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2 I Roadmap

« This talk will survey a body of work performed at Sandia over the past decade or so.
 The common theme for this work is ” interface problems” ‘
» The variations are a result of discretizing the interface:
» Discretized interfaces are spatially coincident (but can have non-matching grids)
* Focus on partitioned schemes derived from monolithic formulations of the coupled problem I

» Discretized interface are spatially non-coincident ]
« Focus on coupling algorithms that can handle gaps and overlaps between interfaces

Thanks to my collaborators
« J. Cheung Millennium Space Systems, A Boeing Company,
* A. DeCastro Clemson University/SNL
* M. Gunzburger UT Austin r
* P. Kuberry SNL |
* M. Perego SNL
« K. Peterson SNL
« C. Sockwell SNL

|. Tezaur SNL
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3 I The theme and the variations

Problems with (physical or numerical) interfaces Spatially non-coincident interfaces
 Interface is physical or numerical, e.g., due to meshing
U, +Lu;, =f; in Q . . » Separate meshing creates 2 distinct, non-coincident
Subdomain equations versions of the same interface.

Uy + Louy, = in Q : .
z 2U2 = f2 z * Property-preserving data transfer between non-coincident
w =, ON ¥ Continuity of states interfaces remains a challenge.
1= Uz
y » Existing approaches involve complex mesh manipulations.

—F; =F, ony Continuity of fluxes

!

Partitioned schemes based on monolithic formulations

Interface is physical, e.g., material property.
Mesh is interface-fitted but not necessarily matching.

A partitioned scheme is developed from a well-posed
monolithic formulation of the coupled problem

Subdomain problems solved independently by different codes.
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4+ I Basic types of partitioned methods (PM)

PM having an “iterative” basis Mathematically equivalent to a single step of an iterative method, e.g.,

fixed point, non-overlapping Schwarz, etc.

/’111 + Loy = f; in @~ * Small number of steps = stability & accuracy issues

u, or F, u, or Fy
\\1:12 + Lzuz - fz in nz/

Common mitigation strategies: optimized, Robin-like transmission
conditions (J. Banks), Anderson acceleration (R.Pawlowski, CASL) |

A. de Boer, A. van Zuijlen, H. Bijl, Review of coupling methods for non-matching meshes, CMAME 196
(2007). Domain Decomposition Methods: recent advances and new challenges in engineering

PM having a “monolithic” basis « Use Lagrange multipliers to enforce continuity of states
» Lead to semi-discrete problems that are Hessenberg index-2 DAE

1.1'.1 +L1u1 - fl ]n Ql
v, = fi(t,y,z)  y - differential variable
U, + Lou, = f, in Q, » v, = fo(t,,2) z - algebrai_c variable-_ Note: g does not depend on z!
0=g(ty) g - algebraic constraint I

(uy —uz,A), =0 on vy

* Not "compatible” with explicit time integration: it “deletes” the constraint

K. C. Park, C. A. Felippa, R. Ohayon, Partitioned « Resulting PM methods not truly explicit and resemble projection methods
formulation of internal fluid—structure interaction ) ) o
problems by localized Lagrange multipliers, CMAME  Have “hidden” constraints and are more difficult to solve

190 (2001).
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5 I Explicit synchronous partitioned scheme (ESPS)

ESPS has a “monolithic” basis and comprises the following steps:

Step 1: reduce the DAE index of the monolithic problem

J-f1=f1(t:y;z) 3.’1=f1(tpy,2)
v, = f2(t,y,2) » yv2 = fo(t,y,2) where the Jacobian d,g is non-singular |
0=g(y) 0=g(yz2)
Hessenberg index-2 Hessenberg index-1 ’
Step 2: eliminate the algebraic variable \ 4

J.}1 = f1(t,y,Z)

y2 = f2(t,y,2) » = fi(ty z(ty))

' 0 = g(t,y,z) defines an implicit function z(t,y)
yz = fZ(try!z(tly))

0=g(y z)
Step 3: apply explicit time integration « Subdomain equations can be solved independently! ]
w1 ; - » Explicit time integration effectively decouples the system |
Y1 :fl(t* yhz(thy )) « Remains equivalent to the parent monolithic problem
v+ - f (t, y E[t”_ yﬂ)) * No splitting error!

