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Motivating Application: Glass to Metal Seals

The connector is uniformly cooled from 600 °C to room
temperature, which causes stresses to build up due to differing
coefficients of thermal expansion.
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Motivating Application: Glass to Metal Seals

“Interesting”
phenomena at
material
interfaces

Several constitutive models with varying fidelities exist for the glass and metals.
e
How can we quantify the impact of this modeling choice? / h




Goal-oriented Error Estimation |

» Classical, a priori FEM error estimates are given in terms of
solution norms:

lu —u"|| < chul,

* These are not computable because they require knowing
the exact solution.

« Typically an analyst is interested in quantity of interest (Qol)
that is some functional of the solution.




Goal-oriented Error Estimation |l

« Goal-oriented error estimation provides computable
estimates of error in a quantity of interest (Qol) and has
most often been studied for discretization errors.

Figure 14: Sequence of meshes obtained for the example problem with gradient singularities for J2(u) using either the estimate ;
m or n2 at the third (left), fourth (center), and fifth (right) adaptive iterations. S

https://arxiv.org/pdf/2305.15285.pdf /



https://arxiv.org/pdf/2305.15285.pdf

Goal-oriented Model Form Error Estimation for
Constitutive Models

* Key idea: express the two physical models in terms of
coupled residuals:

e Equilibrium PDE (nodes) and constitutive model evolution equations
(quadrature points).

e Coarse scale (M):

RM(UM M) =0, n=12 ... N,
CL s¢), Upmiig 2D 0 Sen— 1 255N
@ Fine scale (m):
Rm(umjgm) i n=1,2

Cn 76, U180 1)— n =52




Goal-oriented Model Form Error Estimation for
Constitutive Models

@ Global state variables U live at nodes.

@ Local state variables & live at quadrature points.

Sandia
National
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Error Estimate Math |

@ Define prolongation operators (note the ’):
u, = [Imvuy,
&n = [IT1°ER".

@ Fine scale quantity of interest (Qol):

@ Expand Q™ — @' in a Taylor series:

N / /
m 4 - 8Qnm m __ gy 8Qnm m gl On LA
Q" — Q —Z{ (w?) (U7 - UL) + (agnm) (€7 =€) +E" 4

n=1 ‘e




Error Estimate Math |l

@ Expand the global and local constraints in Taylor series:

mepym ¢em\ _ p/ 8an f m gy aan R
RO(UZ. €M) = Ry + (G ) (UT - U+ (Ggn ) (€7 - &)+ EF

. o2\
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Error Estimate Math Il

e Adjoint system for a single (non-terminal) loadstep:

RPN . (9CI\T ol oCra\" . m
(ouz) 2+ (oug) #=—(oug) - (80"") o

ORIN" m , (OCPN" m_ (097 €T\ m
(85?) Z”*(@éﬁ‘) ¢”__(8€?) (85’") P

@ Compute element-level error contributions n®:

n® =(Z;)" Sl ) +(oale (CHs

—0




Proof-of-Concept Demonstration

« “Hello world!” for goal-oriented MFE estimation:
« Two linear elastic models (plane strain, quarter symmetry):
« Coarse model: E =200 GPa,v=0.3.
« Fine model: E =150 GPa,v =0.25.
» Local state variable: Cauchy stress.
* Qol: Average of displacement components (in quarter).

-4.8e-04 4.8e-04




Verification Check

« Compute Q™ - QM two ways:
1. Solve the forward problem twice (E_exact).
2. Compute the adjoint-based estimate (E_computed):
1. Solve the forward problem with the “M” model.
2. Solve the adjoint problem with the “m” model (always linear).
3. Compute the element-level error estimates n¢ and sum.

« Code output:

Q*M: 1.6118517806566819e-04
Q*m: 1.8159857938902549e-04

E_exact: 2.0413401323357300e-05
E_computed: 2.0413401323357283e-05

E_computed - E_exact: 2.3716922523120409e-20
E_computed / E_exact: 1.0000000000000011e+00




Error Localization and Adaptivity

 Estimate, localize, mark, and refine:

R

qE
-5.2e-07 1.1e-04 2o 1.7 el

Q*m: 1.815985793890254%e-04

- ——— base model (M)
Q*M: 1.611851780656681%e-04 flne mOdel (m)

error estimate: 2.0413401323357283e-05
error bound: < 5.0339224699379316e-05

89 ELEMENTS MARKED FOR REFINEMENT

Second solve/estimate:

Q*M: 1.8205643929058302e-04

error estimate: =-4.578599015575772%e-07
error bound: < 2.3044739576808756e-085




Motivating Application: Glass to Metal Seals

The connector is uniformly cooled from 600 °C to room
temperature, which causes stresses to build up due to differing
coefficients of thermal expansion.

SAND2021-15851 0
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Adjoints required:

* Pins and shell: metal
elastoplasticity —
https://doi.org/10.1002/nm
e.6843 .

