

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Exceptional service in the national interest

Linearization Errors in Discrete Goal-Oriented Error Estimation

Brian N. Granzow, D. Thomas Seidl, Stephen D. Bond
USNCCM17

July 26th, 2023

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration. The Sandia National Laboratories logo is a stylized 'S' inside a square frame with the text 'Sandia National Laboratories' to its right. The U.S. Department of Energy logo is a circular seal with the text 'U.S. DEPARTMENT OF ENERGY' and 'NATIONAL NUCLEAR SECURITY ADMINISTRATION' around the perimeter. The National Nuclear Security Administration logo is a stylized 'NNSA' with the text 'NATIONAL NUCLEAR SECURITY ADMINISTRATION' below it.

U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.
SAND NO. XXXXXXXX

BACKGROUND

The big picture:

- Partial differential equation (PDE) \rightarrow exact solution u .
- PDE \rightarrow analytic solution u is, in general, unknown.
- Finite element method (FEM) \rightarrow approx. PDE solution u^H .
- FEM \rightarrow error associated with the discretization, $e := u - u^H$.
- Analyst \rightarrow how reliable/accurate is the solution u^H ?

Goal-oriented error estimates:

- Choose physically meaningful functional: $\mathcal{J}(u)$.
- Functional referred to as a ‘quantity of interest’ (QoI).
- Approximate $\mathcal{E} := \mathcal{J}(u) - \mathcal{J}(u^H)$, discretization error in the QoI.

Presently, we consider nonlinear PDEs and nonlinear QoIs.

GOAL-ORIENTED ERROR ESTIMATION

Primal

Find $u \in \mathcal{V}$ such that $\mathcal{R}(w; u) = 0 \quad \forall w \in \mathcal{V}$

FEM

Find $u^H \in \mathcal{V}^H$ such that $\mathcal{R}(w^H; u^H) = 0 \quad \forall w^H \in \mathcal{V}^H$

Dual

Find $z \in \mathcal{V}$ such that $\mathcal{R}'[u^H](w, z) = \mathcal{J}'[u^H](w) \quad \forall w \in \mathcal{V}$

Error

$$\mathcal{J}(u) - \mathcal{J}(u^H) = \underbrace{-\mathcal{R}(z - z^H; u^H)}_{\text{discretization error}} + \underbrace{\mathcal{O}(e^2)}_{\text{linearization error}} \quad \forall w^H \in \mathcal{V}^H$$

- $J'[u^H](w)$ - Fréchet linearization about u^H .
- $R'[u^H](w)$ - Fréchet linearization about u^H .

DISCRETE GOAL-ORIENTED ERROR ESTIMATION

Primal PDE discretized by FEM on two spaces:
 $\mathcal{V}^H \subset \mathcal{V}^h \subset \mathcal{V}$ results in:

<i>Coarse</i>	$\mathbf{R}^H(\mathbf{u}^H) = \mathbf{0}$	$\mathbf{R}^H : \mathbb{R}^N \rightarrow \mathbb{R}^N,$
<i>Fine</i>	$\mathbf{R}^h(\mathbf{u}^h) = \mathbf{0}$	$\mathbf{R}^h : \mathbb{R}^n \rightarrow \mathbb{R}^n, \quad n > N,$

Let $\mathbf{u}_h^H := I_h^H \mathbf{u}^H$, where $I_h^H : \mathcal{V}^H \rightarrow \mathcal{V}^h$.

Let $\mathbf{e}^h := \mathbf{u}^h - \mathbf{u}^H$.

Talyor expansions about \mathbf{u}_h^H :

$$\mathbf{R}^h(\mathbf{u}^h) = \mathbf{R}^h(\mathbf{u}_h^H) + \left[\frac{\partial \mathbf{R}^h}{\partial \mathbf{u}^h} \Big|_{\mathbf{u}_h^H} \right] \mathbf{e}^h + \mathbf{E}_L^R,$$

$$\mathcal{J}^h(\mathbf{u}^h) = \mathcal{J}^h(\mathbf{u}_h^H) + \left[\frac{\partial \mathcal{J}^h}{\partial \mathbf{u}^h} \Big|_{\mathbf{u}_h^H} \right] \mathbf{e}^h + \mathcal{E}_L^J.$$

Disregard \mathcal{E}_L^J and $\mathbf{E}_L^R \implies$

$$\begin{aligned} \mathcal{E} &:= \mathcal{J}(\mathbf{u}) - \mathcal{J}(\mathbf{u}^H), \\ &\approx \mathcal{J}(\mathbf{u}^h) - \mathcal{J}(\mathbf{u}^H), \\ &:= \mathcal{E}^h, \\ &\approx (\mathbf{z}^h - \mathbf{z}_H^h) \cdot \mathbf{R}^h(\mathbf{u}_h^H), \\ &:= \eta_1. \end{aligned}$$