« K. Peterson, P. Bochev, and P. Kuberry. Explicit synchronous partitioned algorithms for interface problems based on Lagrange multipliers. Computers
& Mathematics with Applications, 78(2):459 — 482, 2019.
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6 I Model Solid-Solid Interaction and Transmission Problems

SSI TP
i; —V-oi(u) = fi in€x[0,T] =19 Subdomai pi =V Filp)=/fi im Qux[0T]
w; = g, onl;x][0,T] u otr.nam 0; =g in Tyx[0,T] ;
) = A (Y - s equations
ogi{w;) = N(V - u) I + 2p,e(uy;) Fi(s) = €V 05 — ug;
u;(0,2) = wug(z)|, iny Initial : :
: . 2 i=1,2; -C wi(€,0) =p;o(x) in Q; i=12;
ui(0,z) = do(z)|, inQ conditions i(,0) = guol®) Z ’
ui(x,t) = us(a,t : o1(x,t) — pa(x,t) =0
(. %) (@.%) on vy x[0,T]. Coupl.lng ' ’ on v x[0,T].
o1(x,t) - n, = oy(x,t)  n, conditions Fi(z,t) -n, = Fy(x,t) - n,
i
Monolithic problem (weak form)
i
seek {uy,ug, t} € HL(Q) x HL(Q) x H™Y2(%) such that seek {©1, 02, A} € HE(Q1) x HA(Qy) x H™Y2(v) such that |
('dlv"’l)o,s'zl + {t, Ul>«, = (flv'vl)o,szl - (01(”1)75(7’1))0,01 Yoy € H%(Ql) (iﬁlﬂﬁl)o,gl -+ <>\a¢1>aY = (fl:%)o,gl - (Fl(%)av%)o,gl Vi € HE ()
(U2, v2) g, — (t:v2), = (f2,02)00, = (02(u2),6(v2))g 0, Vo2 € Hp(Q2) (D2,92)g 0, — (M A2), = (fa,92)gq, — (Fa(02), Via)g o,  Vib2 € HE(Qs)
(Ui — s, s)., = 0 Vs € H-1/2(y) {(p1 — 2, 1), dS = 0 Vpe H12(y)

~




7 I ESPS for the Solid-Solid Interaction Problem

Step 1. Spatial discretization: seck {uf,uf,t"} € Si'p x Si'p x G} such that

SAND2023-XXXX

(if, i o, + (" 01),, = (fu.ol)oq — (ou(uf) e(v!))og, Vol €SPp
(@5, v5)o0, — (¢ v8), . = (f2,03)0,0, — (02(u3). c(v}))o, Yvi € S3p =)
(u’f — ué‘, Sh)o o = 0 Vsh e G;L

Mlﬁl + GTt = f1 (U.l)
Mzﬁz - th = fQ(U.Q)
G1u1 — GQUQ = 0

We assume spatially coincident interfaces (no gaps or overlaps) but allow non-matching grids.

Step 2. Index reduction: Assume ug(z™) = ug(x™)and wo(z™) = wo(z )on y.

[ U (x. t)=u2(xt) » iy (x, t) = iy (x, t) ] »

Mlﬁl + G{t = f1 (U—l)
Mgﬁz - th = fg(llz)
Giu; — Gaug =0

It is easy to check that this problem has the Hessenberg Index-1 structure: set

[ Ml_l (fl(ul) — G?t)
f(tvywz) = ]\/[2—1 (fQ(llQ) 1 th)
y = (ulrufZ); and -
7 = t, g(t,y,z) = St — GlMl_lfl(ul) + G2M2_1f2(112) »

y=f(«tyz)
0=g(tyz)

S =G M 'GF + GoM; ' GE
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s I ESPS for the Solid-Solid Interaction Problem

