
MULTI-FIDELITY SURROGATE MODELING:
A TUTORIAL

J.D. Jakeman, Gianluca Geraci

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of
Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security

Administration under contract DE-NA-0003525.

Advanced Scientific
Computing Research

SAND2023-06739CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do
not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract
DE-NA0003525.

COLLABORATORS

Left to Right

John Jakeman, Michael Eldred,
Gianluca Geraci (SNL)

Tom Smith, Tom Seidl (SNL)
Alex Gorodetsky (University of
Michigan)

UNCERTAINTY QUANTIFICATION

2

6664

z1
z2
...
zd

3

7775

Variables

u = f (z)

Model

2

64
q1
...

qnq

3

75 = Q(u)

QoI

Gr/BMI

Gr/BMI

Variables

Friction

Surface mass
balance

…
0.00 0.25 0.50 0.75 1.00

0.0

0.5

1.0

1.5

2.0

2.5
K

ºf
D

º̂f
D

𝑢!(𝑧) 𝑓!(𝑢!(𝑧))𝑧 = [𝑧", … , 𝑧#] 𝜋(𝑓!)

All models are approximations of reality. Sources of uncertainty must be
identified and their effect on predictions quantified

PARAMETERIZE UNCERTAINTY

PyApprox, Release 1.0.2

noiseless_obs [np.ndarray (nobs)] The solution u(xl) at the L locations {xl}Ll=1 determined by
obs_indices

obs [np.ndarray (nobs)] The noisy observations u(xl) + ✏l

true_sample [np.ndarray (nkle_vars)] The KLE coe�cients used to generate the noisy observa-
tions

obs_indices [np.ndarray (nobs)] The indices of the collocation mesh at which observations are
collected. If not specified the indices will be chosen randomly ensuring that no indices as-
sociated with boundary segments are selected.

obs_fun [callable] The function used to generate the noisless observations with signature

obs_fun(z) -> np.ndarray

where z is a 2D np.ndarray with shape (nvars, nsamples) and the output is a 2D np.ndarray
with shape (nsamples, nobs).

KLE [MeshKLE] KLE object containing the attributes needed to evaluate the KLE

Examples

>>> from pyapprox_dev.benchmarks.benchmarks import setup_benchmark
>>> benchmark = setup_benchmark('advection_diffusion_kle_inversion', nvars=2)
>>> print(benchmark.keys())
dict_keys(['fun', 'variable'])

setup_multi_index_advection_di�usion_benchmark

pyapprox.benchmarks.setup_multi_index_advection_diffusion_benchmark(kle_nvars=2,
kle_length_scale=0.5,
kle_stdev=1,
max_eval_concurrency=1,
time_scenario=None,
functional=None,
config_values=None,
source_loc=[0.25, 0.75],
source_scale=0.1,
source_amp=100.0,
vel_vec=[1.0, 0.0],
kle_mean_field=0)

This benchmark is used to test methods for forward propagation of uncertainty. The forward simulation model
is the transient advection-di�usion model

@u

@t
(x, t, z) = r · [k(x, z)ru(x, t, z)]�r · (vu(x, t, z)) + g(x, t)(x, t, z) 2 D ⇥ [0, 1]⇥ �

B(x, t, z) = 0(x, t, z) 2 @D ⇥ [0, 1]⇥ �

u(x, t, z) = u0(x, z)(x, t, z) 2 D ⇥ {t = 0}⇥ �

where

g(x, t) =
100

2⇡0.12
exp

✓
� |x� [0.25, 0.75]>|2

2 · 0.12

◆
� ssink

2⇡h2
sink

exp

✓
� |x� xsink|2

2h2
sink

◆

and B(x, t, z) enforces Robin boundary conditions, i.e.

K(x, z)ru(x, t, z) · n� 0.1u(x, t, z) = 0 on @D

6.3. pyapprox.benchmarks Package 189

Transient Advection diffusion

S
Accuracy of QoI 𝑓(𝑧) depends on numerical
discretization

PyApprox, Release 1.0.2

As with the pyapprox.benchmarks.setup_advection_diffusion_kle_inversion_benchmark() we
parameterize the uncertain di�usivity with a Karhunen Loeve Expansion (KLE)

k(x, z) = exp

k0 +

DX

d=1

p
�d d(x)zd

!
.

If no initial condition is provided by the user then the governing equations in pyapprox.benchmarks.
setup_advection_diffusion_kle_inversion_benchmark() is used to create an initial condition, where
the forcing is set to be the first term of g here. I.e. the steady state solution before the second term of g is used
to remove the concentration u from the domain.

The quantity of interest f(z) is the integral of the final solution in the subdomain S = [0.75, 1]⇥ [0, 0.25], i.e.

f(z) =

Z

S
u(x, T, z)dx

This model can be evaluated using di�erent numerical discreizations that control the two spatial mesh reso-
lutions and the timestep. The model is evaluated by specifying the random variables and the three numerical
(configuration) variables.

If not time_scenario is provided. The QoI from the steady state solution is returned.

This benchmark can be modified by changing the default keyword arguments if necessary.

Parameters
nvars [integer] The number of variables of the KLE

kle_length_scale [float] The correlation length Lc of the covariance kernel

kle_sigma [float] The standard deviation of the KLE kernel

max_eval_concurrency [integer] The maximum number of simulations that can be run in par-
allel. Should be no more than the maximum number of cores on the computer being used

time_scenario [dict] Options defining the transient simulation. If None a steady state problem
will be solved If True the default time scenario will be used which corresponds to specifying
the dictionary

time_scenario = {
"final_time": 0.2,
"butcher_tableau": "im_crank2",
"deltat": 0.1, # default will be overwritten
"init_sol_fun": None,
"sink": None
}

Respectively, the entries of sink are ssink, hsink, xsink, e.g. [50, 0.1, [0.75, 0.75]]. If
None then the sink will be turned o�. init_sol is a callable function with signature
init_sol_fun(x) -> np.ndarray (nx, 1) where x is np.ndarray (nphys_vars, nx) are
physical coordinates in the mesh. butcher_tableau specifies the time-stepping scheme
which can be either im_beuler1 or im_crank2. final_time specifies T .

functional [callable] Function used to compute the Quantities of interest with signature

functional(sol, z) -> float

Here sol: torch.tensor (ndof) is the solution at the mesh points and z -> np.
ndarray(nkle_vars, 1) is the value of the KLE coe�cients that produced sol. If None
the subdomain intergral of sol at the final time will be used as defined above.

190 Chapter 6. User Reference Guide

Often diffusion field is unknown so parameterize with a Karhunen Loeve expansion
(realizations shown below)

PyApprox, Release 1.0.2

and we model the di�usivity as a Karhunen Loeve Expansion (KLE)

k(x, z) = exp

DX

d=1

p
�d d(x)zd

!
.

The observations are noisy observations u(xl) at L locations {xl}Ll=1 with additive independent Gaussian noise
with mean zero and variance �2. These observations can be used to define the posterior distribution

⇡post(z) =
⇡(y|z)⇡(z)R

� ⇡(y|z)⇡(z)dz

where the prior is the tensor product of independent and identically distributed Gaussian with zero mean and
unit variance In this scenario the likelihood is given by

⇡(y|z) = 1

(2⇡)d/2�
exp

✓
�1

2

(y � f(z))T (y � f(z))

�2

◆

which can be used for Bayesian inference and maximum likelihood estimation of the parameters z.

Parameters
source_loc [np.ndarray (2)] The center of the source

source_amp [float] The source strength s

source_width [float] The source width h

kle_length_scale [float] The length scale of the KLE

kle_stdev [float] The standard deviation of the KLE covariance kernel

kle_nvars [integer] The number of KLE modes

true_sample [np.ndarray (2)] The true location of the source used to generate the observations
used in the likelihood function

orders [np.ndarray (2)] The degrees of the collocation polynomials in each mesh dimension

nobs [integer] The number of observations L

obs_indices [np.ndarray (nobs)] The indices of the collocation mesh at which observations are
collected. If not specified the indices will be chosen randomly ensuring that no indices as-
sociated with boundary segments are selected.

noise_stdev [float] The standard deviation � of the observational noise

max_eval_concurrency [integer] The maximum number of simulations that can be run in par-
allel. Should be no more than the maximum number of cores on the computer being used

Returns
benchmark [Benchmark] Object containing the benchmark attributes documented below

negloglike [callable] The negative log likelihood exp(⇡(y|z)) with signature

negloglike(z) -> np.ndarray

where z is a 2D np.ndarray with shape (nvars, nsamples) and the output is a 2D np.ndarray
with shape (nsamples, 1).

variable [IndependentMarginalsVariable] Object containing information of the joint den-
sity of the inputs z which is the tensor product of independent and identically distributed
uniform variables on [0, 1].

190 Chapter 6. User Reference Guide

SENSITIVITY ANALYSIS

CHAPTER

FOUR

THEORETICAL TUTORIALS

Below is a gallery of tutorials providing detailed mathematical background on the methods in PyApprox.

This tutorials provide more detail than the set of examples found here which simply show how to use di�erent methods
with the least amount of code.

4.1 Model Analysis

Below are tutorials on various model analysis techniques

4.1.1 Sensitivity Analysis

Quantifying the sensitivity of a model output f to the model parameters z can be an important component of any
modeling exercise. This section demonstrates how to use popular local and global sensitivity analysis.

Sobol Indices

Any function f with finite variance parameterized by a set of independent variables z with ⇢(z) =
Qd

j=1 ⇢(zj) and
support � =

Nd
j=1 �j can be decomposed into a finite sum, referred to as the ANOVA decomposition,

f(z) = f̂0 +
dX

i=1

f̂i(zi) +
dX

i,j=1

f̂i,j(zi, zj) + · · ·+ f̂1,...,d(z1, . . . , zd)

or more compactly

f(z) =
X

u✓D
f̂u(zu)

where f̂u quantifies the dependence of the function f on the variable dimensions i 2 u and u = (u1, . . . , us) ✓ D =
{1, . . . , d}.

The functions f̂u can be obtained by integration, specifically

f̂u(zu) =

Z

�D\u

f(z) d⇢D\u(z)�
X

v⇢u

f̂v(zv),

where d⇢D\u(z) =
Q

j /2u d⇢j(z) and �D\u =
N

j /2u �j .

The first-order terms f̂u(zi), kuk0 = 1 represent the e�ect of a single variable acting independently of all others.
Similarly, the second-order terms kuk0 = 2 represent the contributions of two variables acting together, and so on.

41

PyApprox, Release 1.0.2

The terms of the ANOVA expansion are orthogonal, i.e. the weighted L
2 inner product (f̂u, f̂v)L2

⇢
= 0,

for u 6= v. This orthogonality facilitates the following decomposition of the variance of the function f

V [f] =
X

u✓D
V
h
f̂u

i
, V

h
f̂u

i
=

Z

�u

f
2
u d⇢u,

where d⇢u(z) =
Q

j2u d⇢j(z).

The quantities V
h
f̂u

i
/V [f] are referred to as Sobol indices [SMCS2001] and are frequently used to estimate the

sensitivity of f to single, or combinations of input parameters. Note that this is a global sensitivity, reflecting a variance
attribution over the range of the input parameters, as opposed to the local sensitivity reflected by a derivative. Two
popular measures of sensitivity are the main e�ect and total e�ect indices given respectively by

Si =
V
h
f̂ei

i

V [f]
, S

T
i =

P
u2J V

h
f̂u

i

V [f]

where ei is the unit vector, with only one non-zero entry located at the i-th element, and J = {u : i 2 u}.

