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BACKGROUND

The big picture:
Partial differential equation (PDE) → exact solution u.
PDE → analytic solution u is, in general, unknown.
Finite element method (FEM) → approx. PDE solution uH .
FEM → error associated with the discretization, e := u− uH .
Analyst → how reliable/accurate is the solution uH?

Goal-oriented error estimates:
Choose physically meaningful functional: J (u).
Functional referred to as a ‘quantity of interest’ (QoI).
Approximate E := J (u)− J (uH), discretization error in the QoI.

Presently, we consider nonlinear PDEs and nonlinear QoIs.
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GOAL-ORIENTED ERROR ESTIMATION

Primal Find u ∈ V such that R(w;u) = 0 ∀w ∈ V

FEM Find uH ∈ VH such that R(wH ;uH) = 0 ∀wH ∈ VH

Dual Find z ∈ V such that R′[uH ](w, z) = J ′[uH ](w) ∀w ∈ V

Error J (u)− J (uH) = −R(z − zH ;uH)︸ ︷︷ ︸
discretization error

+ O(e2)︸ ︷︷ ︸
linearization error

∀wH ∈ VH

J ′[uH ](w) - Fréchet linearization about uH .

R′[uH ](w) - Fréchet linearization about uH .
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DISCRETE GOAL-ORIENTED ERROR ESTIMATION

Primal PDE discretized by FEM on two spaces:
VH ⊂ Vh ⊂ V results in:

Coarse RH(uH) = 0 RH : RN → RN ,

F ine Rh(uh) = 0 Rh : Rn → Rn, n > N,

Let uHh := IHh u
H , where IHh : VH → Vh.

Let eh := uh − uH .
Talyor expansions about uHh :

���
�: 0

Rh(uh) = Rh(uHh ) +

[
∂Rh

∂uh

∣∣∣∣
uH

h

]
eh +ERL ,

J h(uh) = J h(uHh ) +

[
∂J h

∂uh

∣∣∣∣
uH

h

]
eh + EJL .

Disregard EJL and ERL =⇒

E := J (u)− J (uH),

≈ J (uh)− J (uH),

:= Eh,

≈ (zh − zhH) ·Rh(uHh ),

:= η1.

zh → solution to adjoint problem

[
∂Rh

∂uh

∣∣∣∣
uH

h

]T
zh =

[
∂J h

∂uh

∣∣∣∣
uH

h

]T
.

zhH := IhHz
h, where IhH : Vh → VH .
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A MOTIVATING EXAMPLE

A nonlinear Poisson’s equation:{
−∇ · [(1 + αu2)∇u] = f, in Ω,

u = 0, on Γ.

In weak form:

R(w;u) := (f, w)Ω− ((1 +αu2)∇u,∇w)Ω = 0.

Consider functionals/manufactured solution:

J1(u) =

∫
Ωs

u3 dΩ,

J2(u) =

∫
Ωs

∇u · ∇udΩ,

u(x, y) = sin(2πx) sin(2πy) exp(5/2(x+ y)).

Figure: Example domain Ω and
sub-domain Ωs with an initial mesh
occupying the space [−1, 1]2. 5



A MOTIVATING EXAMPLE: ADJOINT SOLUTIONS

(a) Adjoint solution for QoI J1(u) (b) Adjoint solution for QoI J2(u)
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A MOTIVATING EXAMPLE: ESTIMATE EFFECTIVITY
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A MOTIVATING EXAMPLE: WHAAAAAA?!?!?!

Consider the quadratic QoI:

J (u) =

∫
Ω

∇u · ∇u,

The discretization error in this functional can be exactly represented as:

J (u)− J (uH) = 2

∫
Ω

∇uH · ∇e dΩ +

∫
Ω

∇e · ∇e dΩ.

First integral: linearization used for η1

Second integral: should → 0 quickly since its O(e2)

However, second integral is strictly positive

First integral: might → 0 quickly relatively due to subtractive cancellation.