Step 3. Reduction of the DAE to the underlying ODE: lumped mass matrix case

Monolithic problem assumes a form where 1
M., 0 GT i 0 0 [, ] [ fir()]
9 . ’ ——
0 M., —GI 0 0 ity £, (us) Interface blocks
G G 0 0 o || t = ? __________ are completely separated from the
0 0 0 : M o 0 l.,'ll’() i O(ul)
0 0 0 i 0 Mo | | 20 | | fyo(up) | «— interior blocks

Ml; 0 GT 1"11’ f17 (ul)
{ 07 My, —cig” } { uzz J = { fg,z(ug) } Note: solvability of the Schur complement

------------- requires G, and G, to have full column ranks

and solve the resulting equation for the interface force:

(GiM Gl + GaM; Gy)t = (Gi M f1 ,(u1) — GoM; 15 5 (us))
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9 I ESPS for the Solid-Solid Interaction Problem |

Step 3. Reduction of the DAE to the underlying ODE: consistent mass matrix case

Monolithic problem assumes a form where 1
[ Ml’ 0 GT M1 0 0 171 1'11’ i [ f17 (111) i
! P I k «—— Interface blocks |
0 szfy —G2 0 Mgﬁo Uy ~ fgﬁ(ug)
G ~Ga 0 | 0 0 t | = 0 are not separated from the .
Mg, 0 0 Mgy 0o || o || fo(u) o
N - o votw) interior blocks
0 M 0~ 0 0 Mo | | u20 | | fr0(u2) |
Step 3a. “Static condensation” of the interior variables Step 3b. Form Schur complement and solve for t
[ Ay 0 Gr{ 11T ug . | [ rfl,'y(ul) |
| T : = — = —19 —17
_____ 0 A —Gy || ey | = | f2q(ua) = (G1AT Gl + G2A70) t = (GlAL}yfm(ul) — GlAQ}},fm(uQ)) .
| Gl _G2 E 0 | | t | | 0 |
Modified mass and force terms ‘

s

Ai = M; o — M; oM 5 M o, fi (@i) = fi (@) — Mi,f}/OMiTOlfi,O((pi)



SAND2023-XXXX I

10 ‘ ESPS for the Solid-Solid Interaction Problem |

Step 4. Explicit time discretization of the underlying ODE: D™*1(u;) = ut(t"*1)

We obtain two independent sets of fully discrete equations on each subdomain:

M;., 0 Dy, [+ (—1)'GHn |
) g : — Y ! Lumped mass matrix case
[ 0 Mo ] [ Dnﬂui,o i f; 0 P |
.. _ T
Mi,'y Mi,'yO Qn+1ui,7 _ fﬁy T (‘UZGi t" Consistent mass matrix case
M;oy M;o D"ty i £

» Time discretization both discretizes the system in time and decouples the subdomain equations
* As long as time step is within the stability region of the time integrator, the partitioned scheme is stable r
« Not subject to splitting errors characteristic of iterative partitioned methods

 The only error incurred is the time discretization error

Here we use the second central difference D" (u;) = (u"™! — 2u”? + u" 1) /At?

2
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11 I ESPS analysis

Hessenberg Index-1 DAE requires a non-singular Jacobian d,g. For ESPS we have that

g(t,y,2) = St — G My fi(w) + GaMy o (u) well-posedness of ESPS requires a

= 9,9 =S5 where S=G M 'GT +GyM;'GY ? non-singular Schur complement S.
I
Variational approach: the matrices in S are generated by two bilinear forms forming a “mixed problem” |
a(u?vug;v?avg) — (u?,’l]{b)oﬂl + (US,US)O,QQ and b(v?av&th) = (IU{L - v37th)0,7
= To show that the Schur complement S is non-singular we use Brezzi’s saddle-point theory:
1. a(:,) is coercive on Z = {(v,,v,)|b(v,, v,; t) = 0 Vt}. 2. b(-,) satisfies the inf-sup condition
Trivially satisfied because :

b(vl, vl s™)

2 1y %¥2> h

a(vr,vy;v7,v3) = [0P]5 o, + 103116, = [|v1;v5]] . sup ol ol ] > plls™ly
{vivyeX XX

isanormon S p X S5
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12 I ESPS analysis
Lemma: Assume that the Lagrange multiplier space G,}; is such that there is an operator Q : G5 — SP X S5
[s" o < C1 (s, (Qs")1 — (Qs")s),. Vs" € G, and [[|Q(s")][| < CohSlslloy, a0 ‘