 (Glass: thermoviscoelastic.



https://doi.org/10.1002/nme.6843
https://doi.org/10.1002/nme.6843

Thermoviscoelastic Materials |

* Time-varying, temperature-dependent material response.

* Important for modeling of aging components.
* Linear constitutive model:

O'@j

= K> (20— 30™T) 0, + 2%,
+AK J'6;; — 3A (aK) J36;; + 28T}
Lester and Long 2020, SAND2020-4973R .

* Hereditary integrals:

o g Bt \C e g ds
JUZ N Pl Jitk) — / exp | — s —
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Thermoviscoelastic Materials Il

* Hereditary integral discrete evolution equation:

(In+1TU
i (28 + Aty
= a™tir? 4+ At

o Shift factor:

e (T i BB = g—fds)
O (T L e — L") g—fds) '

WLF_Lag __

log,ga




Thermoviscoelastic Materials Il

Shift factor temperature dependence:

WLF Shift Factors
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Thermoviscoelastic Materials IV

* Prony series:

Table 2: Prony series fit of the volumetric and deviatoric spectra for verification

Term || 7 (s) wy () 7ii (s) wi ()

1 1.0x 1071% | 1.06 x 1072 || 1.0 x 1071° | 4.96 x 1073
2 1.0x 107 | 1.14 x 1072 || 1.0x 107 | 6.85 x 1073
3 1.0x 1078 | 1.64 x 1072 || 1.0 x 1078 | 1.14 x 1072
4 1.0x 1077 | 227 x 1072 || 1.0 x 1077 | 1.97 x 1072
5 1.0x 1070 | 263 x 1072 || 1.0 x 107 | 2.64 x 1072
6 316 x 1075 | 885 x 1073 || 3.16 x 107% | 1.13 x 1072
7 1.0x107° | 252 x 1072 || 1.0 x 107° | 2.98 x 1072
8 316 x 107° | 1.94 x 1072 || 3.16 x 107 | 2.75 x 1072
9 1.0x 107 | 280 x 1072 | 1.0 x 107% | 4.02 x 1072
10 316 x 107* | 2.83 x 1072 || 3.16 x 107* | 458 x 1072
11 1.0x 1073 | 341 x 1072 || 1.0 x 107* | 5.76 x 1072
12 316 x 107 | 3.70 x 1072 || 3.16 x 107* | 6.74 x 1072
13 1.0x 1072 | 419%x 1072 || 1.0 x 1072 | 7.90 x 1072
14 316 x 1072 | 458 x 1072 || 3.16 x 1072 | 8.85 x 1072
15 1.0x 1071 | 5.02x 1072 || 1.0 x 107 | 9.56 x 1072
16 316 x 1071 | 539 x 1072 || 3.16 x 107! | 9.72 x 1072
17 1.0x 107" | 571 x 1072 || 1.0 x 107° | 9.17 x 1072
18 316 x 107° | 593 x 1072 || 3.16 x 107° | 7.79 x 1072
19 1.0 x 101 | 6.03 x 1072 1.0 x 101 | 5.75 x 1072
20 3.16 x 101 | 597 x 1072 || 3.16 x 10! | 3.49 x 1072
21 1.0 x 102 | 572 x 1072 1.0 x 10 | 1.63 x 1072
22 3.16 x 102 | 530 x 1072 || 3.16 x 10 | 5.26 x 1073
23 1.0 x 103 | 4.66 x 1072 1.0x 10* | 1.05 x 1073
24 3.16 x 10% | 3.95x 1072 || 3.16 x 10* | 8.72 x 107°
25 1.0 x 10* | 3.03 x 1072 1.0 x 10 | 1.29 x 1072
26 3.16 x 10* | 2.34 x 1072 1.0 x 10° | 2.67 x 107°
27 1.0x10° | 134 x 1072 || 1.0x 1076 | 4.17x 1077
28 3.16 x 10° | 1.12 x 1072 - -

29 1.0 x 105 | 1.56 x 1072 - -

30 3.16 x 10% | 4.84 x 1073 - -

from fit in Kuether [27].

iy




Thermoviscoelastic Materials V

e Constitutive model:

J?j—l—l = a;"j + KdEkkﬁij + QﬂdE;J -3 (Gﬁk) dT(S@g

—AKAt Z; a”*l’:g"kJr ~ (Jrlb(k) + dEkk) 0ij + 3AtA (aK) Z l (Jﬁ(k) + dT) O

g atirty + At
S wy 2(k) /
—OA® antiTE 4 At ((‘]f*’j )n " dg*'j) ’
k=1

n=

 Leads to ~ 200 local state variables... not tractable!

 \We have a solution.