Sobol indices can be computed di�erent ways. In the following we will use polynomial chaos expansions, as in
[SRESS2008].

import matplotlib.pyplot as plt

from pyapprox.benchmarks import setup_benchmark
from pyapprox.surrogates import approximate
from pyapprox import analysis
benchmark = setup_benchmark("ishigami", a=7, b=0.1)

num_samples = 1000
train_samples = benchmark.variable.rvs(num_samples)
train_vals = benchmark.fun(train_samples)

approx_res = approximate(
train_samples, train_vals, 'polynomial_chaos',
{'basis_type': 'hyperbolic_cross', 'variable': benchmark.variable,
'options': {'max_degree': 8}})

pce = approx_res.approx

res = analysis.gpc_sobol_sensitivities(pce, benchmark.variable)

Now lets compare the estimated values with the exact value

print(res.main_effects[:, 0])
print(benchmark.main_effects[:, 0])

Out:

[3.13846967e-01 4.43332345e-01 3.51182285e-07]
[0.31390519 0.44241114 0.]

We can visualize the sensitivity indices using the following

fig, axs = plt.subplots(1, 3, figsize=(3*8, 6))
analysis.plot_main_effects(benchmark.main_effects, axs[0])
analysis.plot_total_effects(benchmark.total_effects, axs[1])
analysis.plot_interaction_values(benchmark.sobol_indices,

(continues on next page)

42 Chapter 4. Theoretical Tutorials

Sensitivity Analysis quantifies the impact of variable subsets on predictions

BAYESIAN INFERENCE (CALIBRATION)

PyApprox, Release 1.0.2

Bayes Rule

Given a model M(z) parameterized by a set of parameters z, our goal is to infer the parameter z from data d.

Bayes Theorem describes the probability of the parameters z conditioned on the data d is proportional to the conditional
probability of observing the data given the parameters multiplied by the probability of observing the data, that is

⇡(z | d) = ⇡(d | z)⇡(z)
⇡(d)

=
⇡(d | z)⇡(z)R

Rd ⇡(d | z)⇡(z) dz

The density ⇡(z | d) is referred to as the posterior density.

Prior

To find the posterior density we must first quantify our prior belief of the possible values of the parameter that can give
the data. We do this by specifying the probability of observing the parameter independently of observing the data.

Here we specify the prior distribution to be Normally distributed, e.g

⇡ ⇠ N(mprior,⌃prior)

Likelihood

Next we must specify the likelihood ⇡(d | z) of observing the data given a realizations of the parameter z The likelihood
answers the question: what is the distribution of the data assuming that z are the exact parameters?

The form of the likelihood is derived from an assumed relationship between the model and the data.

It is often assumed that

d = M(z) + ⌘

where ⌘ ⇠ N(0,⌃noise) is normally distributed noise with zero mean and covariance ⌃noise.

In this case the likelihood is

⇡(d|z) = 1p
(2⇡)k|⌃noise|

exp

✓
�1

2
(M(z)� d)T⌃noise

�1(M(z)� d)

◆

where |⌃noise| = det⌃noise is the determinant of ⌃noise

Exact Linear-Gaussian Inference

In the following we will generate data at a truth parameter ztruth and use Bayesian inference to estimate the probability
of any model parameter z conditioned on the observations we generated. Firstly assume M is a linear model, i.e.

M(z) = Az + b,

and as above assume that

d = M(z) + ⌘

44 Chapter 4. Theoretical Tutorials

PyApprox, Release 1.0.2

Bayes Rule

Given a model M(z) parameterized by a set of parameters z, our goal is to infer the parameter z from data d.

Bayes Theorem describes the probability of the parameters z conditioned on the data d is proportional to the conditional
probability of observing the data given the parameters multiplied by the probability of observing the data, that is

⇡(z | d) = ⇡(d | z)⇡(z)
⇡(d)

=
⇡(d | z)⇡(z)R

Rd ⇡(d | z)⇡(z) dz

The density ⇡(z | d) is referred to as the posterior density.

Prior

To find the posterior density we must first quantify our prior belief of the possible values of the parameter that can give
the data. We do this by specifying the probability of observing the parameter independently of observing the data.

Here we specify the prior distribution to be Normally distributed, e.g

⇡ ⇠ N(mprior,⌃prior)

Likelihood

Next we must specify the likelihood ⇡(d | z) of observing the data given a realizations of the parameter z The likelihood
answers the question: what is the distribution of the data assuming that z are the exact parameters?

The form of the likelihood is derived from an assumed relationship between the model and the data.

It is often assumed that

d = M(z) + ⌘

where ⌘ ⇠ N(0,⌃noise) is normally distributed noise with zero mean and covariance ⌃noise.

In this case the likelihood is

⇡(d|z) = 1p
(2⇡)k|⌃noise|

exp

✓
�1

2
(M(z)� d)T⌃noise

�1(M(z)� d)

◆

where |⌃noise| = det⌃noise is the determinant of ⌃noise

Exact Linear-Gaussian Inference

In the following we will generate data at a truth parameter ztruth and use Bayesian inference to estimate the probability
of any model parameter z conditioned on the observations we generated. Firstly assume M is a linear model, i.e.

M(z) = Az + b,

and as above assume that

d = M(z) + ⌘

44 Chapter 4. Theoretical Tutorials

Inference
Prior

uncertainty

data data

Bayesian inference uses data 𝑑 to
update estimates of uncertainty

BAYESIAN INFERENCE (CALIBRATION)

And update prior distribution on
coefficients

We can collect sparse
measurements of concentration

Experimental design can be used to
choose data that will most inform

uncertainty

FORWARD PROPAGATION

2

6664

z1
z2
...
zd

3

7775

Variables

u = f (z)

Model

2

64
q1
...

qnq

3

75 = Q(u)

QoI

Gr/BMI

Gr/BMI

Variables

Friction

Surface mass
balance

…

𝑢!(𝑧) 𝑓!(𝑢!(𝑧))𝑧 = [𝑧", … , 𝑧#]

𝔼 𝑓! 𝑧 + 𝕍 𝑓! 𝑧 "/%

ℙ[𝑓! 𝑧 ≥ 𝛿]

Forward propagation of uncertainty computes measures of prediction uncertainty
from a set of model evaluations

When a model is computational expensive only a limited number of evaluations may
be available.

UNCERTAINTIES EFFECT DESIGNS

Failure region at
deterministic optimum

Reliable/Robust
Optimum

Objective Constraint

Acceptable
Failure Region

Deterministic
Optimum

min
%∈'

ℒ 𝑢 𝑧⋆, 𝜉 	

𝑠. 𝑡. 	 𝒞 𝑢 𝑧⋆, 𝜉 ≤ 0
min
%∈'

𝔼 ℒ 𝑢 𝑧⋆, 𝜉 	

𝑠. 𝑡. 	 ℙ 𝒞 𝑢 𝑧, 𝜉 ≤ 𝛿 − 𝜖 ≤ 0

Compute design at nominal values 𝑧⋆
Deterministic design Design under uncertainty

Create design that is robust to uncertainty

END TO END WORKFLOW

Model-form
uncertainty

Inference

Propagation

Parameter
uncertainty

Inference

data data

data data

Design Under
Uncertainty

Model
uncertainty

When a model is computational expensive only a limited number of evaluations may
be available.

Efficient methods are needed to reduce the
computational cost

MULTI-FIDELITY UQ

Goal:
Uncertainty

Quantification UQ

Challenge:
Expensive data intractable

Multi-fidelity solution:
Use data from multiple

models

Existing approach:
Use lower-fidelity data

OUTER-LOOP
PROCESS

LF
SIMULATION

OUTER-LOOP
PROCESS

HF
SIMULATION

FINE
FOS

COARSE
FOS

FINE
SSA

COARSE
SSA

C
O

ST

FI
D

E
LI

T
Y

 (A
C

C
U

R
A

C
Y

)

OUTER-LOOP
PROCESS

MF UQ AND MF SURROGATES CAN REDUCE
THE COST OF BUILDING SINGLE-FIDELITY BY

10-100X

OUTER-LOOP
PROCESS

NUMERICAL DISCRETIZATION IMPACTS ACCURACY

PyApprox, Release 1.0.2

noiseless_obs [np.ndarray (nobs)] The solution u(xl) at the L locations {xl}Ll=1 determined by
obs_indices

obs [np.ndarray (nobs)] The noisy observations u(xl) + ✏l

true_sample [np.ndarray (nkle_vars)] The KLE coe�cients used to generate the noisy observa-
tions

obs_indices [np.ndarray (nobs)] The indices of the collocation mesh at which observations are
collected. If not specified the indices will be chosen randomly ensuring that no indices as-
sociated with boundary segments are selected.

obs_fun [callable] The function used to generate the noisless observations with signature

obs_fun(z) -> np.ndarray

where z is a 2D np.ndarray with shape (nvars, nsamples) and the output is a 2D np.ndarray
with shape (nsamples, nobs).

KLE [MeshKLE] KLE object containing the attributes needed to evaluate the KLE

Examples

>>> from pyapprox_dev.benchmarks.benchmarks import setup_benchmark
>>> benchmark = setup_benchmark('advection_diffusion_kle_inversion', nvars=2)
>>> print(benchmark.keys())
dict_keys(['fun', 'variable'])

setup_multi_index_advection_di�usion_benchmark

pyapprox.benchmarks.setup_multi_index_advection_diffusion_benchmark(kle_nvars=2,
kle_length_scale=0.5,
kle_stdev=1,
max_eval_concurrency=1,
time_scenario=None,
functional=None,
config_values=None,
source_loc=[0.25, 0.75],
source_scale=0.1,
source_amp=100.0,
vel_vec=[1.0, 0.0],
kle_mean_field=0)

This benchmark is used to test methods for forward propagation of uncertainty. The forward simulation model
is the transient advection-di�usion model

@u

@t
(x, t, z) = r · [k(x, z)ru(x, t, z)]�r · (vu(x, t, z)) + g(x, t)(x, t, z) 2 D ⇥ [0, 1]⇥ �

B(x, t, z) = 0(x, t, z) 2 @D ⇥ [0, 1]⇥ �

u(x, t, z) = u0(x, z)(x, t, z) 2 D ⇥ {t = 0}⇥ �

where

g(x, t) =
100

2⇡0.12
exp

✓
� |x� [0.25, 0.75]>|2

2 · 0.12

◆
� ssink

2⇡h2
sink

exp

✓
� |x� xsink|2

2h2
sink

◆

and B(x, t, z) enforces Robin boundary conditions, i.e.

K(x, z)ru(x, t, z) · n� 0.1u(x, t, z) = 0 on @D

6.3. pyapprox.benchmarks Package 189

Transient Advection diffusion

S
Accuracy of QoI f(z) depends on numerical discretization

PyApprox, Release 1.0.2

As with the pyapprox.benchmarks.setup_advection_diffusion_kle_inversion_benchmark() we
parameterize the uncertain di�usivity with a Karhunen Loeve Expansion (KLE)

k(x, z) = exp

k0 +

DX

d=1

p
�d d(x)zd

!
.

If no initial condition is provided by the user then the governing equations in pyapprox.benchmarks.
setup_advection_diffusion_kle_inversion_benchmark() is used to create an initial condition, where
the forcing is set to be the first term of g here. I.e. the steady state solution before the second term of g is used
to remove the concentration u from the domain.

The quantity of interest f(z) is the integral of the final solution in the subdomain S = [0.75, 1]⇥ [0, 0.25], i.e.

f(z) =

Z

S
u(x, T, z)dx

This model can be evaluated using di�erent numerical discreizations that control the two spatial mesh reso-
lutions and the timestep. The model is evaluated by specifying the random variables and the three numerical
(configuration) variables.

