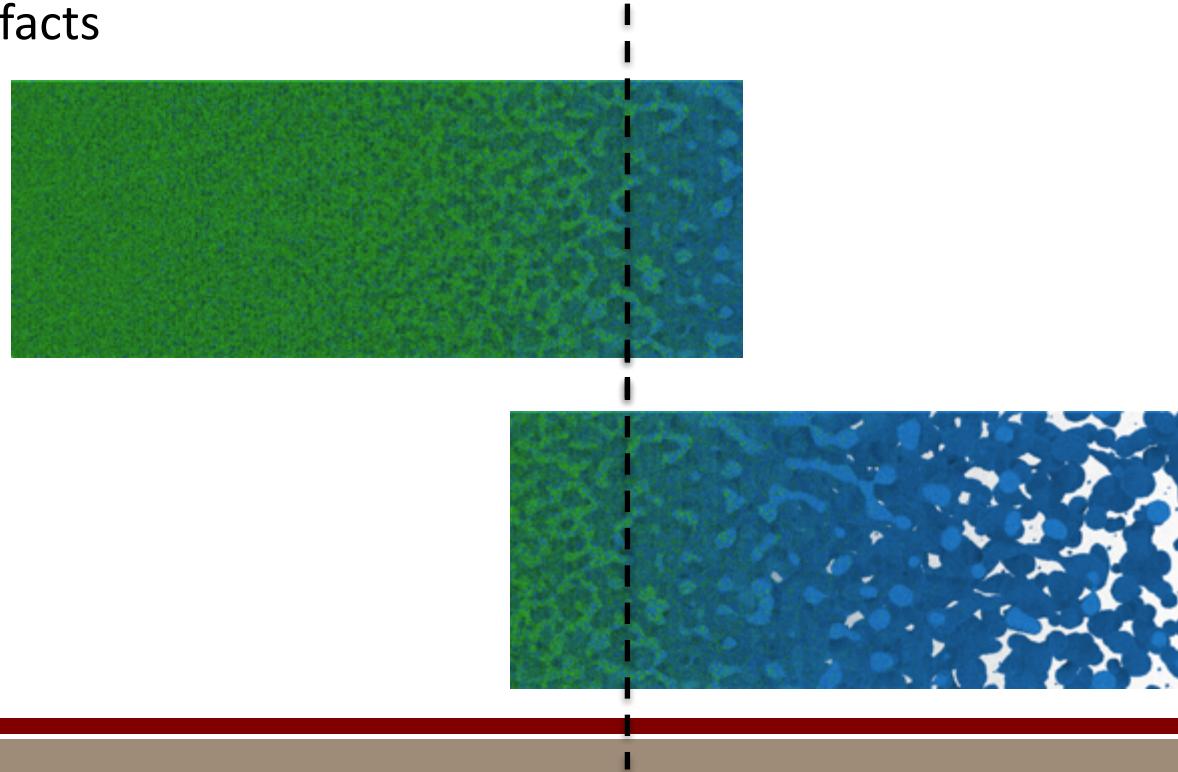
<https://github.com/materialsvirtuallab/mlearn>