$\mathbf{z}^h \rightarrow$ solution to *adjoint problem*

$$\left[\frac{\partial \mathbf{R}^h}{\partial \mathbf{u}^h} \Big|_{\mathbf{u}_h^H} \right]^T \mathbf{z}^h = \left[\frac{\partial \mathcal{J}^h}{\partial \mathbf{u}^h} \Big|_{\mathbf{u}_h^H} \right]^T.$$

$\mathbf{z}_H^h := I_H^h \mathbf{z}^h$, where $I_H^h : \mathcal{V}^h \rightarrow \mathcal{V}^H$.

A MOTIVATING EXAMPLE

A nonlinear Poisson's equation:

$$\begin{cases} -\nabla \cdot [(1 + \alpha u^2) \nabla u] = f, & \text{in } \Omega, \\ u = 0, & \text{on } \Gamma. \end{cases}$$

In weak form:

$$\mathcal{R}(w; u) := (f, w)_\Omega - ((1 + \alpha u^2) \nabla u, \nabla w)_\Omega = 0.$$

Consider functionals/manufactured solution:

$$\mathcal{J}_1(u) = \int_{\Omega_s} u^3 \, d\Omega,$$

$$\mathcal{J}_2(u) = \int_{\Omega_s} \nabla u \cdot \nabla u \, d\Omega,$$

$$u(x, y) = \sin(2\pi x) \sin(2\pi y) \exp(5/2(x + y)).$$

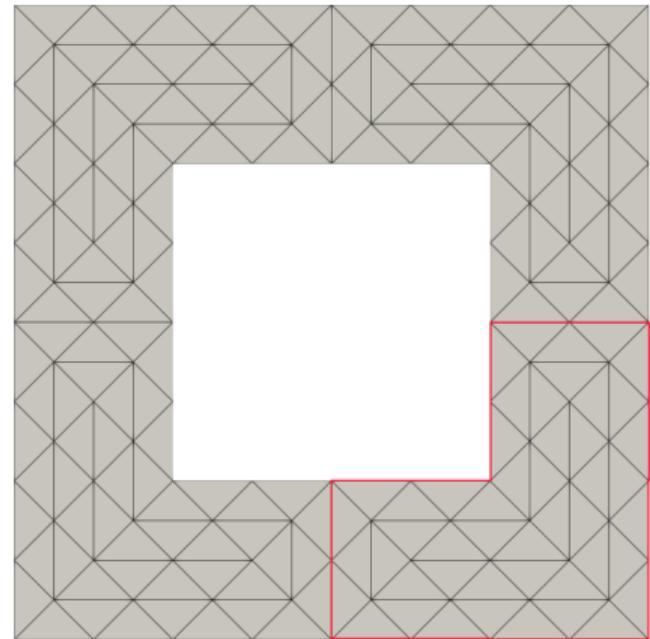
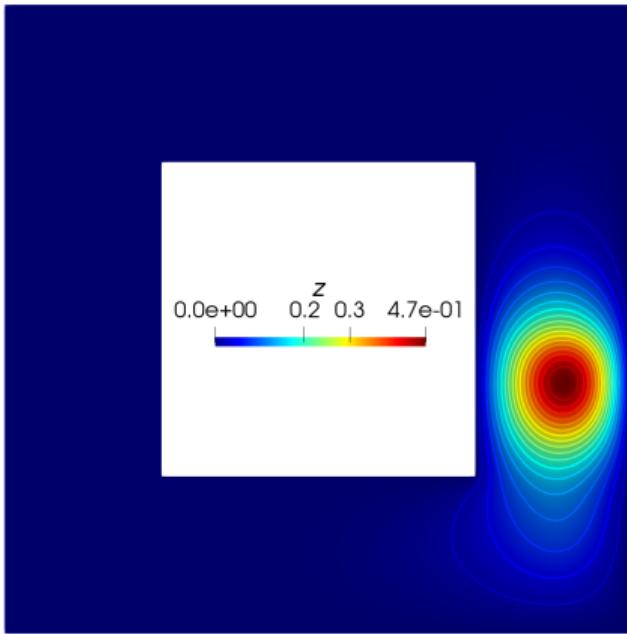
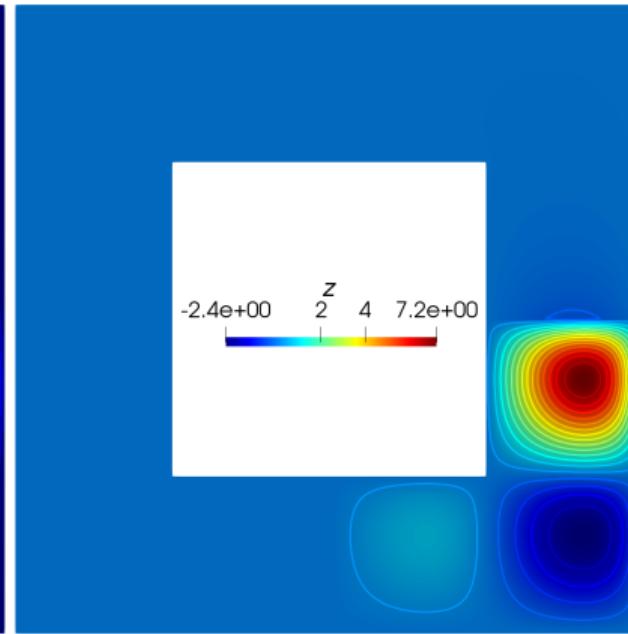