If not time_scenario is provided. The QoI from the steady state solution is returned.

This benchmark can be modified by changing the default keyword arguments if necessary.

Parameters
nvars [integer] The number of variables of the KLE

kle_length_scale [float] The correlation length Lc of the covariance kernel

kle_sigma [float] The standard deviation of the KLE kernel

max_eval_concurrency [integer] The maximum number of simulations that can be run in par-
allel. Should be no more than the maximum number of cores on the computer being used

time_scenario [dict] Options defining the transient simulation. If None a steady state problem
will be solved If True the default time scenario will be used which corresponds to specifying
the dictionary

time_scenario = {
"final_time": 0.2,
"butcher_tableau": "im_crank2",
"deltat": 0.1, # default will be overwritten
"init_sol_fun": None,
"sink": None
}

Respectively, the entries of sink are ssink, hsink, xsink, e.g. [50, 0.1, [0.75, 0.75]]. If
None then the sink will be turned o�. init_sol is a callable function with signature
init_sol_fun(x) -> np.ndarray (nx, 1) where x is np.ndarray (nphys_vars, nx) are
physical coordinates in the mesh. butcher_tableau specifies the time-stepping scheme
which can be either im_beuler1 or im_crank2. final_time specifies T .

functional [callable] Function used to compute the Quantities of interest with signature

functional(sol, z) -> float

Here sol: torch.tensor (ndof) is the solution at the mesh points and z -> np.
ndarray(nkle_vars, 1) is the value of the KLE coe�cients that produced sol. If None
the subdomain intergral of sol at the final time will be used as defined above.

190 Chapter 6. User Reference Guide

Vary horizontal mesh resolution Vary vertical mesh resolution Vary time-step size

E
rr

or
 in

 Q
oI

MULTI-LEVEL VS MULTI-INDEX

PyApprox, Release 1.0.2

Fig. 10: A multi-level hierarchy formed by increasing mesh discretizations.

An observation

Multilevel collocation was introduced to reduce the cost of building surrogates of models when a one-dimensional
hierarchy of numerical discretizations of a model f↵(z),↵ = 0, 1, . . . are available such that

kf � f↵k  kf � f↵0k

if ↵0
< ↵. and the work W↵ increases with fidelity.

Multilevel collocation can be implemented by modifying sparse grid interplation developed for a single model fidelity.
The modification is based on the observation that the discrepancy between two consecutive models and the lower-
fidelity model will be computationally cheaper to approximate than higher-fidelity model.

The following code demonstrates this observation for a simple 1D model with two numerical discretizations

f↵ = cos(⇡(z + 1)/2 + ✏↵)

import numpy as np

from functools import partial
from scipy import stats
from pyapprox.variables.joint import IndependentMarginalsVariable
import matplotlib.pyplot as plt

from pyapprox.surrogates.approximate import adaptive_approximate
from pyapprox.surrogates.interp.adaptive_sparse_grid import (

tensor_product_refinement_indicator, isotropic_refinement_indicator,
variance_refinement_indicator)

from pyapprox.variables.transforms import ConfigureVariableTransformation
(continues on next page)

138 Chapter 4. Theoretical Tutorials

Both assumeMulti-level methods

Use a 1D hierarchy of models
controlled by a scalar index 𝛼 ∈ ℕ

𝛼

Multi-index methods

Use a multi-dimensional hierarchy
controlled by a multi-index

𝛼 = [𝛼), 𝛼*, …]

𝛼!

𝛼"

MOVING BEYOND MULTI-INDEX METHODS

!!

!"(#,%"; '")

!#(#, %#; '#) !$(#, '$)

!"

!#

% &#

Loss

% %&"

!$

%

!'(#;'')

SHALLOW SHELF

1ST ORDER
STOKES

STOKES

SHALLOW ICE

Some problems possess an
ensemble of models that do not

admit a strict hierarchy

Methods that can encode general
dependencies are now being

developed

Gorodetsky et al. MFNets: Multi-fidelity data-driven networks for bayesian learning and prediction, International
Journal for Uncertainty Quantification, 2020.
A. Gorodetsky et al. MFNets: Learning network representations for multifidelity surrogate modeling, 2020.

https://www.alexgorodetsky.com/static/papers/gorodetsky_jakeman_geraci_eldred_mfnets_2020.pdf
https://www.alexgorodetsky.com/static/papers/gorodetsky_jakeman_geraci_eldred_mfnets_2020.pdf
https://res.arxiv.org/abs/2008.02672

PyApprox, Release 1.0.0

In a series of tutorials starting with Control Variate Monte Carlo we show how to produce an unbiased estimator with
small variance using both these models.

Total running time of the script: (0 minutes 0.601 seconds)

4.3.2 Control Variate Monte Carlo

This tutorial describes how to implement and deploy control variate Monte Carlo sampling to compute the expectations
of the output of a high-fidelity model using a lower-fidelity model with a known mean. The information presented here
builds upon the tutorial sphx_glr_auto_tutorials_foundations_plot_monte_carlo.py.

Let us introduce a model Q with known mean µ. We can use this model to estimate the mean of Q↵ via
[LMWOR1982]

QCV
↵,N = Q↵,N + ⌘ (Q,N � µ)

Here ⌘ is a free parameter which can be optimized to the reduce the variance of this so called control variate estimator,
which is given by

V
⇥
QCV

↵,N

⇤
= V [Q↵,N + ⌘ (Q,N � µ)]

= V [Q↵,N] + ⌘2V [(Q,N � µ)] + 2⌘Cov [Q↵,N , (Q,N � µ)]

= V [Q↵,N]

✓
1 + ⌘2

V [(Q,N � µ)]

V [Q↵,N]
+ 2⌘

Cov [Q↵,N , (Q,N � µ)]

V [Q↵,N]

◆
.

The first line follows from the variance of sums of random variables.

We can measure the change in MSE bys using the control variate estimator, by looking at the ratio of the CVMC and
MC estimator variances. The variance reduction ratio is

� =
V
⇥
QCV

↵,N

⇤

V [Q↵,N]
=

✓
1 + ⌘2

V [(Q,N � µ)]

V [Q↵,N]
+ 2⌘

Cov [Q↵,N , (Q,N � µ)]

V [Q↵,N]

◆

The variance reduction can be minimized by setting its gradient to zero and solving for ⌘, i.e.

d

d⌘
� = 2⌘

V [(Q,N � µ)]

V [Q↵,N]
+ 2

Cov [Q↵,N , (Q,N � µ)]

V [Q↵,N]
= 0

=) ⌘V [(Q,N � µ)] + Cov [Q↵,N , (Q,N � µ)] = 0

=) ⌘ = �Cov [Q↵,N , (Q,N � µ)]

V [(Q,N � µ)]

= �Cov [Q↵,N , Q,N]

V [Q,N]

With this choice

� = 1 +
Cov [Q↵,N , (Q,N � µ)]

2

V [(Q,N � µ)]
2

V [(Q,N � µ)]

V [Q↵,N]
� 2

Cov [Q↵,N , (Q,N � µ)]

V [(Q,N � µ)]

Cov [Q↵,N , (Q,N � µ)]

V [Q↵,N]

= 1 +
Cov [Q↵,N , (Q,N � µ)]

2

V [(Q,N � µ)]V [Q↵,N]
� 2

Cov [Q↵,N , (Q,N � µ)]
2

V [(Q,N � µ)]V [Q↵,N]

= 1� Cor [Q↵,N , (Q,N � µ)]
2

= 1� Cor [Q↵,N , Q,N]2

Thus if a two highly correlated models (one with a known mean) are available then we can drastically reduce the MSE
of our estimate of the unknown mean.

82 Chapter 4. Theoretical Tutorials

MULTI-FIDELITY QUADRATURE

PyApprox, Release 1.0.0

In a series of tutorials starting with Control Variate Monte Carlo we show how to produce an unbiased estimator with
small variance using both these models.

Total running time of the script: (0 minutes 0.601 seconds)

4.3.2 Control Variate Monte Carlo

This tutorial describes how to implement and deploy control variate Monte Carlo sampling to compute the expectations
of the output of a high-fidelity model using a lower-fidelity model with a known mean. The information presented here
builds upon the tutorial sphx_glr_auto_tutorials_foundations_plot_monte_carlo.py.

Let us introduce a model Q with known mean µ. We can use this model to estimate the mean of Q↵ via
[LMWOR1982]

QCV
↵,N = Q↵,N + ⌘ (Q,N � µ)

Here ⌘ is a free parameter which can be optimized to the reduce the variance of this so called control variate estimator,
which is given by

V
⇥
QCV

↵,N

⇤
= V [Q↵,N + ⌘ (Q,N � µ)]

= V [Q↵,N] + ⌘2V [(Q,N � µ)] + 2⌘Cov [Q↵,N , (Q,N � µ)]

= V [Q↵,N]

✓
1 + ⌘2

V [(Q,N � µ)]

V [Q↵,N]
+ 2⌘

Cov [Q↵,N , (Q,N � µ)]

V [Q↵,N]

◆
.

The first line follows from the variance of sums of random variables.

We can measure the change in MSE bys using the control variate estimator, by looking at the ratio of the CVMC and
MC estimator variances. The variance reduction ratio is

� =
V
⇥
QCV

↵,N

⇤

V [Q↵,N]
=

✓
1 + ⌘2

V [(Q,N � µ)]

V [Q↵,N]
+ 2⌘

Cov [Q↵,N , (Q,N � µ)]

V [Q↵,N]

◆

The variance reduction can be minimized by setting its gradient to zero and solving for ⌘, i.e.

d

d⌘
� = 2⌘

V [(Q,N � µ)]

V [Q↵,N]
+ 2

Cov [Q↵,N , (Q,N � µ)]

V [Q↵,N]
= 0

=) ⌘V [(Q,N � µ)] + Cov [Q↵,N , (Q,N � µ)] = 0

=) ⌘ = �Cov [Q↵,N , (Q,N � µ)]

V [(Q,N � µ)]

= �Cov [Q↵,N , Q,N]

V [Q,N]

With this choice

� = 1 +
Cov [Q↵,N , (Q,N � µ)]

2

V [(Q,N � µ)]
2

V [(Q,N � µ)]

V [Q↵,N]
� 2

Cov [Q↵,N , (Q,N � µ)]

V [(Q,N � µ)]

Cov [Q↵,N , (Q,N � µ)]

V [Q↵,N]

= 1 +
Cov [Q↵,N , (Q,N � µ)]

2

V [(Q,N � µ)]V [Q↵,N]
� 2

Cov [Q↵,N , (Q,N � µ)]
2

V [(Q,N � µ)]V [Q↵,N]

= 1� Cor [Q↵,N , (Q,N � µ)]
2

= 1� Cor [Q↵,N , Q,N]2

Thus if a two highly correlated models (one with a known mean) are available then we can drastically reduce the MSE
of our estimate of the unknown mean.

82 Chapter 4. Theoretical Tutorials

PyApprox, Release 1.0.0

In a series of tutorials starting with Control Variate Monte Carlo we show how to produce an unbiased estimator with
small variance using both these models.

Total running time of the script: (0 minutes 0.601 seconds)

4.3.2 Control Variate Monte Carlo

This tutorial describes how to implement and deploy control variate Monte Carlo sampling to compute the expectations
of the output of a high-fidelity model using a lower-fidelity model with a known mean. The information presented here
builds upon the tutorial sphx_glr_auto_tutorials_foundations_plot_monte_carlo.py.