Model Form Selection



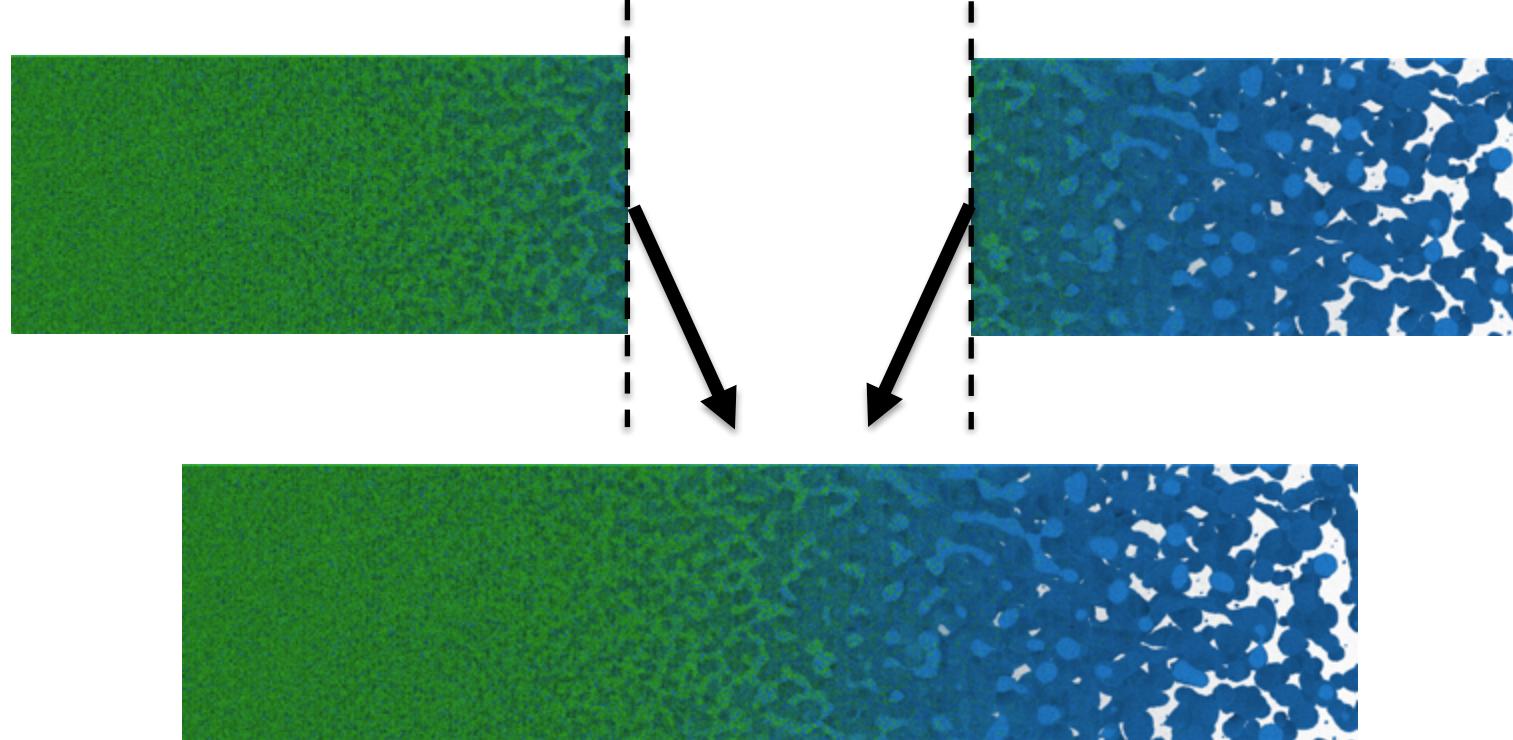
OVITO Parallelism Workaround

- LAMMPS reshuffles atom data between ranks so each rank has a “slice” of the simulation data in the x-direction
- Each rank outputs to a separate file (e.g. 8192 files total)
- MPI driver program launches separate instances of OVITO on many nodes
- Each OVITO instance loads atom data from “owned” slices, along with neighboring slice data to create a buffer zone to reduce visual edge artifacts



OVITO Parallelism Workaround (cont.)

- OVITO renders an image of the slice, including buffer zone, then the buffer region is cropped off
- Another MPI driver program stitches all the small slice images together in parallel to create a single large composite image