Figure: Example domain Ω and sub-domain Ω_s with an initial mesh occupying the space $[-1, 1]^2$.

A MOTIVATING EXAMPLE: ADJOINT SOLUTIONS



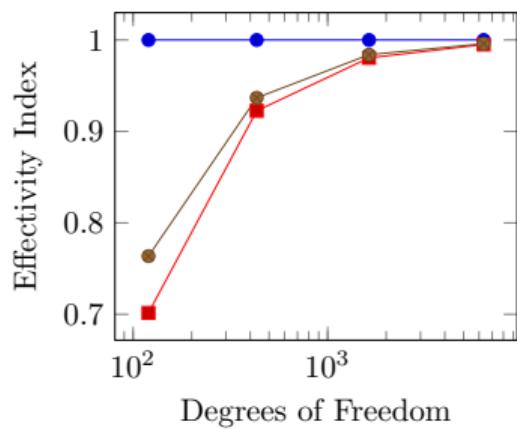
(a) Adjoint solution for QoI $\mathcal{J}_1(u)$



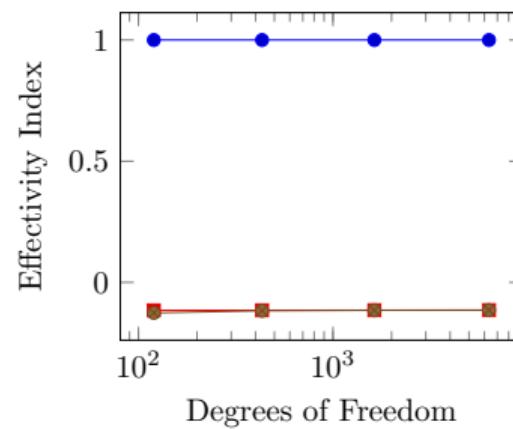
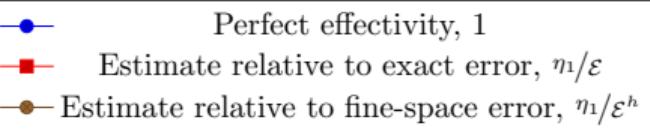
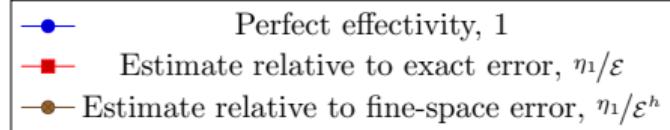
(b) Adjoint solution for QoI $\mathcal{J}_2(u)$

A MOTIVATING EXAMPLE: ESTIMATE EFFECTIVITY

Effectivities for $\mathcal{J}_1(u)$ for Manufactured Solution



Effectivities for $\mathcal{J}_2(u)$ for Manufactured Solution



A MOTIVATING EXAMPLE: WHAAAAAA?!!?!

Consider the quadratic QoI:

$$\mathcal{J}(u) = \int_{\Omega} \nabla u \cdot \nabla u,$$

The discretization error in this functional can be exactly represented as:

$$\mathcal{J}(u) - \mathcal{J}(u^H) = 2 \int_{\Omega} \nabla u^H \cdot \nabla e \, d\Omega + \int_{\Omega} \nabla e \cdot \nabla e \, d\Omega.$$

- First integral: linearization used for η_1
- Second integral: should $\rightarrow 0$ quickly since its $\mathcal{O}(e^2)$
- However, second integral is strictly positive
- First integral: might $\rightarrow 0$ quickly relatively due to subtractive cancellation.
- Neglecting linearization error: could significantly under-predict actual error.