Let us introduce a model Q with known mean µ. We can use this model to estimate the mean of Q↵ via
[LMWOR1982]

QCV
↵,N = Q↵,N + ⌘ (Q,N � µ)

Here ⌘ is a free parameter which can be optimized to the reduce the variance of this so called control variate estimator,
which is given by

V
⇥
QCV

↵,N

⇤
= V [Q↵,N + ⌘ (Q,N � µ)]

= V [Q↵,N] + ⌘2V [(Q,N � µ)] + 2⌘Cov [Q↵,N , (Q,N � µ)]

= V [Q↵,N]

✓
1 + ⌘2

V [(Q,N � µ)]

V [Q↵,N]
+ 2⌘

Cov [Q↵,N , (Q,N � µ)]

V [Q↵,N]

◆
.

The first line follows from the variance of sums of random variables.

We can measure the change in MSE bys using the control variate estimator, by looking at the ratio of the CVMC and
MC estimator variances. The variance reduction ratio is

� =
V
⇥
QCV

↵,N

⇤

V [Q↵,N]
=

✓
1 + ⌘2

V [(Q,N � µ)]

V [Q↵,N]
+ 2⌘

Cov [Q↵,N , (Q,N � µ)]

V [Q↵,N]

◆

The variance reduction can be minimized by setting its gradient to zero and solving for ⌘, i.e.

d

d⌘
� = 2⌘

V [(Q,N � µ)]

V [Q↵,N]
+ 2

Cov [Q↵,N , (Q,N � µ)]

V [Q↵,N]
= 0

=) ⌘V [(Q,N � µ)] + Cov [Q↵,N , (Q,N � µ)] = 0

=) ⌘ = �Cov [Q↵,N , (Q,N � µ)]

V [(Q,N � µ)]

= �Cov [Q↵,N , Q,N]

V [Q,N]

With this choice

� = 1 +
Cov [Q↵,N , (Q,N � µ)]

2

V [(Q,N � µ)]
2

V [(Q,N � µ)]

V [Q↵,N]
� 2

Cov [Q↵,N , (Q,N � µ)]

V [(Q,N � µ)]

Cov [Q↵,N , (Q,N � µ)]

V [Q↵,N]

= 1 +
Cov [Q↵,N , (Q,N � µ)]

2

V [(Q,N � µ)]V [Q↵,N]
� 2

Cov [Q↵,N , (Q,N � µ)]
2

V [(Q,N � µ)]V [Q↵,N]

= 1� Cor [Q↵,N , (Q,N � µ)]
2

= 1� Cor [Q↵,N , Q,N]2

Thus if a two highly correlated models (one with a known mean) are available then we can drastically reduce the MSE
of our estimate of the unknown mean.

82 Chapter 4. Theoretical Tutorials

PyApprox, Release 1.0.0

In a series of tutorials starting with Control Variate Monte Carlo we show how to produce an unbiased estimator with
small variance using both these models.

Total running time of the script: (0 minutes 0.601 seconds)

4.3.2 Control Variate Monte Carlo

This tutorial describes how to implement and deploy control variate Monte Carlo sampling to compute the expectations
of the output of a high-fidelity model using a lower-fidelity model with a known mean. The information presented here
builds upon the tutorial sphx_glr_auto_tutorials_foundations_plot_monte_carlo.py.

Let us introduce a model Q with known mean µ. We can use this model to estimate the mean of Q↵ via
[LMWOR1982]

QCV
↵,N = Q↵,N + ⌘ (Q,N � µ)

Here ⌘ is a free parameter which can be optimized to the reduce the variance of this so called control variate estimator,
which is given by

V
⇥
QCV

↵,N

⇤
= V [Q↵,N + ⌘ (Q,N � µ)]

= V [Q↵,N] + ⌘2V [(Q,N � µ)] + 2⌘Cov [Q↵,N , (Q,N � µ)]

= V [Q↵,N]

✓
1 + ⌘2

V [(Q,N � µ)]

V [Q↵,N]
+ 2⌘

Cov [Q↵,N , (Q,N � µ)]

V [Q↵,N]

◆
.

The first line follows from the variance of sums of random variables.

We can measure the change in MSE bys using the control variate estimator, by looking at the ratio of the CVMC and
MC estimator variances. The variance reduction ratio is

� =
V
⇥
QCV

↵,N

⇤

V [Q↵,N]
=

✓
1 + ⌘2

V [(Q,N � µ)]

V [Q↵,N]
+ 2⌘

Cov [Q↵,N , (Q,N � µ)]

V [Q↵,N]

◆

The variance reduction can be minimized by setting its gradient to zero and solving for ⌘, i.e.

d

d⌘
� = 2⌘

V [(Q,N � µ)]

V [Q↵,N]
+ 2

Cov [Q↵,N , (Q,N � µ)]

V [Q↵,N]
= 0

=) ⌘V [(Q,N � µ)] + Cov [Q↵,N , (Q,N � µ)] = 0

=) ⌘ = �Cov [Q↵,N , (Q,N � µ)]

V [(Q,N � µ)]

= �Cov [Q↵,N , Q,N]

V [Q,N]

With this choice

� = 1 +
Cov [Q↵,N , (Q,N � µ)]

2

V [(Q,N � µ)]
2

V [(Q,N � µ)]

V [Q↵,N]
� 2

Cov [Q↵,N , (Q,N � µ)]

V [(Q,N � µ)]

Cov [Q↵,N , (Q,N � µ)]

V [Q↵,N]

= 1 +
Cov [Q↵,N , (Q,N � µ)]

2

V [(Q,N � µ)]V [Q↵,N]
� 2

Cov [Q↵,N , (Q,N � µ)]
2

V [(Q,N � µ)]V [Q↵,N]

= 1� Cor [Q↵,N , (Q,N � µ)]
2

= 1� Cor [Q↵,N , Q,N]2

Thus if a two highly correlated models (one with a known mean) are available then we can drastically reduce the MSE
of our estimate of the unknown mean.

82 Chapter 4. Theoretical Tutorials

Goal: Compute the expected value using two (or
more) models

Yields

Minimizing variance ratio to find 𝜂

If 𝑄! = 𝑄 (unbiased) then CV estimator
is also unbiased

But variance of CV estimator is much
smaller than HF estimator if models are

highly correlated

𝜂 = −
Cov 𝑁&"∑'(𝑓! 𝑧 ' , 𝑁&"∑'(𝑓) 𝑧 '

𝕍 𝑁&"∑'(𝑓) 𝑧 ' = −
Cov 𝑓! , 𝑓)
𝕍[𝑓)]

Such that

MULTI-FIDELITY SURROGATES

GOAL
Build a surrogate using data

from models of varying
fidelity

𝑓!,# 𝑧 ≈ 𝑓$⋆ 𝑧
Highest fidelityNum samples per

model

Set of model fidelities including 𝛼⋆

A low-fidelity model can be used to accurately
extrapolate away from high-fidelity data

OVERVIEW
1. Multi-level/Multi-index collocation
• Tensor product interpolation
• Sparse grid approximation
• Multi-index collocation

2. Multi-level Gaussian processes
• Single fidelity Gaussian processes and

experimental design
• Multi-level Gaussian processes and

experimental design

3. Alternatives
• Deep GPs, neural networks, low-rank

methods, MFNets

TENSOR-PRODUCT INTERPOLATION

PyApprox, Release 1.0.2

References

Total running time of the script: (0 minutes 0.703 seconds)

4.3 Surrogates

4.3.1 Tensor-product Barycentric Interpolation

Many simulation models are extremely computationally expensive such that adequately understanding their behaviour
and quantifying uncertainty can be computationally intractable for any of the aforementioned techniques. Various
methods have been developed to produce surrogates of the model response to uncertain parameters, the most e�cient
are goal-oriented in nature and target very specific uncertainty measures.

Generally speaking surrogates are built using a “small” number of model simulations and are then substituted in place of
the expensive simulation models in future analysis. Some of the most popular surrogate types include polynomial chaos
expansions (PCE) [XKSISC2002], Gaussian processes (GP) [RWMIT2006], and sparse grids (SG) [BGAN2004].

Reduced order models (e.g. [SFIJNME2017]) can also be used to construct surrogates and have been applied success-
fully for UQ on many applications. These methods do not construct response surface approximations, but rather solve
the governing equations on a reduced basis. PyApprox does not currently implement reduced order modeling, however
the modeling analyis tools found in PyApprox can easily be applied to assess or design systems based on reduced order
models.

The use of surrogates for model analysis consists of two phases: (1) construction; and (2) post-processing.

Construction

In this section we show how to construct a surrogate using tensor-product Lagrange interpolation.

Tensor-product Lagrange interpolation

Let f̂↵,�(z) be an M-point tensor-product interpolant of the function f̂↵. This interpolant is a weighted linear combi-
nation of tensor-product of univariate Lagrange polynomials

�i,j(zi) =

m�iY

k=1,k 6=j

zi � z
(k)
i

z
(j)
i � z

(k)
i

, i 2 [d],

defined on a set of univariate points z(j)i , j 2 [m�i] Specifically the multivariate interpolant is given by

f̂↵,�(z) =
X

j�

f̂↵(z
(j))

Y

i2[d]

�i,ji(zi).

The partial ordering j  � is true if all the component wise conditions are true.

Constructing the interpolant requires evaluating the function f̂↵ on the grid of points

Z� =
dO

i=1

Zi
�i

=
⇥
z(1) · · · z(M�)

⇤
2 Rd⇥M�

We denote the resulting function evaluations by

F↵,� = f̂↵(Z�) =
⇥
f̂↵(z(1)) · · · f̂↵(z(M�))

⇤T 2 RM�⇥q
,

4.3. Surrogates 71

PyApprox, Release 1.0.2

where the number of points in the grid is M� =
Q

i2[d] m�i

It is often reasonable to assume that, for any z, the cost of each simulation is constant for a given ↵. So letting W↵

denote the cost of a single simulation, we can write the total cost of evaluating the interpolant W↵,� = W↵M�. Here
we have assumed that the computational e�ort to compute the interpolant once data has been obtained is negligible,
which is true for su�ciently expensive models f̂↵. Here we will use the nested Clenshaw-Curtis points

z
(j)
i = cos

✓
(j � 1)⇡

m�i

◆
, j = 1, . . . ,m�i

to define the univariate Lagrange polynomials. The number of points m(l) of this rule grows exponentially with the
level l, specifically m(0) = 1 and m(l) = 2l + 1 for l � 1. The univariate Clenshaw-Curtis points, the tensor-product
grid Z�, and two multivariate Lagrange polynomials with their corresponding univariate Lagrange polynomials are
shown below for � = (2, 2).

import numpy as np

from pyapprox.util.utilities import cartesian_product
from pyapprox.util.visualization import get_meshgrid_function_data, plt
from pyapprox.surrogates.interp.barycentric_interpolation import (

plot_tensor_product_lagrange_basis_2d,
tensor_product_barycentric_lagrange_interpolation)

from pyapprox.util.utilities import get_tensor_product_quadrature_rule
from pyapprox.surrogates.orthopoly.quadrature import clenshaw_curtis_pts_wts_1D

quad_rule = clenshaw_curtis_pts_wts_1D
fig = plt.figure(figsize=(2*8, 6))
ax = fig.add_subplot(1, 2, 1, projection='3d')
level = 2
ii, jj = 1, 1
plot_tensor_product_lagrange_basis_2d(quad_rule, level, ii, jj, ax)

ax = fig.add_subplot(1, 2, 2, projection='3d')
level = 2
ii, jj = 1, 3
ii = 1
plot_tensor_product_lagrange_basis_2d(quad_rule, level, ii, jj, ax)

To construct a surrogate using tensor product interpolation we simply multiply all such basis functions by the value of
the function f↵ evaluated at the corresponding interpolation point. The following uses tensor product interpolation to

72 Chapter 4. Theoretical Tutorials

Tensor product Lagrange interpolation is based on one
dimensional interpolants

Note other basis functions can be used, e.g. piecewise
polynomials.