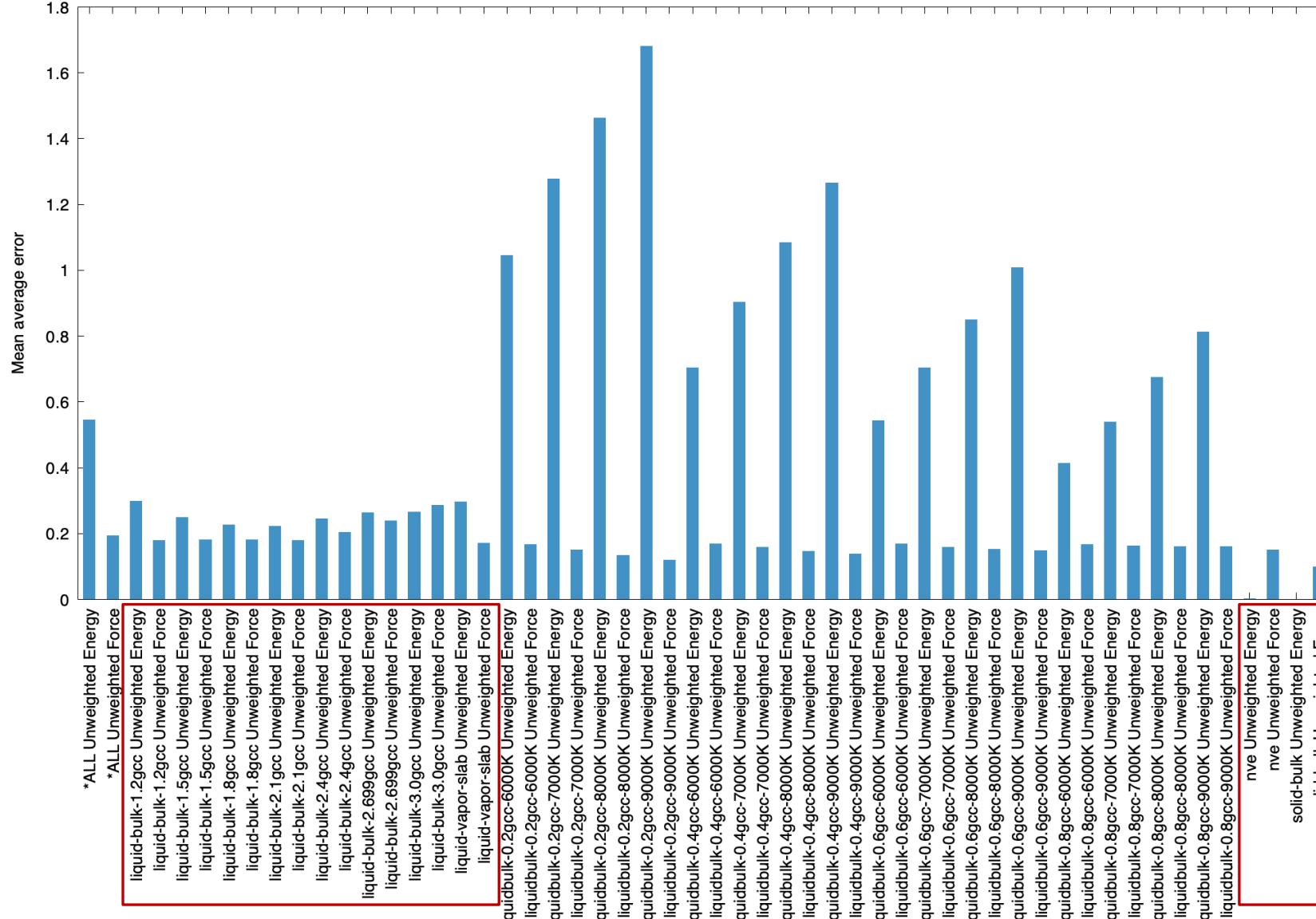
OVITO Parallelism Workaround (cont.)