A MODIFIED ERROR ESTIMATE

From mean value \exists a \mathbf{u}^* such that $\mathcal{E}_L^{\mathcal{J}}$ vanishes:

$$\mathcal{J}^h(\mathbf{u}^h) = \mathcal{J}^h(\mathbf{u}_h^H) + \left[\frac{\partial \mathcal{J}^h}{\partial \mathbf{u}^h} \Big|_{\mathbf{u}^*} \right] \mathbf{e}^h.$$

\mathbf{u}^* : point on linear path between \mathbf{u}_h^H and \mathbf{u}^h

$$\mathbf{u}^*(\theta) = \mathbf{u}_h^H + \theta \mathbf{e}^h, \quad \theta \in [0, 1].$$

Finding \mathbf{u}^* : solve nonlinear scalar equation:

$$f(\theta) := \mathcal{E}^h - \left[\frac{\partial \mathcal{J}^h}{\partial \mathbf{u}^h} \Big|_{\mathbf{u}^*(\theta)} \right] \mathbf{e}^h = 0.$$

Introduce *modified adjoint problem*:

$$\left[\frac{\partial \mathbf{R}^h}{\partial \mathbf{u}^h} \Big|_{\mathbf{u}_h^H} \right]^T \mathbf{z}^* = \left[\frac{\partial \mathcal{J}^h}{\partial \mathbf{u}^h} \Big|_{\mathbf{u}^*} \right]^T.$$

No mean-value analogue for vector-valued functions.

$\mathbf{E}_L^{\mathcal{R}}$ must be accounted for in different manner.

Introduce:

$$\mathbf{z}^{**} = \mathbf{z}^* + \frac{\mathbf{z}^* \cdot \mathbf{E}_L^{\mathcal{R}}}{\mathbf{R}^h(\mathbf{u}_h^H) \cdot \mathbf{R}^h(\mathbf{u}_h^H)} \mathbf{R}^h(\mathbf{u}_h^H),$$

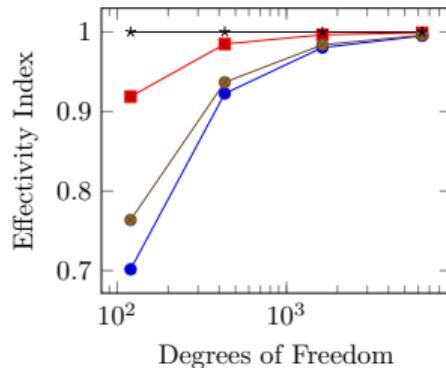
QoI error between the two spaces:

$$\mathcal{E}^h = \eta_2 := -\mathbf{z}^{**} \cdot \mathbf{R}^h(\mathbf{u}_h^H).$$

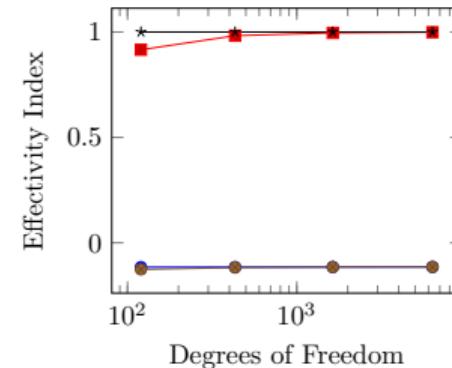
- con: Requires primal solve on the fine space.
- pro: Including linearization errors in error *localization* \rightarrow might lead to better meshes.
- pro: Can be used to safeguard termination criteria at coarse mesh resolutions in adaptive iterations when η_1 may under-predict error.