!Ξ
Ξ

8 Friedman, Jakeman, Eldred, Tamellini, Gorodetsky, Allaire

where Ik is a set of concatenated multi-indices [↵,�].

3.3 Characterizing the coupling variables

Constructing a surrogate fk,Ik(uk) of a component requires specifying the ranges of the coupling variables.
The coupling variables ⇠k are functions of the random system variables z (either explicitly or via their
dependence on other components) and are thus themselves random, but their distribution are unknown
prior to simulation. Following [27, 9], we construct an approximation of a component over an estimated
range ⌅̂k of the input variables with respect to a simpler probability measure ⌫.

The following lemma characterizes the accuracy in a !-weighted norm given an approximation that is
accurate in the ⌫-weighted norm.

Lemma 3.1 (Strong convergence [9]). Let ⌫ : ⌅̂ ! R and ! : ⌅ ! R denote two densities which satisfy

� = 1 �
Z

⌅\⌅̂
!(u)du

Given an approximation f⌫ of f with approximation error ✏, i.e.,

✏ := kf � f⌫kLp
⌫(⌅), p � 1, (7)

then, if f is bounded with Cf = kfkL1(⌅), it holds that

kf � f⌫kLp
!(⌅)  C1/p

r ✏ + Cf�
1/p, provided Cr := max

u2⌅[⌅̂

!(u)

⌫(u)
< 1. (8)

This lemma suggests that treating the coupling variables as variables with an unknown distribution

Figure 4: Lagrange polynomial interpolants
of the Runge function f(u) = (1 + 25u2)�1

constructed using five function evaluations
on di↵erent intervals ⌅̂i, i = 1, 2, 3.

does not a↵ect the rate at which the error converges in a com-
ponent surrogate. The second term in (8) comes from truncat-
ing the tails of the true distribution of the coupling variables.
In many cases, the coupling variables are bounded and so this
term can be eliminated by using conservative estimates of the
range. For unbounded domains, the tail truncation error can
be made arbitrarily small by choosing a su�ciently large range
⌅̂k.

In the following, we set ⌫ to be the PDF of the uniform
distribution over a pre-defined range ⌅̂k. For some integrated
systems, the ranges can be determined from analysis of the
system components. However, for other systems, the ranges
of the coupling variables must be estimated. Figure 4 demon-
strates the importance of correctly estimating the range; un-
derestimating the range can lead to large approximation errors
outside ⌅̂.

In this paper, we use an adaptive algorithm, presented in
Section 4.3, to estimate the range of the coupling variables. We
investigate the performance of this algorithm and the impact of over-estimating and under-estimating the
range of the coupling variables in Section 5.1.1.

3.4 Evaluating system-level QoI using component surrogates

Once surrogates of each component have been constructed, they can be combined to make predictions of
system-level QoI using the procedures discussed in Section 2. We use the functional

Gz,J : (f1,I1 , . . . , fK,IK) 7! f(z)

to represent the evaluation of the integrated system at a sample of z. Here J = {I1, . . . , IK} are the
index sets associated with each component surrogates fk,Ik k = 1, . . . ,K. The accuracy of the system-level
QoI, qJ = RyGz,J [f1,I1 , . . . , fK,IK], obtained depends on the accuracy of each component surrogate. In
this section, we provide theoretical bounds on the error for systems involving feed-forward and feedback
coupling.

8 Friedman, Jakeman, Eldred, Tamellini, Gorodetsky, Allaire

where Ik is a set of concatenated multi-indices [↵,�].

3.3 Characterizing the coupling variables

Constructing a surrogate fk,Ik(uk) of a component requires specifying the ranges of the coupling variables.
The coupling variables ⇠k are functions of the random system variables z (either explicitly or via their
dependence on other components) and are thus themselves random, but their distribution are unknown
prior to simulation. Following [27, 9], we construct an approximation of a component over an estimated
range ⌅̂k of the input variables with respect to a simpler probability measure ⌫.

The following lemma characterizes the accuracy in a !-weighted norm given an approximation that is
accurate in the ⌫-weighted norm.

Lemma 3.1 (Strong convergence [9]). Let ⌫ : ⌅̂ ! R and ! : ⌅ ! R denote two densities which satisfy

� = 1 �
Z

⌅\⌅̂
!(u)du

Given an approximation f⌫ of f with approximation error ✏, i.e.,

✏ := kf � f⌫kLp
⌫(⌅), p � 1, (7)

then, if f is bounded with Cf = kfkL1(⌅), it holds that

kf � f⌫kLp
!(⌅)  C1/p

r ✏ + Cf�
1/p, provided Cr := max

u2⌅[⌅̂

!(u)

⌫(u)
< 1. (8)

This lemma suggests that treating the coupling variables as variables with an unknown distribution

Figure 4: Lagrange polynomial interpolants
of the Runge function f(u) = (1 + 25u2)�1

constructed using five function evaluations
on di↵erent intervals ⌅̂i, i = 1, 2, 3.

does not a↵ect the rate at which the error converges in a com-
ponent surrogate. The second term in (8) comes from truncat-
ing the tails of the true distribution of the coupling variables.
In many cases, the coupling variables are bounded and so this
term can be eliminated by using conservative estimates of the
range. For unbounded domains, the tail truncation error can
be made arbitrarily small by choosing a su�ciently large range
⌅̂k.

In the following, we set ⌫ to be the PDF of the uniform
distribution over a pre-defined range ⌅̂k. For some integrated
systems, the ranges can be determined from analysis of the
system components. However, for other systems, the ranges
of the coupling variables must be estimated. Figure 4 demon-
strates the importance of correctly estimating the range; un-
derestimating the range can lead to large approximation errors
outside ⌅̂.

In this paper, we use an adaptive algorithm, presented in
Section 4.3, to estimate the range of the coupling variables. We
investigate the performance of this algorithm and the impact of over-estimating and under-estimating the
range of the coupling variables in Section 5.1.1.

3.4 Evaluating system-level QoI using component surrogates

Once surrogates of each component have been constructed, they can be combined to make predictions of
system-level QoI using the procedures discussed in Section 2. We use the functional

Gz,J : (f1,I1 , . . . , fK,IK) 7! f(z)

to represent the evaluation of the integrated system at a sample of z. Here J = {I1, . . . , IK} are the
index sets associated with each component surrogates fk,Ik k = 1, . . . ,K. The accuracy of the system-level
QoI, qJ = RyGz,J [f1,I1 , . . . , fK,IK], obtained depends on the accuracy of each component surrogate. In
this section, we provide theoretical bounds on the error for systems involving feed-forward and feedback
coupling.

8 Friedman, Jakeman, Eldred, Tamellini, Gorodetsky, Allaire

where Ik is a set of concatenated multi-indices [↵,�].

3.3 Characterizing the coupling variables

Constructing a surrogate fk,Ik(uk) of a component requires specifying the ranges of the coupling variables.
The coupling variables ⇠k are functions of the random system variables z (either explicitly or via their
dependence on other components) and are thus themselves random, but their distribution are unknown
prior to simulation. Following [27, 9], we construct an approximation of a component over an estimated
range ⌅̂k of the input variables with respect to a simpler probability measure ⌫.

The following lemma characterizes the accuracy in a !-weighted norm given an approximation that is
accurate in the ⌫-weighted norm.

Lemma 3.1 (Strong convergence [9]). Let ⌫ : ⌅̂ ! R and ! : ⌅ ! R denote two densities which satisfy

� = 1 �
Z

⌅\⌅̂
!(u)du

Given an approximation f⌫ of f with approximation error ✏, i.e.,

✏ := kf � f⌫kLp
⌫(⌅), p � 1, (7)

then, if f is bounded with Cf = kfkL1(⌅), it holds that

kf � f⌫kLp
!(⌅)  C1/p

r ✏ + Cf�
1/p, provided Cr := max

u2⌅[⌅̂

!(u)

⌫(u)
< 1. (8)

This lemma suggests that treating the coupling variables as variables with an unknown distribution

Figure 4: Lagrange polynomial interpolants
of the Runge function f(u) = (1 + 25u2)�1

constructed using five function evaluations
on di↵erent intervals ⌅̂i, i = 1, 2, 3.

does not a↵ect the rate at which the error converges in a com-
ponent surrogate. The second term in (8) comes from truncat-
ing the tails of the true distribution of the coupling variables.
In many cases, the coupling variables are bounded and so this
term can be eliminated by using conservative estimates of the
range. For unbounded domains, the tail truncation error can
be made arbitrarily small by choosing a su�ciently large range
⌅̂k.

In the following, we set ⌫ to be the PDF of the uniform
distribution over a pre-defined range ⌅̂k. For some integrated
systems, the ranges can be determined from analysis of the
system components. However, for other systems, the ranges
of the coupling variables must be estimated. Figure 4 demon-
strates the importance of correctly estimating the range; un-
derestimating the range can lead to large approximation errors
outside ⌅̂.

In this paper, we use an adaptive algorithm, presented in
Section 4.3, to estimate the range of the coupling variables. We
investigate the performance of this algorithm and the impact of over-estimating and under-estimating the
range of the coupling variables in Section 5.1.1.

3.4 Evaluating system-level QoI using component surrogates

Once surrogates of each component have been constructed, they can be combined to make predictions of
system-level QoI using the procedures discussed in Section 2. We use the functional

Gz,J : (f1,I1 , . . . , fK,IK) 7! f(z)

to represent the evaluation of the integrated system at a sample of z. Here J = {I1, . . . , IK} are the
index sets associated with each component surrogates fk,Ik k = 1, . . . ,K. The accuracy of the system-level
QoI, qJ = RyGz,J [f1,I1 , . . . , fK,IK], obtained depends on the accuracy of each component surrogate. In
this section, we provide theoretical bounds on the error for systems involving feed-forward and feedback
coupling.

8 Friedman, Jakeman, Eldred, Tamellini, Gorodetsky, Allaire

where Ik is a set of concatenated multi-indices [↵,�].

3.3 Characterizing the coupling variables

Constructing a surrogate fk,Ik(uk) of a component requires specifying the ranges of the coupling variables.
The coupling variables ⇠k are functions of the random system variables z (either explicitly or via their
dependence on other components) and are thus themselves random, but their distribution are unknown
prior to simulation. Following [27, 9], we construct an approximation of a component over an estimated
range ⌅̂k of the input variables with respect to a simpler probability measure ⌫.

The following lemma characterizes the accuracy in a !-weighted norm given an approximation that is
accurate in the ⌫-weighted norm.

Lemma 3.1 (Strong convergence [9]). Let ⌫ : ⌅̂ ! R and ! : ⌅ ! R denote two densities which satisfy

� = 1 �
Z

⌅\⌅̂
!(u)du

Given an approximation f⌫ of f with approximation error ✏, i.e.,

✏ := kf � f⌫kLp
⌫(⌅), p � 1, (7)

then, if f is bounded with Cf = kfkL1(⌅), it holds that

kf � f⌫kLp
!(⌅)  C1/p

r ✏ + Cf�
1/p, provided Cr := max

u2⌅[⌅̂

!(u)

⌫(u)
< 1. (8)

This lemma suggests that treating the coupling variables as variables with an unknown distribution

Figure 4: Lagrange polynomial interpolants
of the Runge function f(u) = (1 + 25u2)�1

constructed using five function evaluations
on di↵erent intervals ⌅̂i, i = 1, 2, 3.

does not a↵ect the rate at which the error converges in a com-
ponent surrogate. The second term in (8) comes from truncat-
ing the tails of the true distribution of the coupling variables.
In many cases, the coupling variables are bounded and so this
term can be eliminated by using conservative estimates of the
range. For unbounded domains, the tail truncation error can
be made arbitrarily small by choosing a su�ciently large range
⌅̂k.