Then b(-,) satisfies the inf-sup condition, G* = (G¥,G%) has full column rank, and the Schur
complement S = G1 M 'GT + GoM;'GY is SPD. [

A sufficient condition for the existence of the operator Q is the following Trace Compatibility Condition:

Every Lagrange multiplier is a trace of a finite element function from

Y one of the two sides of the interface. oA
O ——9 —®
Lemma. Assume that h; < hy and let p = ho/hy > 1.
o— — T—T
i
1. If the Lagrange multiplier space G =G} then x(S) < Cpi1t |
¥ 9 ¥ oW
— 2. If the Lagrange multiplier space G” = G4 then £(S) < Cp*




SAND2023-XXXX

13 I Numerical examples: Solid-Solid Interaction (SSI)
Patch test p N
Linear Elasticity
w; —V-oi(u;) = f,
ai(ui) — )\Z(V . ’U,Z)I + QJLLZEZ'(’U,@;)
A =400 and p; = 400
Manufactured Solution
T u(x) = (3z + by, 8x — 4.3y)
NN Error Norm IVR(L1) IVR(L2) IVR(L12)
! L2(0,T; L2(Q)) | 5.166e-04 1.468¢-06 2.223e-15

L?(0,T; HY(Q)) | 1.683e-02 2.679¢-05 3.412¢-14

LM mesh: coarser finer common




14 I Numerical examples: Solid-Solid Interaction (SSI)

Discontinuous patch test

|

A AAAAAAAAAA
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\-

Manufactured Solution

(z) = —09+2x+0.1y 18 —20x — 2y
e = 0.15 015
B —094+ 2+ 0.1y 18 — 20 — 2y
s (z) = (100( T ) - 99),100( T ) + 1980))
u; — V- oi(u;) = f;
a'?;(u?;) — )\Z(V . Uﬁ)I —+ Quisi(ui)
A =40 and py =40 |
A =04 and pe, =04

B T 434 . I 3909090 |

Error Norm

TVR(L1)

IVR(L2)

IVR(L12)

L*(0,T; L*(Q))
L*(0,T; H'(2))

1.093e-04  5.418e-07 4.832¢-13

4.591e-02

1.083e-04 6.658e-11

LM mesh:

coarser

finer common

I i Em B



15 I Numerical examples: Solid-Solid Interaction (SSI)

Convergence

'U,z — V . O'q;(u?;) = f?;
oi(u;) = XNi(V-u)l +2pe:(u;)
A=0.864198 and p=0.37037

\

Manufactured Solution

u(zx,t) = (3sin(x) sin(y) cos(t), sin(z) sin(y)t)

L*(Q) Error

Ponin (1) hmin(Q2) At IVR(1) TVR(2) IVR(12)
0.378545  0.113981 0.00371833  0.0146414 0.0146403 0.0146404
0.220723  0.0672413  0.00185917 0.00353829  0.00349268  0.00349301
0.107240  0.0359195  0.00101409 0.00095948  0.000854641  0.000854613
0.0514682  0.0196624  0.00053119  0.00033852  0.000217698  0.000217665
0.0277461  0.00957506  0.00024789  0.000141964  5.53096e-05  5.52471e-05
Rate 1.73 2.08 2.08

L (Q) Error LM mesh: coarser finer common
h,m.m (Ql ) h.,m'n (QQ) At IVR( 1) IVR(2) IVR( 1 2)
0.378545 0.113981 0.00371833 0.341327 0.340643 0.340643
0.220723  0.0672413  0.00185917 0.16736 0.16385 0.163848
0.107240  0.0359195  0.00101409 0.094672  0.081204  0.0812045
0.0514682 0.0196624 0.00053119 0.0701869 0.0404745 0.0404726
0.0277461  0.00957506 0.00024789 0.0576898  0.0204939 0.0204888
Rate 0.657 1.05 1.05




16

Numerical examples: Transmission Problem (TP)