A MOTIVATING EXAMPLE: ERROR EFFECTIVITY REVISITED

Effectivities for $\mathcal{J}_1(u)$ for Manufactured Solution



Effectivities for $\mathcal{J}_2(u)$ for Manufactured Solution

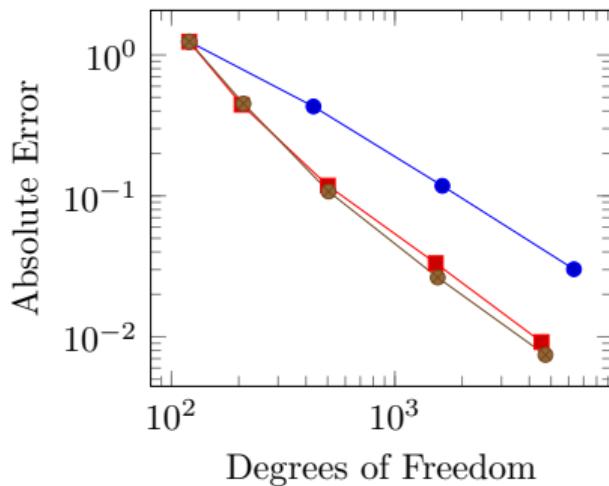


- Traditional estimate relative to exact error, η_1/ε
- Modified estimate relative to exact error, η_2/ε
- Traditional estimate relative to fine-space error, η_1/ε^h
- ★— Modified estimate relative to fine-space error, η_2/ε^h

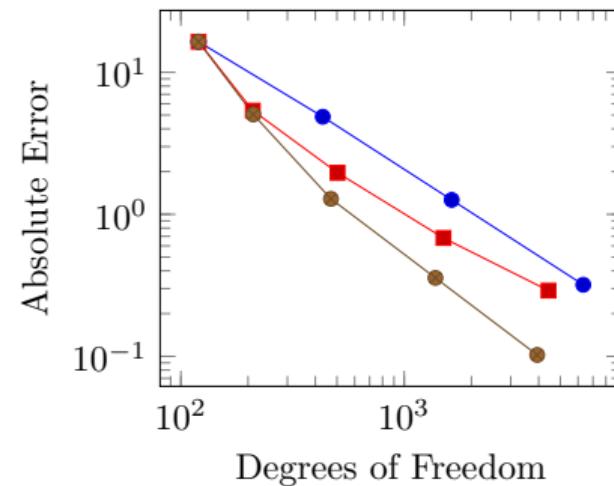
- Traditional estimate relative to exact error, η_1/ε
- Modified estimate relative to exact error, η_2/ε
- Traditional estimate relative to fine-space error, η_1/ε^h
- ★— Modified estimate relative to fine-space error, η_2/ε^h

A MOTIVATING EXAMPLE: MESH ADAPTIVITY

Errors in $\mathcal{J}_1(u)$ for Manufactured Solution with Adaptivity



Errors in $\mathcal{J}_2(u)$ for Manufactured Solution with Adaptivity



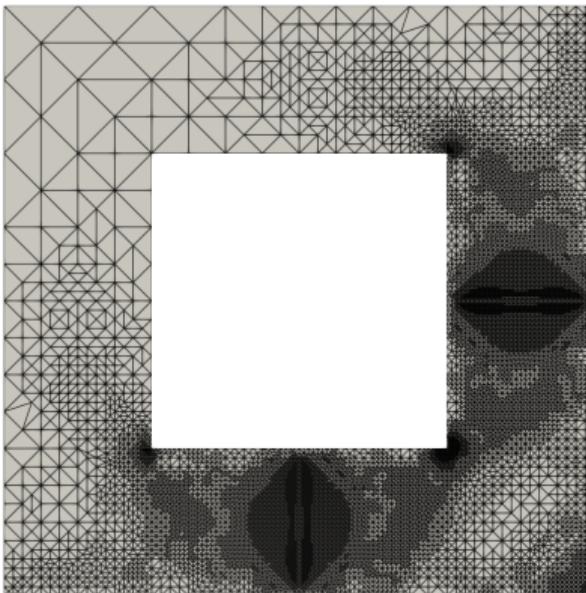
- Error using uniform refinement, \mathcal{E}
- Error using η_1 adaptive scheme, \mathcal{E}
- Error using η_2 adaptive scheme, \mathcal{E}

- Error using uniform refinement, \mathcal{E}
- Error using η_1 adaptive scheme, \mathcal{E}
- Error using η_2 adaptive scheme, \mathcal{E}

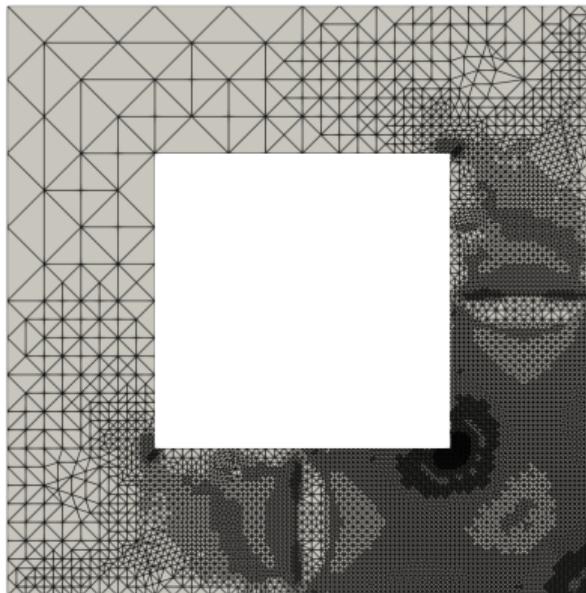
A PROBLEM WITH GRADIENT SINGULARITIES

If instead we choose $f = 1$ in forcing function:

