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BACKGROUND

The big picture:
m Partial differential equation (PDE) — exact solution w.
m PDE — analytic solution u is, in general, unknown.

m Finite element method (FEM) — approx. PDE solution u!!.

m FEM — error associated with the discretization, e := u — u*.

m Analyst — how reliable/accurate is the solution u'??
Goal-oriented error estimates:

m Choose physically meaningful functional: J(u).

m Functional referred to as a ‘quantity of interest’ (Qol).

m Approximate & := J(u) — J(ul), discretization error in the Qol.

Presently, we consider nonlinear PDEs and nonlinear Qols.




GOAL-ORIENTED ERROR ESTIMATION

Primal

FEM

Dual

Error

‘Find u € V such that R(w;u) =0 Yw eV ‘

Find u” € V¥ such that R(w™;u") =0 vw? ¢ V¥

Find z € V such that R'[u](w, 2) = J'[u®](w) Yw €V

Jw) — J W) = —R(z — 21 ;uf) + O(e?) vt e i
N —— ——

discretization error linearization error

m J'[u'?](w) - Fréchet linearization about u’l.

m R'[u'?](w) - Fréchet linearization about u’l.




DISCRETE GOAL-ORIENTED ERROR ESTIMATION

Primal PDE discretized by FEM on two spaces: . 7 -
D E
VH c Yh C V results in: isregard €Y and BT —

£:=J(u) - I ('),

Coarse Ry =0 R . RN RN, N u
~ J (") = J ("),
Fine RMuM) =0 R":R" - R", n>N, —gh,
~ (M — =) - RMufh),
Let uhH = I}IL{uH, where If:VH%Vh. —m
Let e := ul —uf.
: H.
Talyor expansions about w;,: z" — solution to adjoint problem
0 ORM T T
RMaT= RM(ufl) + St e" + BT, OR" o |oT"
W g duh wl duh wll '
agh
h(, hy _ 7h/ H h J
= — &Y.
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A MOTIVATING EXAMPLE

A nonlinear Poisson’s equation:

{—V (14 au®)Vu] = f, inQ,

u=0, onl.

In weak form:

R(w;u) == (f,w)q — (1 + au®)Vu, Vw)q = 0.

Consider functionals/manufactured solution:

Ji(u) = / u? dQ,
Q

s

J2(u) z/ Vu - VudQ,
Qs

Figure: Example domain ) and
sub-domain €, with an initial mesh

u(z,y) = sin(27x) sin(27y) exp(5/2(z + y)). occupying the space [~1, 1)°
’ . 5




A MOTIVATING EXAMPLE: ADJOINT SOLUTIONS
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(a) Adjoint solution for Qol Ji(u) (b) Adjoint solution for Qol J2(u)




A MOTIVATING EXAMPLE: ESTIMATE EFFECTIVITY

Effectivities for J;(u) for Manufactured Solution Effectivities for J2(u) for Manufactured Solution
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Consider the quadratic Qol:

T(u) = /Q Vu-Vu,

The discretization error in this functional can be exactly represented as:

j(u)—J(uH)=2/VuH-ve dQ+/ve-ve dQ.
Q Q

First integral: linearization used for 7,

Second integral: should — 0 quickly since its O(e?)

However, second integral is strictly positive

First integral: might — 0 quickly relatively due to subtractive cancellation.

Neglecting linearization error: could significantly under-predict actual error.




A MODIFIED ERROR ESTIMATE N

From mean value 3 a u* such that S‘L7 vanishes:

No mean-value analogue for vector-valued functions. “\
o Ef must be accounted for in different manner.
Thh) =T uiD + | 5o | e
Aul |« Introduce:
w*: point on linear path between uf and u” . * z" - E? h, H
: h z" =z R"(uy ),

u*(0) = ull +6e", 6¢0,1].
Qol error between the two spaces:
Finding w*: solve nonlinear scalar equation:
el =y = -2z . RM ().
TN
ouh

1(6) =& - [

h _
u*(o):| e =0 m con: Requires primal solve on the fine space.

m pro: Including linearization errors in error
Introduce modified adjoint problem: localization — might lead to better meshes.
m pro: Can be used to safeguard termination
T T o h luti in adapti
. aTh criteria at coarse mesh resolutions in adaptive
zT =
ull ul |«

iterations when 71 may under-predict error.

ORP
ouh




A MOTIVATING EXAMPLE

Effectivities for i (u) for Manufactured Solution
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- ERROR EFFECTIVITY REVISITED

Effectivities for Jo(u) for Manufactured Solution
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Absolute Error

A MOTIVATING EXAMPLE: MESH ADAPTIVITY

Errors in J; (u) for Manufactured
Solution with Adaptivity
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A PROBLEM WITH GRADIENT SINGULARITIES

If instead we choose f = 1 in forcing function:
m Ji(u) : Adapting based on 11 or n2 — nearly identical meshes
m J2(u) : Adapting based on 71 or 2 — very distinct meshes

(a) J2(u) : Mesh obtained using 7. (b) J2(u) : Mesh obtained using 7.
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A PROBLEM WITH GRADIENT SINGULARITIES

Absolute Error

Errors in J; (u) for Singular
Solution with Adaptivity
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NONLINEAR ELASTICITY: DESCRIPTION

Balance of linear momentum:

-V-P=0, X €Q,
u=G, X eTlg,
P.-N =0, X el'y.

A neo-Hookean material model

o = pJ~3dev(FFT) + g(J —1/N1,

Weak form: ® Domain: 5mm X 5mm X 5mm.
m Elastic modulus: E = 192.7 GPa.
m Poisson’s ratio: v = 0.27.

R(w;u) = —/Q P(u): VwdQ,

B Uz, Uy, ur = 0 on minimal y face.

Qol: von Mises stress integrated over domain: s uy = 0.1 on maximal y face.

m About 2% strain in y-direction.

Tom(w) i= /Q o (w) €2,
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NONLINEAR ELASTICITY: soLuTIONS

(b) von Mises stress plotted over the
domain.

(a) Norm of the adjoint solution z.
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NONLINEAR ELASTICITY: MESH ADAPTIVITY
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(a) Mesh after 5 adaptive (b) Mesh after 10 adaptive (c) Cut-away of mesh after 10
iterations. iterations. adaptive iterations.
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NONLINEAR ELASTICITY: ESTIMATE BEHAVIOR

Effectivities for J,.,(u) for Elasticity Errors in Jvm'(u) for El'as.ticity
Example with Adaptivity Example with Adaptivity
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CONCLUSIONS

Considered a posteriori goal-oriented error estimation for Galerkin FEM.
Traditional adjoint-weighted residual estimate n; incurs linearization errors.

|
=
m Developed novel estimate 7o that accounts for discrete linearization errors.
m 72 can be more effective than 7; in certain contexts.

|

Localization of 72 can lead to better meshes in certain contexts.
m Reduced errors with fewer DOFs when considering mesh adaptivity.

Full details can be found at https://arxiv.org/abs/2305.15285.
Thank you!
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