Discontinuous patch test

1.5

Mesh

0.8
06|
0.4
0.2

-

Advection Diffusion N 4

©i — V- (eVp; —up;) = f;

€1 =0.01 e =0.1

Manufactured Solution
p1(x,t) =2x 4y
wa(x,t) =020 +y + 1.8

SAND2023-XXXX E
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2N J
Pure Diffusion u; =us =0
Error Norm | IVR(1) IVR(2) IVR(12)
L2(Q) 1.899e-04 3.963e-07 4.365e-14
H! (Q) 7.510e-03 8.674e-06 1.920e-12
LM mesh: coarser finer common

Moderate Advection u; = us = (—sin(7/6), cos(7/6))

Error Norm | IVR(1) IVR(2) IVR(12)
L2(Q) | 1.269¢-02 2.003¢-05 1.700e-13
HY(Q) | 5.098-01 3.573¢-04 5.149e-12




17 I ESPS implementation in production codes

ESPS has been deployed in Sandia’s Forte software to couple Alegra and Sierra SM codes.

Consistency test

VELOCITY_X

Exact >

Alegra: 10x10x50 VELOCTY. X

Forte D

Sierra: 15x15x50

SAND2023-XXXX
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ESPS implementation in production codes

Axial pulse bar test o
Alegra: 10x10x50 velocity_

—0.000+00
=250

500

750

—-1000
Z-1.1002+03

VELOCITY_Z

—0.0002+00

Alegra: 10x10x50

Sierra: 15x15x50

VELOCITY_Z

—0.000=+00

250
500
-750
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19 I ESPS extension to non-standard coupling conditions

Earth system models (EjSM
» Coupled ocean-atmosphere problem with velocity and temperature states
» Ocean-atmosphere fluxes defined by a parameterization of the surface layers
* Results in the “bulk” coupling conditions
Lemarié, Blayo, Debreu (2015) Proc. Comp. Sci.; M. Gross, et al. (2018) MWR
Ou, o PasUq, 1Tg
pava it — pu, 2~z onT 7= puCyl[ul[u] [u] =u,—u, onT T
0z 0z .
T, orT,
paKaa = poKoa =Qnet ol Qnet =R+ pColl[u]l[7] [T]=T1.—-T1, onT

We consider the temperature equation with a prescribed velocity

« ESPS requires a monolithic system in which the flux is one of the variables

: 0 0 oT,
T, + %(uaTa) -

EKG.W * For standard coupling conditions the flux is the Lagrange multiplier
« This is not the case for the bulk condition where the flux and the state are connected
* To get the desired monolithic formulation with the bulk condition:

» Directly introduce the flux as a new variable 4

* Close the system by adding the bulk condition as a third equation
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20 | ESPS with the bulk condition

The strong monolithic problem: system of 3 equations

Atmosphere Ocean Bulk condition
: 0 o . JT, . 0 0 oT,
. . e (L = — K, 0 =T, - T, r
Equations mmmp o 1o g (nTd) = g e i Tot gplueTo) = 5 Ko, Itk olfa=To) on L
Ka%if =A onl' «—=—Neumann BC > Ko%j;" =—-A onTl I

Semi-discrete monolithic problem: has the structure of a “stabilized” mixed formulation

M, T, +GTX
M,T,—GTX
oG, T, —aG, T, — MprX

f,(T,) » The interface equation is not a result of using a Lagrange multiplier
£,(T,) * Itrelates A to T, and T, but not their time derivatives
0 * We can’t use the Schur complement as in the standard interface case

Simple solution: Discretize in time, then solve the fully discrete problem for the flux 4

i
n+1__mn )
M, (T e ) + GTX = £,(T7) =\ L
M T, =T\ GT\N =f (Tn) ) A= (AtG:{AalGa + AtGy AJ'G, — a]) (GaTA(:lgu(T:) - GoTAglgc)(Tg))
0 At 0 — tolto '
aG, Tt — oG, TN+ — f\,'.fr)\ —0 With explicit time stepping only involves information from old time step!