- $\mathcal{J}_1(u)$: Adapting based on η_1 or $\eta_2 \rightarrow$ nearly identical meshes
- $\mathcal{J}_2(u)$: Adapting based on η_1 or $\eta_2 \rightarrow$ very distinct meshes



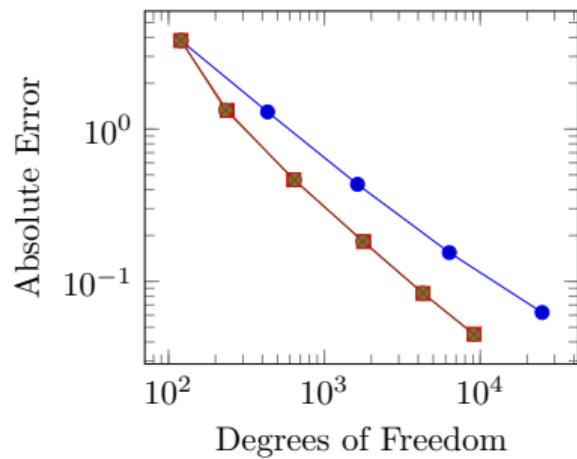
(a) $\mathcal{J}_2(u)$: Mesh obtained using η_1 .



(b) $\mathcal{J}_2(u)$: Mesh obtained using η_2 .

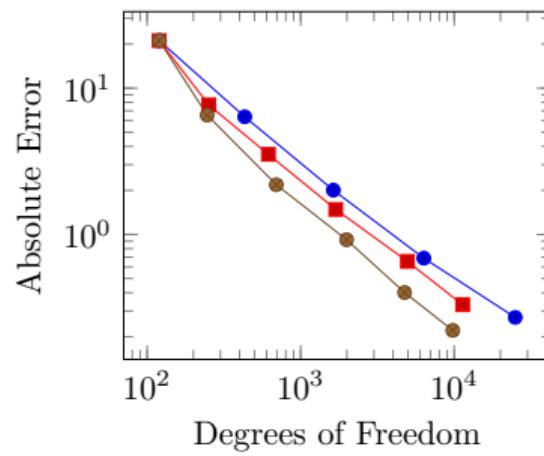
A PROBLEM WITH GRADIENT SINGULARITIES

Errors in $\mathcal{J}_1(u)$ for Singular Solution with Adaptivity



- Error using uniform refinement, \mathcal{E}
- Error using η_1 adaptive scheme, \mathcal{E}
- Error using η_2 adaptive scheme, \mathcal{E}

Errors in $\mathcal{J}_2(u)$ for Singular Solution with Adaptivity



- Error using uniform refinement, \mathcal{E}
- Error using η_1 adaptive scheme, \mathcal{E}
- Error using η_2 adaptive scheme, \mathcal{E}

NONLINEAR ELASTICITY: DESCRIPTION

Balance of linear momentum:

$$\begin{cases} -\nabla \cdot \mathbf{P} = \mathbf{0}, & \mathbf{X} \in \Omega, \\ \mathbf{u} = \mathbf{G}, & \mathbf{X} \in \Gamma_G, \\ \mathbf{P} \cdot \mathbf{N} = \mathbf{0}, & \mathbf{X} \in \Gamma_H. \end{cases}$$

A neo-Hookean material model

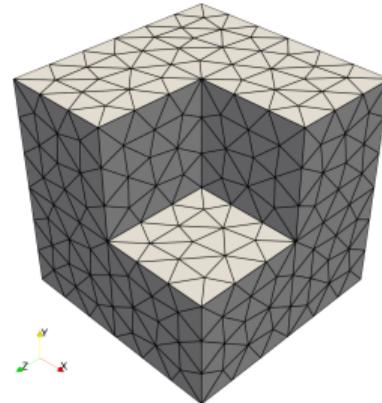
$$\boldsymbol{\sigma} = \mu J^{-5/3} \operatorname{dev}(\mathbf{F}\mathbf{F}^T) + \frac{\kappa}{2}(J - 1/J)\mathbf{I},$$