In the following, we set ⌫ to be the PDF of the uniform
distribution over a pre-defined range ⌅̂k. For some integrated
systems, the ranges can be determined from analysis of the
system components. However, for other systems, the ranges
of the coupling variables must be estimated. Figure 4 demon-
strates the importance of correctly estimating the range; un-
derestimating the range can lead to large approximation errors
outside ⌅̂.

In this paper, we use an adaptive algorithm, presented in
Section 4.3, to estimate the range of the coupling variables. We
investigate the performance of this algorithm and the impact of over-estimating and under-estimating the
range of the coupling variables in Section 5.1.1.

3.4 Evaluating system-level QoI using component surrogates

Once surrogates of each component have been constructed, they can be combined to make predictions of
system-level QoI using the procedures discussed in Section 2. We use the functional

Gz,J : (f1,I1 , . . . , fK,IK) 7! f(z)

to represent the evaluation of the integrated system at a sample of z. Here J = {I1, . . . , IK} are the
index sets associated with each component surrogates fk,Ik k = 1, . . . ,K. The accuracy of the system-level
QoI, qJ = RyGz,J [f1,I1 , . . . , fK,IK], obtained depends on the accuracy of each component surrogate. In
this section, we provide theoretical bounds on the error for systems involving feed-forward and feedback
coupling.

8 Friedman, Jakeman, Eldred, Tamellini, Gorodetsky, Allaire

where Ik is a set of concatenated multi-indices [↵,�].

3.3 Characterizing the coupling variables

Constructing a surrogate fk,Ik(uk) of a component requires specifying the ranges of the coupling variables.
The coupling variables ⇠k are functions of the random system variables z (either explicitly or via their
dependence on other components) and are thus themselves random, but their distribution are unknown
prior to simulation. Following [27, 9], we construct an approximation of a component over an estimated
range ⌅̂k of the input variables with respect to a simpler probability measure ⌫.

The following lemma characterizes the accuracy in a !-weighted norm given an approximation that is
accurate in the ⌫-weighted norm.

Lemma 3.1 (Strong convergence [9]). Let ⌫ : ⌅̂ ! R and ! : ⌅ ! R denote two densities which satisfy

� = 1 �
Z

⌅\⌅̂
!(u)du

Given an approximation f⌫ of f with approximation error ✏, i.e.,

✏ := kf � f⌫kLp
⌫(⌅), p � 1, (7)

then, if f is bounded with Cf = kfkL1(⌅), it holds that

kf � f⌫kLp
!(⌅)  C1/p

r ✏ + Cf�
1/p, provided Cr := max

u2⌅[⌅̂

!(u)

⌫(u)
< 1. (8)

This lemma suggests that treating the coupling variables as variables with an unknown distribution

Figure 4: Lagrange polynomial interpolants
of the Runge function f(u) = (1 + 25u2)�1

constructed using five function evaluations
on di↵erent intervals ⌅̂i, i = 1, 2, 3.

does not a↵ect the rate at which the error converges in a com-
ponent surrogate. The second term in (8) comes from truncat-
ing the tails of the true distribution of the coupling variables.
In many cases, the coupling variables are bounded and so this
term can be eliminated by using conservative estimates of the
range. For unbounded domains, the tail truncation error can
be made arbitrarily small by choosing a su�ciently large range
⌅̂k.

In the following, we set ⌫ to be the PDF of the uniform
distribution over a pre-defined range ⌅̂k. For some integrated
systems, the ranges can be determined from analysis of the
system components. However, for other systems, the ranges
of the coupling variables must be estimated. Figure 4 demon-
strates the importance of correctly estimating the range; un-
derestimating the range can lead to large approximation errors
outside ⌅̂.

In this paper, we use an adaptive algorithm, presented in
Section 4.3, to estimate the range of the coupling variables. We
investigate the performance of this algorithm and the impact of over-estimating and under-estimating the
range of the coupling variables in Section 5.1.1.

3.4 Evaluating system-level QoI using component surrogates

Once surrogates of each component have been constructed, they can be combined to make predictions of
system-level QoI using the procedures discussed in Section 2. We use the functional

Gz,J : (f1,I1 , . . . , fK,IK) 7! f(z)

to represent the evaluation of the integrated system at a sample of z. Here J = {I1, . . . , IK} are the
index sets associated with each component surrogates fk,Ik k = 1, . . . ,K. The accuracy of the system-level
QoI, qJ = RyGz,J [f1,I1 , . . . , fK,IK], obtained depends on the accuracy of each component surrogate. In
this section, we provide theoretical bounds on the error for systems involving feed-forward and feedback
coupling.

8 Friedman, Jakeman, Eldred, Tamellini, Gorodetsky, Allaire

where Ik is a set of concatenated multi-indices [↵,�].

3.3 Characterizing the coupling variables

Constructing a surrogate fk,Ik(uk) of a component requires specifying the ranges of the coupling variables.
The coupling variables ⇠k are functions of the random system variables z (either explicitly or via their
dependence on other components) and are thus themselves random, but their distribution are unknown
prior to simulation. Following [27, 9], we construct an approximation of a component over an estimated
range ⌅̂k of the input variables with respect to a simpler probability measure ⌫.

The following lemma characterizes the accuracy in a !-weighted norm given an approximation that is
accurate in the ⌫-weighted norm.

Lemma 3.1 (Strong convergence [9]). Let ⌫ : ⌅̂ ! R and ! : ⌅ ! R denote two densities which satisfy

� = 1 �
Z

⌅\⌅̂
!(u)du

Given an approximation f⌫ of f with approximation error ✏, i.e.,

✏ := kf � f⌫kLp
⌫(⌅), p � 1, (7)

then, if f is bounded with Cf = kfkL1(⌅), it holds that

kf � f⌫kLp
!(⌅)  C1/p

r ✏ + Cf�
1/p, provided Cr := max

u2⌅[⌅̂

!(u)

⌫(u)
< 1. (8)

This lemma suggests that treating the coupling variables as variables with an unknown distribution

Figure 4: Lagrange polynomial interpolants
of the Runge function f(u) = (1 + 25u2)�1

constructed using five function evaluations
on di↵erent intervals ⌅̂i, i = 1, 2, 3.

does not a↵ect the rate at which the error converges in a com-
ponent surrogate. The second term in (8) comes from truncat-
ing the tails of the true distribution of the coupling variables.
In many cases, the coupling variables are bounded and so this
term can be eliminated by using conservative estimates of the
range. For unbounded domains, the tail truncation error can
be made arbitrarily small by choosing a su�ciently large range
⌅̂k.

In the following, we set ⌫ to be the PDF of the uniform
distribution over a pre-defined range ⌅̂k. For some integrated
systems, the ranges can be determined from analysis of the
system components. However, for other systems, the ranges
of the coupling variables must be estimated. Figure 4 demon-
strates the importance of correctly estimating the range; un-
derestimating the range can lead to large approximation errors
outside ⌅̂.

In this paper, we use an adaptive algorithm, presented in
Section 4.3, to estimate the range of the coupling variables. We
investigate the performance of this algorithm and the impact of over-estimating and under-estimating the
range of the coupling variables in Section 5.1.1.

3.4 Evaluating system-level QoI using component surrogates

Once surrogates of each component have been constructed, they can be combined to make predictions of
system-level QoI using the procedures discussed in Section 2. We use the functional

Gz,J : (f1,I1 , . . . , fK,IK) 7! f(z)

to represent the evaluation of the integrated system at a sample of z. Here J = {I1, . . . , IK} are the
index sets associated with each component surrogates fk,Ik k = 1, . . . ,K. The accuracy of the system-level
QoI, qJ = RyGz,J [f1,I1 , . . . , fK,IK], obtained depends on the accuracy of each component surrogate. In
this section, we provide theoretical bounds on the error for systems involving feed-forward and feedback
coupling.

Interpolants for an oscillatory function parameterized by a Beta(10,10) random variable

The constant 𝐶, of convergence significantly impacts error

TENSOR-PRODUCT INTERPOLATION

PyApprox, Release 1.0.2

References

Total running time of the script: (0 minutes 0.703 seconds)

4.3 Surrogates

4.3.1 Tensor-product Barycentric Interpolation

Many simulation models are extremely computationally expensive such that adequately understanding their behaviour
and quantifying uncertainty can be computationally intractable for any of the aforementioned techniques. Various
methods have been developed to produce surrogates of the model response to uncertain parameters, the most e�cient
are goal-oriented in nature and target very specific uncertainty measures.

Generally speaking surrogates are built using a “small” number of model simulations and are then substituted in place of
the expensive simulation models in future analysis. Some of the most popular surrogate types include polynomial chaos
expansions (PCE) [XKSISC2002], Gaussian processes (GP) [RWMIT2006], and sparse grids (SG) [BGAN2004].

Reduced order models (e.g. [SFIJNME2017]) can also be used to construct surrogates and have been applied success-
fully for UQ on many applications. These methods do not construct response surface approximations, but rather solve
the governing equations on a reduced basis. PyApprox does not currently implement reduced order modeling, however
the modeling analyis tools found in PyApprox can easily be applied to assess or design systems based on reduced order
models.

The use of surrogates for model analysis consists of two phases: (1) construction; and (2) post-processing.

Construction

In this section we show how to construct a surrogate using tensor-product Lagrange interpolation.

Tensor-product Lagrange interpolation

Let f̂↵,�(z) be an M-point tensor-product interpolant of the function f̂↵. This interpolant is a weighted linear combi-
nation of tensor-product of univariate Lagrange polynomials

�i,j(zi) =

m�iY

k=1,k 6=j

zi � z
(k)
i

z
(j)
i � z

(k)
i

, i 2 [d],

defined on a set of univariate points z(j)i , j 2 [m�i] Specifically the multivariate interpolant is given by

f̂↵,�(z) =
X

j�

f̂↵(z
(j))

Y

i2[d]

�i,ji(zi).

The partial ordering j  � is true if all the component wise conditions are true.

Constructing the interpolant requires evaluating the function f̂↵ on the grid of points

Z� =
dO

i=1

Zi
�i

=
⇥
z(1) · · · z(M�)

⇤
2 Rd⇥M�

We denote the resulting function evaluations by

F↵,� = f̂↵(Z�) =
⇥
f̂↵(z(1)) · · · f̂↵(z(M�))

⇤T 2 RM�⇥q
,

4.3. Surrogates 71

PyApprox, Release 1.0.2

References

Total running time of the script: (0 minutes 0.703 seconds)

4.3 Surrogates

4.3.1 Tensor-product Barycentric Interpolation

Many simulation models are extremely computationally expensive such that adequately understanding their behaviour
and quantifying uncertainty can be computationally intractable for any of the aforementioned techniques. Various
methods have been developed to produce surrogates of the model response to uncertain parameters, the most e�cient
are goal-oriented in nature and target very specific uncertainty measures.

Generally speaking surrogates are built using a “small” number of model simulations and are then substituted in place of
the expensive simulation models in future analysis. Some of the most popular surrogate types include polynomial chaos
expansions (PCE) [XKSISC2002], Gaussian processes (GP) [RWMIT2006], and sparse grids (SG) [BGAN2004].