K. C. Sockwell, K. Peterson, P. Kuberry, P. Bochev, and N. Trask. Interface flux recovery coupling
method for the ocean—atmosphere system. Results in Applied Mathematics, 8:100110, 2020
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21 I ESPS with the bulk condition: numerical results

Manufactured solution (temperature equation + velocity field)

 Awave in the horizontal direction with a discontinuity across the

interface.
* Test case models the heat exchange between the ocean and
atmosphere.
Mesh (£2,) Mesh (Q2,) | At BIVR(A,) BIVR(A\,)
16 x 8 12x6 | 1.33e-02 2.09¢-00  2.09¢-00
32 x 16 24 x 12 | 6.67¢-03  3.40c-01  3.40e-01
64 x 32 48 x 24 | 3.32e-03  6.18¢-02  6.18¢-02 i
128 x 64 96 x 48 | 1.66e-03 1.30e-02  1.30e-02 ;
Rate - - 2.25 2.25 . 2
Mesh (9,) Mesh (Q,) | At BIVR(A,) BIVR(A.) ™' ; 2
16 x 8 12x6 | 1.33e-02 5.66e01  5.66e01 ol o
32 x 16 24 x 12 | 6.67¢-03  2.78c01 2.78¢01 *
64 x 32 48 x 24 | 3.32e-03  1.37¢01 1.37e01
128 x 64 96 x 48 | 1.66e-03  6.84e00  6.84e00 ! 01
Rate - - 1.01 1.01 '

K. C. Sockwell, K. Peterson, P. Kuberry, P. Bochev, and N. Trask. Interface flux recovery coupling
method for the ocean—atmosphere system. Results in Applied Mathematics, 8:100110, 2020



SAND2023-XXXX

2 I ESPS extension to reduced order models.

Recall the production implementation of ESPS, which solves a coupled structure-structure interaction
problem with two different materials modeled by Sierra SM and Alegra, resp.

Axial pulse bar test

u,l -V OZ(’LLI) = fz n Ql X [O,T]
w; = g; onl;x[0,T]’

oi(w;) = N(V - w  + 2pe(u;)

velocity_Z

1=1,2

Material 1 - Sierra

on v x [0,7]. s

Material 1 - Sierra
Material 2 - Alegra

VELOCITY_Z

Material 2 requires a much finer mesh than
Material 1. Replacing the FE code for Material
2 (and/or Material 1) by computationally
efficient ROM can speed up the simulation.



23 I Model Order Reduction (MOR) for Parametric PDEs (uPDEs)

Basic idea: the solution u(u) of the uPDE: w + L(u,u) = f; u € RP is often a “nice” function of u.

« A good approximation for u(u) can be computed from snapshots u(u;) sampling the parameter space

A proper orthogonal decomposition (POD) Galerkin projection approach

Step 1: compute a reduced basis (RB)

* Collect n snapshots u; (coefficients of u(u;)) and compute the SVD:

>
0
* Given tolerance § > 0 choose d such that fo‘ ~>1-0

g
j=1"

- Define the RB as the d left singular vectors, i.e., the matrix U

Step 2: Galerkin projection onto the reduced basis

Il
|
Y]

a(u,v)=f(v) forall veV » Ku=f » u

Full Order Model (FOM): mXxm

S=luy - uy] = vV’

2]
frun 0 zg‘un Vt?un

S~§=UsyT Low-rank approximation of S

» U'KUa=U"f d<m

Reduced Order Model (ROM): dxd

SAND2023-XXXX E
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24 I ESPS extension to ROM+ROM and ROM+FEM couplings

Full subdomain RB are commonly found in Domain Decomposition for ROM. Can they work for us?

A full subdomain RB formulation. Inhomogeneous Dirichlet conditions B (x, t)

A
U
Uo

<—— RB = columns of U,

¢ = m Sp= =UnEnVnT“3"ﬂ=

Full subdomain: RB

includes both interior
IE 01919]1° n and interface DoFs

— 7 > «d-> @® - Interior nodes
@ - Interface nodes
ROM-FEM coupled problem. (ROM-ROM very similar) O - Dirichlet nodes
RB projection: ~ - S e
proj Mipr+GiXx=Ulf(Uspr + B) Y TTT AL T
N ) - . M1 = UO M1U0
‘bl — UD‘FR"'B > M, P, —G2A2f2(¢2> - _
GT .= ULGY.