Weak form:

$$\mathcal{R}(\mathbf{w}; \mathbf{u}) := - \int_{\Omega} \mathbf{P}(\mathbf{u}) : \nabla \mathbf{w} \, d\Omega,$$

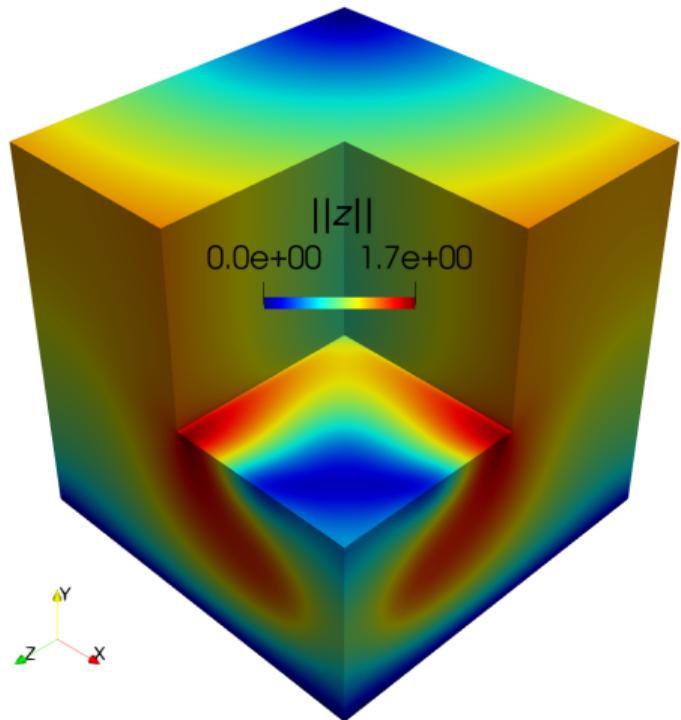
QoI: von Mises stress integrated over domain:

$$\mathcal{J}_{vm}(\mathbf{u}) := \int_{\Omega} \sigma_{vm}(\mathbf{u}) \, d\Omega,$$

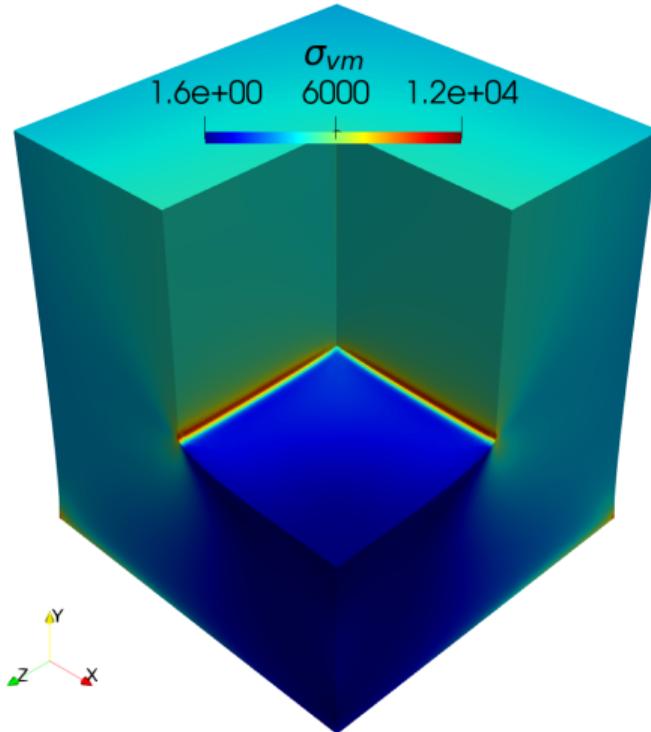


- Domain: $5\text{mm} \times 5\text{mm} \times 5\text{mm}$.
- Elastic modulus: $E = 192.7 \text{ GPa}$.
- Poisson's ratio: $\nu = 0.27$.
- $u_x, u_y, u_z = 0$ on minimal y face.
- $u_y = 0.1$ on maximal y face.
- About 2% strain in y -direction.