Thermoviscoelastic Coupled Formulation

 QOriginal coupled approach:

R" (U™, ") =0, n=1,...,Np,
C,(Uz, Uy ', €0,6071)=0, e=

 New coupled approach:

Rn(Unﬁgn):()? n: b} '7NL)
(Ut 2 e ) Rl (FE S LV
"_1):0 e L N (N [ A

(BT Y

* Hereditary integral discrete evolution equation:

n+l v
g = T R (I EIETR T

"l et 4 NS /




Glass-to-Metal Seal Exemplar

« Two materials (low-fidelity / high-fidelity):
: thermoelastic / thermoviscoelastic.
« Metal shell: thermoelastic / thermoplastic.
* Qol: Average of g, Or agg in the glass near the interface.

Figure 3. Photo of the Concentric Glass-to-Metal Seal Used for Validation
Purposes. -

SAND2017-10894




Glass-to-Metal Seal Exemplar

« Two materials (low-fidelity / high-fidelity):
: thermoelastic / thermoviscoelastic.
« Metal shell: thermoelastic / thermoplastic.
* Qol: Average of g, Or agg in the glass near the interface.

Element blocks Compression from coolingdplastic

laboratories



Glass-to-Metal Seal Exemplar

« Two materials (low-fidelity / high-fidelity):
«  Glass: thermoelastic / thermoviscoelastic.
« Metal shell: thermoelastic / thermoplastic.
» Qol: Average of g,,- Or ggg in the glass near the interface.

Displacement Magnitude along Line for all Models

| == Thermoelastic glass and shell

——— Thermoelastic glass, thermoplastic shell

| Thermoviscoelastic glass, thermoelastic shell
= Thermoviscoelastic glass, thermoplastic shell
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Glass-to-Metal Seal Exemplar |

« Two materials (low-fidelity / high-fidelity):
: thermoelastic .
« Metal shell: thermoelastic / thermoplastic.
* Qol: Average of ... in the glass near the interface.

* Forward solves: coarse + fine times ~ 5.5 min .
« QM =-157 MPa.
¢« Qm=-123 MPa.
« E exact=QM-QM=34.04 MPa.

« Adjoint-based error estimate: 2.5 min!
« E_estimated ~33.95 MPa.
« Effectivity =0.997 .
* Close estimate at half the cost (46%).




Glass-to-Metal Seal Exemplar |

« Two materials (low-fidelity / high-fidelity):
: thermoelastic .
« Metal shell: thermoelastic / thermoplastic.
« Qol: Average of gy in the glass near the interface.

« Forward solves: coarse + fine times ~ 5.5 min .
« QM =-204 MPa.
« QMm=-162 MPa.
« E exact=Qm-QM=42.24 MPa.

« Adjoint-based error estimate: 2.5 min!
« E_computed ~ 40.08 MPa .
« Effectivity = 0.949 .
* Close estimate at half the cost (46%).




Glass-to-Metal Seal Exemplar Il

« Two materials (low-fidelity / high-fidelity):
«  Glass: thermoelastic / thermoviscoelastic.
» Metal shell: thermoelastic / thermoplastic.
* Qol: Average of g, Or ggg in the glass near the interface.

Displacement Magnitude along Line for all Models

| == Thermoelastic glass and shell

——— Thermoelastic glass, thermoplastic shell

| Thermoviscoelastic glass, thermoelastic shell
= Thermoviscoelastic glass, thermoplastic shell
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Glass-to-Metal Seal Exemplar Il

« Two materials (low-fidelity / high-fidelity):
: thermoelastic / thermoviscoelastic.
« Metal shell: thermoelastic / thermoplastic.
* Qol: Average of g,.. in the glass near the interface.

« Forward solves: coarse + fine times ~ 8.66 min .
« QM =-157 MPa.
e« QMm=-124 MPa.
« E exact=Qm-QM=33.19 MPa.

« Adjoint-based error estimate: 4.33 min!
« E _estimated ~34.10 MPa.
« Effectivity =1.03.
* Close estimate at half the cost (50%).




Glass-to-Metal Seal Exemplar Il

« Two materials (low-fidelity / high-fidelity):
: thermoelastic / thermoviscoelastic.
« Metal shell: thermoelastic / thermoplastic.
« Qol: Average of gy in the glass near the interface.

« Forward solves: coarse + fine times ~ 8.66 min .
« QM =-204 MPa.
« Qm=-155MPa.
e E_ exact=Qm-QM=49.63 MPa.

« Adjoint-based error estimate: 4.33 min!
« E _estimated ~61.88 MPa.
« Effectivity =1.25.
* Close-ish estimate at half the cost (50%).




Summary and Conclusions

» (Goal-oriented constitutive model form error estimation:
« Split equilibrium PDE and constitutive equations.
« Solve coupled adjoint problem and use its solution in the
error estimate.
» Possibilities for constitutive model adaptivity.

» Adjoints for thermoviscoelasticity:
* Hereditary integrals introduce many new local state

variables.
e Qur formulation introduces new constraints to minimize

storage costs.

* Application to nonlinear glass-to-metal seal problem:
» Error estimate often close to exact error and costs less {0
obtain than the brute force approach.