Neglecting linearization error: could significantly under-predict actual error.
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A MODIFIED ERROR ESTIMATE
From mean value ∃ a u∗ such that EJL vanishes:

J h(uh) = J h(uHh ) +

[
∂J h

∂uh

∣∣∣∣
u∗

]
eh.

u∗: point on linear path between uHh and uh

u∗(θ) = uHh + θeh, θ ∈ [0, 1].

Finding u∗: solve nonlinear scalar equation:

f(θ) := Eh −
[
∂J h

∂uh

∣∣∣∣
u∗(θ)

]
eh = 0.

Introduce modified adjoint problem:

[
∂Rh

∂uh

∣∣∣∣
uH

h

]T
z∗ =

[
∂J h

∂uh

∣∣∣∣
u∗

]T
.

No mean-value analogue for vector-valued functions.

ERL must be accounted for in different manner.

Introduce:

z∗∗ = z∗ +
z∗ ·ERL

Rh(uHh ) ·Rh(uHh )
Rh(uHh ),

QoI error between the two spaces:

Eh = η2 := −z∗∗ ·Rh(uHh ).

con: Requires primal solve on the fine space.
pro: Including linearization errors in error
localization → might lead to better meshes.
pro: Can be used to safeguard termination
criteria at coarse mesh resolutions in adaptive
iterations when η1 may under-predict error.
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A MOTIVATING EXAMPLE: ERROR EFFECTIVITY REVISITED
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A MOTIVATING EXAMPLE: MESH ADAPTIVITY
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A PROBLEM WITH GRADIENT SINGULARITIES

If instead we choose f = 1 in forcing function:
J1(u) : Adapting based on η1 or η2 → nearly identical meshes
J2(u) : Adapting based on η1 or η2 → very distinct meshes

(a) J2(u) : Mesh obtained using η1. (b) J2(u) : Mesh obtained using η2. 12



A PROBLEM WITH GRADIENT SINGULARITIES
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NONLINEAR ELASTICITY: DESCRIPTION

Balance of linear momentum:
−∇ · P = 0, X ∈ Ω,

u = G, X ∈ ΓG,

P ·N = 0, X ∈ ΓH .

A neo-Hookean material model

σ = µJ−5/3dev(FF T ) +
κ

2
(J − 1/J)I,

Weak form:

R(w;u) := −
∫

Ω
P (u) : ∇w dΩ,

QoI: von Mises stress integrated over domain:

Jvm(u) :=

∫
Ω
σvm(u) dΩ,

Domain: 5mm× 5mm× 5mm.
Elastic modulus: E = 192.7 GPa.
Poisson’s ratio: ν = 0.27.
ux, uy , uz = 0 on minimal y face.
uy = 0.1 on maximal y face.
About 2% strain in y-direction.
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NONLINEAR ELASTICITY: SOLUTIONS

(a) Norm of the adjoint solution z. (b) von Mises stress plotted over the
domain.
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NONLINEAR ELASTICITY: MESH ADAPTIVITY

(a) Mesh after 5 adaptive
iterations.

(b) Mesh after 10 adaptive
iterations.

(c) Cut-away of mesh after 10
adaptive iterations.
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NONLINEAR ELASTICITY: ESTIMATE BEHAVIOR
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CONCLUSIONS

Considered a posteriori goal-oriented error estimation for Galerkin FEM.
Traditional adjoint-weighted residual estimate η1 incurs linearization errors.
Developed novel estimate η2 that accounts for discrete linearization errors.
η2 can be more effective than η1 in certain contexts.
Localization of η2 can lead to better meshes in certain contexts.

Reduced errors with fewer DOFs when considering mesh adaptivity.

Full details can be found at https://arxiv.org/abs/2305.15285.
Thank you!

This paper describes objective technical results and analysis. Any subjective views or opinions that might

be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the

United States Government.
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