NONLINEAR ELASTICITY: SOLUTIONS

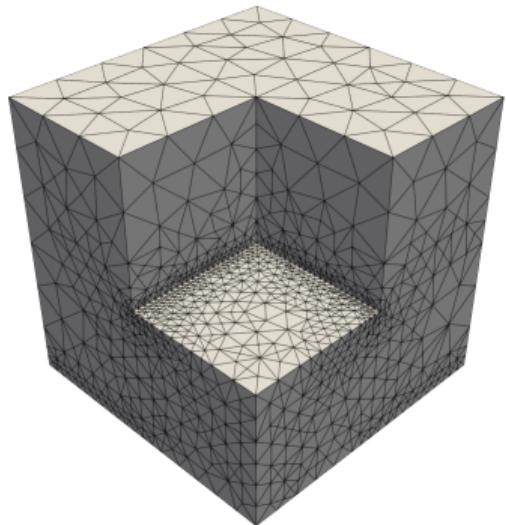


(a) Norm of the adjoint solution z .



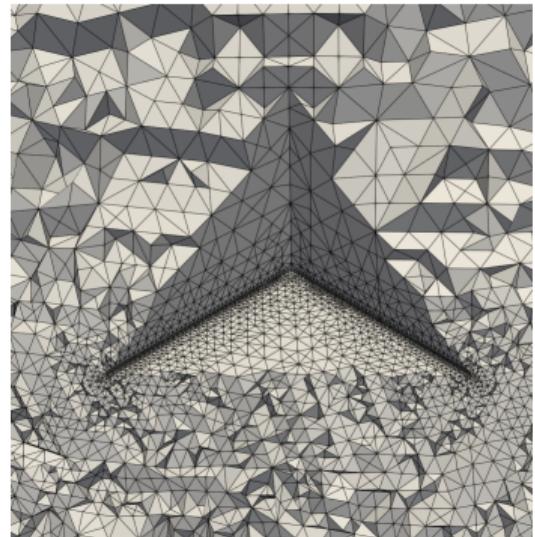
(b) von Mises stress plotted over the domain.

NONLINEAR ELASTICITY: MESH ADAPTIVITY



(a) Mesh after 5 adaptive iterations.

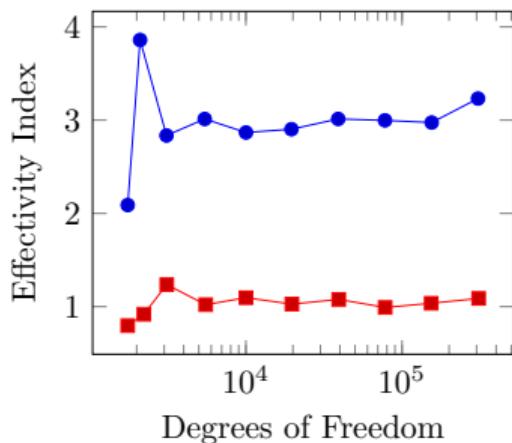
(b) Mesh after 10 adaptive iterations.



(c) Cut-away of mesh after 10 adaptive iterations.

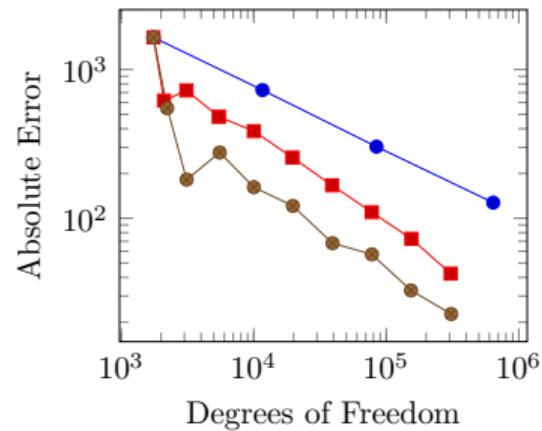
NONLINEAR ELASTICITY: ESTIMATE BEHAVIOR

Effectivities for $\mathcal{J}_{vm}(\mathbf{u})$ for Elasticity
Example with Adaptivity



- Effectivity using η_1 adaptive scheme, η_1/ε
- Effectivity using η_2 adaptive scheme, η_2/ε

Errors in $\mathcal{J}_{vm}(\mathbf{u})$ for Elasticity
Example with Adaptivity



- Error using uniform refinement, \mathcal{E}
- Error using η_1 adaptive scheme, \mathcal{E}
- Error using η_2 adaptive scheme, \mathcal{E}

CONCLUSIONS

- Considered *a posteriori* goal-oriented error estimation for Galerkin FEM.
- Traditional adjoint-weighted residual estimate η_1 incurs linearization errors.
- Developed novel estimate η_2 that accounts for discrete linearization errors.
- η_2 can be more *effective* than η_1 in certain contexts.
- Localization of η_2 can lead to better meshes in certain contexts.
 - Reduced errors with fewer DOFs when considering mesh adaptivity.
- Full details can be found at <https://arxiv.org/abs/2305.15285>.
- Thank you!

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.