Reduced order models (e.g. [SFIJNME2017]) can also be used to construct surrogates and have been applied success-
fully for UQ on many applications. These methods do not construct response surface approximations, but rather solve
the governing equations on a reduced basis. PyApprox does not currently implement reduced order modeling, however
the modeling analyis tools found in PyApprox can easily be applied to assess or design systems based on reduced order
models.

The use of surrogates for model analysis consists of two phases: (1) construction; and (2) post-processing.

Construction

In this section we show how to construct a surrogate using tensor-product Lagrange interpolation.

Tensor-product Lagrange interpolation

Let f̂↵,�(z) be an M-point tensor-product interpolant of the function f̂↵. This interpolant is a weighted linear combi-
nation of tensor-product of univariate Lagrange polynomials

�i,j(zi) =

m�iY

k=1,k 6=j

zi � z
(k)
i

z
(j)
i � z

(k)
i

, i 2 [d],

defined on a set of univariate points z(j)i , j 2 [m�i] Specifically the multivariate interpolant is given by

f̂↵,�(z) =
X

j�

f̂↵(z
(j))

Y

i2[d]

�i,ji(zi).

The partial ordering j  � is true if all the component wise conditions are true.

Constructing the interpolant requires evaluating the function f̂↵ on the grid of points

Z� =
dO

i=1

Zi
�i

=
⇥
z(1) · · · z(M�)

⇤
2 Rd⇥M�

We denote the resulting function evaluations by

F↵,� = f̂↵(Z�) =
⇥
f̂↵(z(1)) · · · f̂↵(z(M�))

⇤T 2 RM�⇥q
,

4.3. Surrogates 71

PyApprox, Release 1.0.2

References

Total running time of the script: (0 minutes 0.703 seconds)

4.3 Surrogates

4.3.1 Tensor-product Barycentric Interpolation

Many simulation models are extremely computationally expensive such that adequately understanding their behaviour
and quantifying uncertainty can be computationally intractable for any of the aforementioned techniques. Various
methods have been developed to produce surrogates of the model response to uncertain parameters, the most e�cient
are goal-oriented in nature and target very specific uncertainty measures.

Generally speaking surrogates are built using a “small” number of model simulations and are then substituted in place of
the expensive simulation models in future analysis. Some of the most popular surrogate types include polynomial chaos
expansions (PCE) [XKSISC2002], Gaussian processes (GP) [RWMIT2006], and sparse grids (SG) [BGAN2004].

Reduced order models (e.g. [SFIJNME2017]) can also be used to construct surrogates and have been applied success-
fully for UQ on many applications. These methods do not construct response surface approximations, but rather solve
the governing equations on a reduced basis. PyApprox does not currently implement reduced order modeling, however
the modeling analyis tools found in PyApprox can easily be applied to assess or design systems based on reduced order
models.

The use of surrogates for model analysis consists of two phases: (1) construction; and (2) post-processing.

Construction

In this section we show how to construct a surrogate using tensor-product Lagrange interpolation.

Tensor-product Lagrange interpolation

Let f̂↵,�(z) be an M-point tensor-product interpolant of the function f̂↵. This interpolant is a weighted linear combi-
nation of tensor-product of univariate Lagrange polynomials

�i,j(zi) =

m�iY

k=1,k 6=j

zi � z
(k)
i

z
(j)
i � z

(k)
i

, i 2 [d],

defined on a set of univariate points z(j)i , j 2 [m�i] Specifically the multivariate interpolant is given by

f̂↵,�(z) =
X

j�

f̂↵(z
(j))

Y

i2[d]

�i,ji(zi).

The partial ordering j  � is true if all the component wise conditions are true.

Constructing the interpolant requires evaluating the function f̂↵ on the grid of points

Z� =
dO

i=1

Zi
�i

=
⇥
z(1) · · · z(M�)

⇤
2 Rd⇥M�

We denote the resulting function evaluations by

F↵,� = f̂↵(Z�) =
⇥
f̂↵(z(1)) · · · f̂↵(z(M�))

⇤T 2 RM�⇥q
,

4.3. Surrogates 71

PyApprox, Release 1.0.2

where the number of points in the grid is M� =
Q

i2[d] m�i

It is often reasonable to assume that, for any z, the cost of each simulation is constant for a given ↵. So letting W↵

denote the cost of a single simulation, we can write the total cost of evaluating the interpolant W↵,� = W↵M�. Here
we have assumed that the computational e�ort to compute the interpolant once data has been obtained is negligible,
which is true for su�ciently expensive models f̂↵. Here we will use the nested Clenshaw-Curtis points

z
(j)
i = cos

✓
(j � 1)⇡

m�i

◆
, j = 1, . . . ,m�i

to define the univariate Lagrange polynomials. The number of points m(l) of this rule grows exponentially with the
level l, specifically m(0) = 1 and m(l) = 2l + 1 for l � 1. The univariate Clenshaw-Curtis points, the tensor-product
grid Z�, and two multivariate Lagrange polynomials with their corresponding univariate Lagrange polynomials are
shown below for � = (2, 2).

import numpy as np

from pyapprox.util.utilities import cartesian_product
from pyapprox.util.visualization import get_meshgrid_function_data, plt
from pyapprox.surrogates.interp.barycentric_interpolation import (

plot_tensor_product_lagrange_basis_2d,
tensor_product_barycentric_lagrange_interpolation)

from pyapprox.util.utilities import get_tensor_product_quadrature_rule
from pyapprox.surrogates.orthopoly.quadrature import clenshaw_curtis_pts_wts_1D

quad_rule = clenshaw_curtis_pts_wts_1D
fig = plt.figure(figsize=(2*8, 6))
ax = fig.add_subplot(1, 2, 1, projection='3d')
level = 2
ii, jj = 1, 1
plot_tensor_product_lagrange_basis_2d(quad_rule, level, ii, jj, ax)

ax = fig.add_subplot(1, 2, 2, projection='3d')
level = 2
ii, jj = 1, 3
ii = 1
plot_tensor_product_lagrange_basis_2d(quad_rule, level, ii, jj, ax)

To construct a surrogate using tensor product interpolation we simply multiply all such basis functions by the value of
the function f↵ evaluated at the corresponding interpolation point. The following uses tensor product interpolation to

72 Chapter 4. Theoretical Tutorials

The tensor product interpolant is

It requires evaluating the model on the tensor product
grid

With number of points

And model evaluations

SMOOTHNESS MATTERS
The performance of Lagrange-based tensor products
depends on the smoothness 𝑠	and the dimension of
the target function

PyApprox, Release 1.0.2

The error in the tensor product interpolant is given by

kf↵ � f↵,�kL1(�)  Cd,sN
�s/d
�

where f↵ has continuous mixed derivatives of order s.

Post-processing

Once a surrogate has been constructed it can be used for many di�erent purposes. For example one can use it to estimate
moments, perform sensitivity analysis, or simply approximate the evaluation of the expensive model at new locations
where expensive simulation model data is not available.

To use the surrogate for computing moments we simply draw realizations of the input random variables z and evaluate
the surrogate at those samples. We can approximate the mean of the expensive simluation model as the average of the
surrogate values at the random samples.

We know from Monte Carlo Quadrature that the error in the Monte carlo estimate of the mean using the surrogate is

E
h
(Q↵ � E [Q])2

i
= N

�1V [Q↵] + (E [Q↵]� E [Q])2

 N
�1V [Q↵] + Cd,sN

�s/d
�

Because a surrogate is inexpensive to evaluate the first term can be driven to zero so that only the bias remains. Thus
the error in the Monte Carlo estimate of the mean using the surrogate is dominated by the error in the surrogate. If this
error can be reduced more quickly than frac{N^{-1}} (as is the case for low-dimensional tensor-product interpolation)
then using surrogates for computing moments is very e�ective.

4.3. Surrogates 77

PyApprox, Release 1.0.2

Returns
benchmark

[pyapprox.benchmarks.Benchmark] Object containing the benchmark attributes

fun
[callable] The function being analyzed

variable
[JointVariable] Class containing information about each of the nvars inputs to fun

mean: np.ndarray (nvars)
The mean of the function with respect to the PDF of var

Notes

The six Genz test function are:

Oscillatory (‘oscillatory’)

f(z) = cos

2⇡w1 +

DX

d=1

cdzd

!

Product Peak (‘product_peak’)

f(z) =
DY

d=1

�
c
�2
d + (zd � wd)

2
��1

Corner Peak (‘corner_peak’)

f(z) =

1 +

DX

d=1

cdzd

!�(D+1)

Gaussian Peak (‘gaussian’)

f(z) = exp

�

DX

d=1

c
2
d(zd � wd)

2

!

C0 Continuous (‘c0continuous’)

f(z) = exp

�

DX

d=1

cd|zd � wd|
!

Discontinuous (‘discontinuous’)

f(z) =

(
0 z1 > w1 or z2 > w2

exp
⇣PD

d=1 cdzd

⌘
otherwise

Increasing kck will in general make the integrands more di�cult.

The 0  wd  1 parameters do not a�ect the di�culty of the integration problem. We setw1 = w2 = . . . = WD.

The coe�cient types implement di�erent decay rates for cd. This allows testing of methods that can identify and
exploit anisotropy. They are as follows:

No decay (none)

ĉd =
d+ 0.5

D

6.3. pyapprox.benchmarks Package 193

Exponential convergence is obtained for analytic functions

SMOOTHNESS MATTERS

101 102 103

10°7

10°5

10°3

10°1

Lagrange

Piecewise

linear rate

quadratic rate

Lagrange polynomials introduce Gibbs like phenomena
when approximating discontinuous functions

Only linear convergence is obtained for functions with
only integrable first order derivatives

PyApprox, Release 1.0.2

Returns
benchmark

[pyapprox.benchmarks.Benchmark] Object containing the benchmark attributes

fun
[callable] The function being analyzed

variable
[JointVariable] Class containing information about each of the nvars inputs to fun

mean: np.ndarray (nvars)
The mean of the function with respect to the PDF of var

Notes

The six Genz test function are:

Oscillatory (‘oscillatory’)

f(z) = cos

2⇡w1 +

DX

d=1

cdzd

!

Product Peak (‘product_peak’)

f(z) =
DY

d=1

�
c
�2
d + (zd � wd)

2
��1

Corner Peak (‘corner_peak’)

f(z) =

1 +

DX

d=1

cdzd

!�(D+1)

Gaussian Peak (‘gaussian’)

f(z) = exp

�

DX

d=1

c
2
d(zd � wd)

2

!

C0 Continuous (‘c0continuous’)

f(z) = exp

�

DX

d=1

cd|zd � wd|
!

Discontinuous (‘discontinuous’)

f(z) =

(
0 z1 > w1 or z2 > w2

exp
⇣PD

d=1 cdzd

⌘
otherwise

Increasing kck will in general make the integrands more di�cult.

The 0  wd  1 parameters do not a�ect the di�culty of the integration problem. We setw1 = w2 = . . . = WD.

The coe�cient types implement di�erent decay rates for cd. This allows testing of methods that can identify and
exploit anisotropy. They are as follows:

No decay (none)

ĉd =
d+ 0.5

D

6.3. pyapprox.benchmarks Package 193

QUADRATURE USING THE SURROGATE

PyApprox, Release 1.0.2

The error in the tensor product interpolant is given by

kf↵ � f↵,�kL1(�)  Cd,rN
�s/d
�

Post-processing

Once a surrogate has been constructed it can be used for many di�erent purposes. For example one can use it to estimate
moments, perform sensitivity analysis, or simply approximate the evaluation of the expensive model at new locations
where expensive simulation model data is not available.