Advantages:

- Highly scalable: large images are rendered in an (almost) embarrassingly parallel manner
- Can render more than 2 billion atoms

Disadvantages:

- Minor artifacts in lighting/shadows, but overall produces nice, usable images in parallel
- Can only visualize a single face straight on (so everything lines up), no 3D perspective views
- Would like to also try Paraview in the future (less domain specific, but MPI-enabled so requires less workarounds)



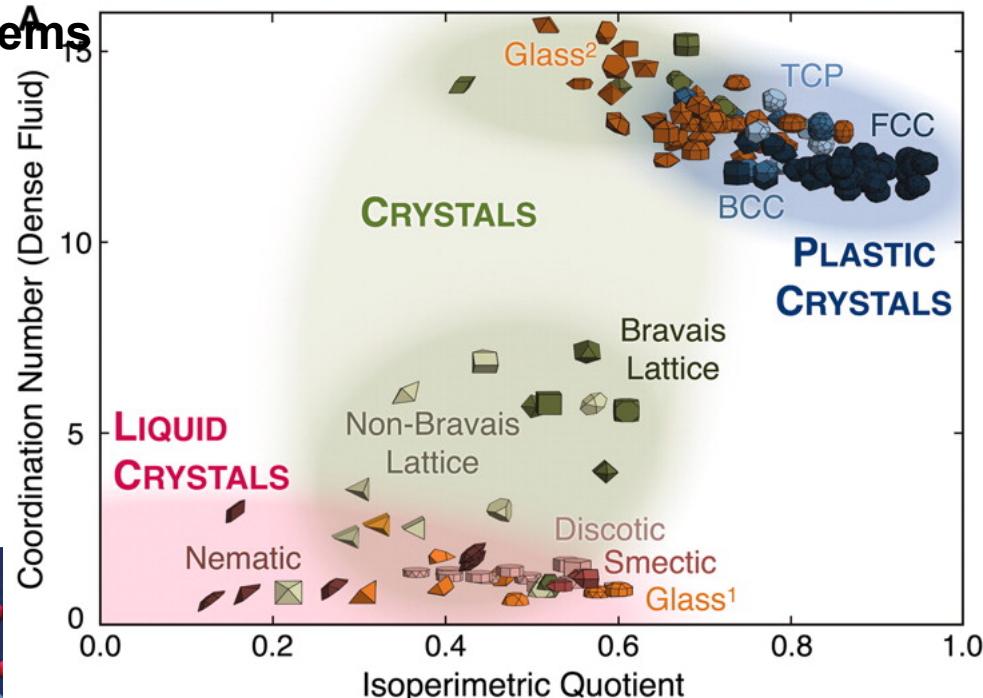
The May 16th potential performs poorly when extrapolating the <1 gcc configurations, especially on energies at higher temperatures.

Included in May 16th training set

Examples of Petascale Achievement

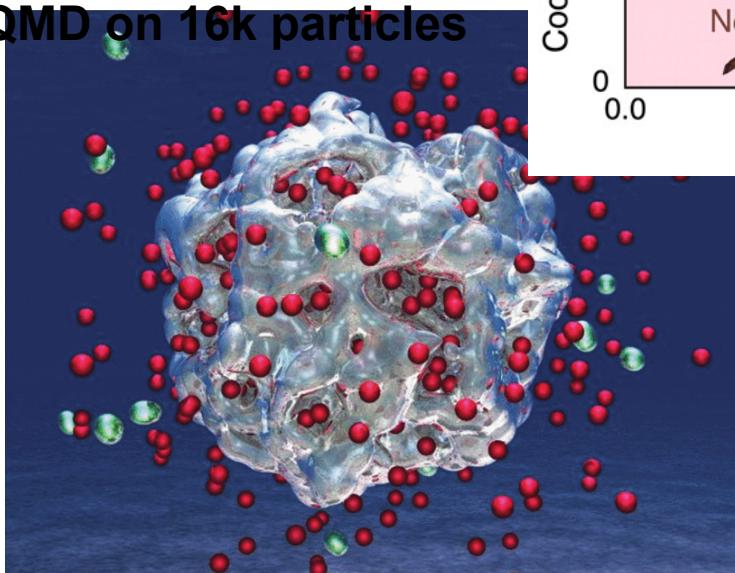
Phases of granular systems

Glotzer, Sharon C., and Michael J. Solomon. "Anisotropy of building blocks and their assembly into complex structures." *Nature materials* 6.8 (2007): 557-562.