Gipr — Ga®y = 0,
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25 I Full subdomain RB formulation: issues.

Key issue: the Schur complement is not provably non-singular!
* To understand the problem, consider the lumped mass matrix case and the ROM-ROM coupling I
i

M, O GT 0 0 <«—— |nterface blocks The ROM-ROM Schur complement uses
0 My, —-G3 i 0 0 only the interface mass matrices
G, -G, 0O 0 0 are separated from the
"""" 0o 0 0 Mgy 0 L Y
0 0 0 | 0 M,, |+ interior blocks S=G, 1‘ 1GT + GZM
~k M
Any two columns of the RB are u; ,\".?W = Ul M; y[‘j’i v
orthonormal by construction: ¥ L ! ' v
. <, U, '
However, their parts U u”, and U u”,
corresponding to interface DoFs are not! e M,
They can be almost linearly dependent _

The projected mass matrix M;,, is M
’ — I
u. .

not guaranteed to be non-singular!

I i Em B
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26 I Solution: a Composite Reduced Basis Implementation
Compute separate SVDs for the interior and the interface DoFs Uy o
A ) e I Interior RB I
= Uj,0Z0,00,0 = So,0 : > I
d(}
. UpyEs. VI,
P, = o = - _ Gy <0 Y0y J
1 %m 0 ) = Uo,yzo,ng:y = Soy ~—u ] .
R Interface RB
0 -
ﬂ v Uﬂ,}’

A
A /

ROM-FEM coupled problem defined by using separate projections for interior and interface DoFs

1
I Projected mass matrix Schur complement :
m « @10 =UpoPro + B _ ~ ~ e o
lw My, = 07, M,,0,, § = G ;26T + G,M; 1G] :
: ) i |
TW% « @y = Uoy@ry orthonormal » Provably non-singular
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27 I Analysis

One can show that a version of the Trace Compatibility Condition (TCC) is sufficient for the existence of
a nonsingular Schur complement for the coupled ROM+ROM and ROM+FOM formulations.

« ROM+ROM: Every RB Lagrange multiplier is a trace of a RB function from one of the two sides
of the interface.

 ROM+FOM: Every Lagrange multiplier is either
» a trace of a RB function from the ROM side of the interface, or ]
» Atrace of a FEM function from the FEM side of the interface

30

% ~—RR-LM) - ROM+ROM: full subdomain basis violates TCC

~+—RR-rLM
! *Eg-fm M ROM+ROM: composite RB satisfies TCC
20 | 0 \

@10 F \ ROM+FOM: interface FEM from the FEM side satisfies TCC
=
§ ROM+FOM: interface RB from the ROM side satisfies TCC i

1010} I

A. DeCastro, P. Bochev, P. Kuberry, and I. Tezaur. Explicit
ot b ettt synchronous partitioned scheme for coupled reduced order models
10 102 based on composite reduced bases. CMAME. In revision.

Total basis size



28 I Numerical example

Full subdomain RB ROM-ROM

1.2 <

[l
‘i(' ““ \\‘
‘ w \\\%‘\

e ——
——-

d =50 modes in each subdomain

FOM: 4225 DOFs

d, , = 40 interior modes
d, ,= 10 interface modes

Composite RB ROM-ROM

,‘;
L w W‘\\\\\

it
//g!('f" “M‘\ L

0.8

* Composite RB improves conditioning of the Schur complement

* Allows accurate results with smaller total number of modes

SAND2023-XXXX

In each subdomain
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29 I Spatially non-coincident interfaces: where do they come from?