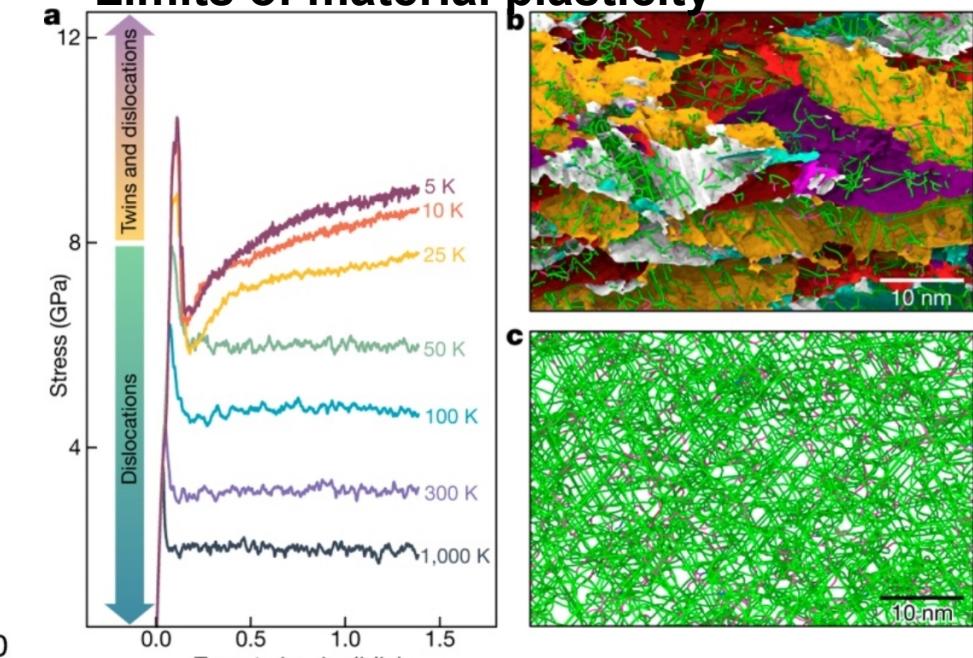
H production in Water/Al

QMD on 16k particles



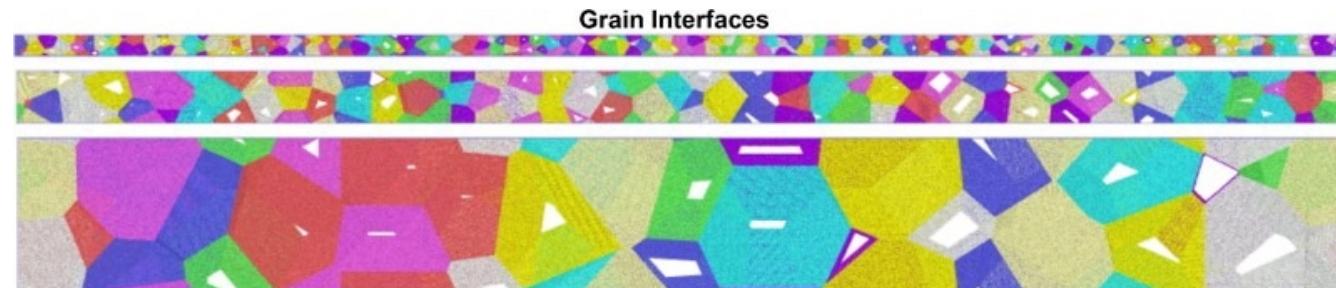
K. Shimamura et al., "Hydrogen-on-Demand Using Metallic Alloy Nanoparticles in Water," *Nano Letters*, vol. 14, no. 7, 2014, pp. 4000-4006.

Limits of material plasticity



L A Zepeda-Ruiz et al. *Nature* 550, 492–495 (2017)
doi:10.1038/nature23472

Shock Response of coarse grained explosives



Mattox, Timothy I., et al. "Highly scalable discrete-particle simulations with novel coarse-graining: accessing the microscale." *Molecular Physics* 116.15-16 (2018): 2061-2069.