Separate subdomain meshing can create 2 non-coincident versions of the interface

I. Interface problems where subdomain equations are solved by different codes
[I.  Meshing of complex geometries may requires breaking up the part into simpler pieces

i
Challenges
> Traditional mortars not appropriate: duplicate interface typically requires some sort of master-
slave identification and appropriate formulation of data transfers between them

> Data transfers between non-coincident interfaces present theoretical and practical difficulties

Some of the commonly used data transfer strategies:

omitted node

o/
O O d
\. ./ http://cubit.sandia.gov |
Flow
Common refinement Nearest Neighbor Nearest Projection
Complex intersections Omitted nodes Elements not covered

X. Jiao and M. T. Heath. Common-refinement-based data transfer between non-matching meshes in multiphysics simulations. IJNME, 61(14):2402- 2427, 2004.
A. de Boer, A. van Zuijlen, and H. Bijl. Review of coupling methods for non-matching meshes. CMAME 196(8):1515 - 1525, 2007.



Optimization-based coupling approach for non-coincident SAND0ZS o

30 | interfaces

We couch the coupling into a constrained optimization problem

* Physical properties can be distributed between the objective and the constraints.
Advantages: * Physics-motivated constraints/objectives can be defined on non-coincident interfaces!
« Can avoid complex and/or expensive mesh operations at every time step I

Objective: minimize the quadratic functional Extension operators E: y! - yjh
2

1
S $:0.0)=5| [ Vo ot [n,-Vg,ds| P n.Vg=n,-Vg, ony
7

y continuity
1

1 : 2
LB, 1o E ) 22 s =6 on

continuity ~

o
*5@91”2 +|6,

2
7 ) > control penalty «  Polynomial extension

* Meshfree (GMLS), etc.

Subject to constraints (the subdomain PDEs)

VoV ST g lese the subdomain problems by usi
e close the subdomain problems by using
(V¢/> \ ‘///)Q1 = (f> ‘///)Q1 +<9f> '7”/>},ih ¢,=0 onl, a virtual control to specify a Neumann

_ boundary condition on the interface
T Virtual Neumann n,-Vg =6 on ?’,h ry

controls T
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31 I Properties

Theorem coupling formulation recovers exactly globally linear solutions ¢ of the coupled problem.

Assume that the discrete interfaces have matching boundaries. Then the optimization-based j

Patch test ¢(x,y) = 3x+2y 2D

7 (b)=7;(b)

190 120 149 150 130 200 Y] 0200 9400 0.500 el ]
e pie

Manufactured solution ¢(x,y) = sin(x)*sin(y)
NOOEE
STt
S
‘ﬁﬂuvvpgﬂgv“”n
V“v

0.490

VAVAN
N

VA




* Mesh tying is required when a complex part is meshed by breaking it into separate simpler parts
« Often the interface meshes have tiny gaps and overlaps.

SAND2023-XXXX E
* Creating watertight meshes may introduce sliver elements, which can limit explicit time steps I

LSFEM offers a surprisingly effective solution for non-coincident grids

o> LS are based on minimization of artificial residual energy, not physical energy

> Minimization of residual energy allows to measure energy redundantly

> All that is needed is elimination of the void regions to create sufficient overlap:
— Can be done by interface perturbation or by simply extending the domains

2
div,>
J

1
min_ (V6 +v, g, +1V-v- £, )+, I -0, +o,

7 . -
i ~~ '

residual energy

Vi -V,

Advantages

v Provably stable (coercive formulation)

v’ Provable optimal convergence rate

v’ Can pass an arbitrary order patch test

v Does not require expensive mesh intersections
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33 I Analysis: least-squares for mesh tying

Norm-equivalence of the mesh-tying LS functional K

A, (

1K
Yy
e

Theorem 1 There exist positive weights wgy, wy, independent of the maximum
element diameter h, such that for every {1, v} € H there holds the lower bound

T({6.v30) = I w12 an

Optimal error estimates

Theorem 3 Assume that the first order system .g'- _ T f*’j
V-u+o¢o=f and Vo+u=0 mQ
¢=0 on o)
]
has a solution ¢ € Hy(Q) N H™(Q) and u € H(div,Q) N (HP Q)2 If o L Patch test I
{¢", u"} € H" is a solution of the least-squares mesh-tying problem (12), then 2_ 3 g —
;
{6 =" u—u"}H|| < C (W [¢]lr110+ 27 [ullpre) - (22) o
PR R AN e e
2 | B
2 1 15 2




34 I Thank you!
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