To use the surrogate for computing moments we simply draw realizations of the input random variables z and evaluate
the surrogate at those samples. We can approximate the mean of the expensive simluation model as the average of the
surrogate values at the random samples.

We know from Monte Carlo Quadrature that the error in the Monte carlo estimate of the mean using the surrogate is

E
h
(Q↵ � E [Q])2

i
= N

�1V [Q↵] + (E [Q↵]� E [Q])2

 N
�1V [Q↵] + Cd,rN

�s/d
�

Because a surrogate is inexpensive to evaluate the first term can be driven to zero so that only the bias remains. Thus
the error in the Monte Carlo estimate of the mean using the surrogate is dominated by the error in the surrogate. If this
error can be reduced more quickly than frac{N^{-1}} (as is the case for low-dimensional tensor-product interpolation)
then using surrogates for computing moments is very e�ective.

74 Chapter 4. Theoretical Tutorials

PyApprox, Release 1.0.2

Note that moments can be estimated without using Monte-Carlo sampling by levaraging properties of the univariate in-
terpolation rules used to build the multi-variate interpolant. Specifically, the expectation of a tensor product interpolant
can be computed without explicitly forming the interpolant and is given by

µ� =

Z

�

X

j�

f↵(z
(j))

dY

i=1

�i,ji(zi)w(z) dz =
X

j�

f↵(z
(j))vj .

The expectation is simply the weighted sum of the Cartesian-product of the univariate quadrature weights

vj =
dY

i=1

Z

�i

�i,ji(zi) dw(zi),

which can be computed analytically.

x, w = get_tensor_product_quadrature_rule(level, 2, clenshaw_curtis_pts_wts_1D)
surrogate_mean = f(x)[:, 0].dot(w)
print('Quadrature mean', surrogate_mean)

Out:

Quadrature mean 0.10540659444426355

Here we have recomptued the values of f at the interpolation samples, but in practice we sould just re-use the values
collected when building the interpolant.

Now let us compare the quadrature mean with the MC mean computed using the surrogate

num_samples = int(1e6)
samples = np.random.uniform(-1, 1, (2, num_samples))
values = interp(samples)
mc_mean = values.mean()
print('Monte Carlo surrogate mean', mc_mean)

Out:

Monte Carlo surrogate mean -0.00034332115275673044

References

Total running time of the script: (0 minutes 0.665 seconds)

4.3.2 Sparse Grids

The number of model evaluations required by tensor product interpolation grows exponentitally with the number of
model inputs. This tutorial introduces sparse grids [BNR2000], [BG2004] which can be used to overcome the so called
curse of dimensionality faced by tensor-product methods.

Sparse grids approximate a model (function) f↵ with D inputs z = [z1, . . . , zD]> as a linear combination of low-
resolution tensor product interpolantsm that is

f↵,I(z) =
X

�2I
c�f↵,�(z),

4.3. Surrogates 75

PyApprox, Release 1.0.2

Note that moments can be estimated without using Monte-Carlo sampling by levaraging properties of the univariate in-
terpolation rules used to build the multi-variate interpolant. Specifically, the expectation of a tensor product interpolant
can be computed without explicitly forming the interpolant and is given by

µ� =

Z

�

X

j�

f↵(z
(j))

dY

i=1

�i,ji(zi)w(z) dz =
X

j�

f↵(z
(j))vj .

The expectation is simply the weighted sum of the Cartesian-product of the univariate quadrature weights

vj =
dY

i=1

Z

�i

�i,ji(zi) dw(zi),

which can be computed analytically.

x, w = get_tensor_product_quadrature_rule(level, 2, clenshaw_curtis_pts_wts_1D)
surrogate_mean = f(x)[:, 0].dot(w)
print('Quadrature mean', surrogate_mean)

Out:

Quadrature mean 0.10540659444426355

Here we have recomptued the values of f at the interpolation samples, but in practice we sould just re-use the values
collected when building the interpolant.

Now let us compare the quadrature mean with the MC mean computed using the surrogate

num_samples = int(1e6)
samples = np.random.uniform(-1, 1, (2, num_samples))
values = interp(samples)
mc_mean = values.mean()
print('Monte Carlo surrogate mean', mc_mean)

Out:

Monte Carlo surrogate mean -0.00034332115275673044

References

Total running time of the script: (0 minutes 0.665 seconds)

4.3.2 Sparse Grids

The number of model evaluations required by tensor product interpolation grows exponentitally with the number of
model inputs. This tutorial introduces sparse grids [BNR2000], [BG2004] which can be used to overcome the so called
curse of dimensionality faced by tensor-product methods.

Sparse grids approximate a model (function) f↵ with D inputs z = [z1, . . . , zD]> as a linear combination of low-
resolution tensor product interpolantsm that is

f↵,I(z) =
X

�2I
c�f↵,�(z),

4.3. Surrogates 75

The error in the Monte Carlo estimate of the mean
using the surrogate satisfies

Unlike the expensive model, the first term can be made
very small because the surrogate is cheap to evaluate

However the mean of tensor product interpolants can
be computed exactly.

PyApprox, Release 1.0.2

Returns
benchmark

[pyapprox.benchmarks.Benchmark] Object containing the benchmark attributes

fun
[callable] The function being analyzed

variable
[JointVariable] Class containing information about each of the nvars inputs to fun

mean: np.ndarray (nvars)
The mean of the function with respect to the PDF of var

Notes

The six Genz test function are:

Oscillatory (‘oscillatory’)

f(z) = cos

2⇡w1 +

DX

d=1

cdzd

!

Product Peak (‘product_peak’)

f(z) =
DY

d=1

�
c
�2
d + (zd � wd)

2
��1

Corner Peak (‘corner_peak’)

f(z) =

1 +

DX

d=1

cdzd

!�(D+1)

Gaussian Peak (‘gaussian’)

f(z) = exp

�

DX

d=1

c
2
d(zd � wd)

2

!

C0 Continuous (‘c0continuous’)

f(z) = exp

�

DX

d=1

cd|zd � wd|
!

Discontinuous (‘discontinuous’)

f(z) =

(
0 z1 > w1 or z2 > w2

exp
⇣PD

d=1 cdzd

⌘
otherwise

Increasing kck will in general make the integrands more di�cult.

The 0  wd  1 parameters do not a�ect the di�culty of the integration problem. We setw1 = w2 = . . . = WD.

The coe�cient types implement di�erent decay rates for cd. This allows testing of methods that can identify and
exploit anisotropy. They are as follows:

No decay (none)

ĉd =
d+ 0.5

D

6.3. pyapprox.benchmarks Package 193

SPARSE GRID APPROXIMATION

The number of tensor product points grows
exponentially with dimension (curse of
dimensionality)

Sparse grids can be used to exploit function
smoothness to mitigate the curse of
dimensionality

PyApprox, Release 1.0.2

Note that moments can be estimated without using Monte-Carlo sampling by levaraging properties of the univariate in-
terpolation rules used to build the multi-variate interpolant. Specifically, the expectation of a tensor product interpolant
can be computed without explicitly forming the interpolant and is given by

µ� =

Z

�

X

j�

f↵(z
(j))

dY

i=1

�i,ji(zi)w(z) dz =
X

j�

f↵(z
(j))vj .

The expectation is simply the weighted sum of the Cartesian-product of the univariate quadrature weights

vj =
dY

i=1

Z

�i

�i,ji(zi) dw(zi),

which can be computed analytically.

x, w = get_tensor_product_quadrature_rule(level, 2, clenshaw_curtis_pts_wts_1D)
surrogate_mean = f(x)[:, 0].dot(w)
print('Quadrature mean', surrogate_mean)

Out:

Quadrature mean 0.10540659444426355

Here we have recomptued the values of f at the interpolation samples, but in practice we sould just re-use the values
collected when building the interpolant.

Now let us compare the quadrature mean with the MC mean computed using the surrogate

num_samples = int(1e6)
samples = np.random.uniform(-1, 1, (2, num_samples))
values = interp(samples)
mc_mean = values.mean()
print('Monte Carlo surrogate mean', mc_mean)

Out:

Monte Carlo surrogate mean -0.00034332115275673044

References

Total running time of the script: (0 minutes 0.665 seconds)

4.3.2 Sparse Grids

The number of model evaluations required by tensor product interpolation grows exponentitally with the number of
model inputs. This tutorial introduces sparse grids [BNR2000], [BG2004] which can be used to overcome the so called
curse of dimensionality faced by tensor-product methods.

Sparse grids approximate a model (function) f↵ with D inputs z = [z1, . . . , zD]> as a linear combination of low-
resolution tensor product interpolantsm that is

f↵,I(z) =
X

�2I
c�f↵,�(z),

4.3. Surrogates 75

TP approxIndex set controlling
accuracy

numerical model
discretization Tensor product

resolution

Isotropic sparse grid

ISOTROPIC SPARSE GRID

True function Isotropic Sparse gridTensor-product approximation

PyApprox, Release 1.0.2

where � = [�1, . . . ,�D] is a multi-index controlling the number of samples in each dimension of the tensor-product
interpolants, and the index set I controls the approximation accuracy and data-e�ciency of the sparse grid. If the set
I is downward closed, that is

�  � and � 2 I =) � 2 I,

where the  is applied per entry, then the (Smolyak) coe�cients of the sparse grid are given by
X

i2[0,1]D,↵+i2I

(�1)kik1 .

While any tensor-product approximation can be used with sparse grids, e.g. based on piecewise-polynomials or splines,
in this tutorial we will build sparse grids with Lagrange polynomials (see Tensor-product Barycentric Interpolation).

The following code compares a tensor-product interpolant with a level-l isotropic sparse grid which sets

I(l) = {� | (max(0, l � 1)  k�k1  l +D � 2}, l � 0

which leads to a simpler expression for the coe�cients

c� = (�1)l�|�|1
✓

D � 1

l � |�|1

◆
.

First import the necessary modules and define the function we will approximate and its variable z.

f(z) = cos(⇡z1) cos(⇡z2/2)

import copy

import numpy as np

from scipy import stats
from pyapprox.util.visualization import get_meshgrid_function_data, plt
from pyapprox.variables.joint import IndependentMarginalsVariable
from pyapprox.surrogates.approximate import adaptive_approximate
from pyapprox.surrogates.interp.adaptive_sparse_grid import (

tensor_product_refinement_indicator, isotropic_refinement_indicator,
variance_refinement_indicator)

from pyapprox.surrogates.orthopoly.quadrature import (
clenshaw_curtis_in_polynomial_order, clenshaw_curtis_rule_growth)

from pyapprox.util.utilities import nchoosek
from pyapprox.benchmarks import setup_benchmark

variable = IndependentMarginalsVariable([stats.uniform(-1, 2)]*2)

def fun(zz):
return (np.cos(np.pi*zz[0])*np.cos(np.pi*zz[1]/2))[:, None]

Now plot the tensor product interpolants and the Smolyak coe�cients that make up the sparse grid. The coe�cients
are in the upper left corner of each subplot.

max_level = 2
fig, axs = plt.subplots(

max_level+1, max_level+1, figsize=((max_level+1)*8, (max_level+1)*6))
ranges = variable.get_statistics("interval", 1.0).flatten()
univariate_quad_rule_info = [

(continues on next page)

76 Chapter 4. Theoretical Tutorials

PyApprox, Release 1.0.2

where � = [�1, . . . ,�D] is a multi-index controlling the number of samples in each dimension of the tensor-product
interpolants, and the index set I controls the approximation accuracy and data-e�ciency of the sparse grid. If the set
I is downward closed, that is

�  � and � 2 I =) � 2 I,

where the  is applied per entry, then the (Smolyak) coe�cients of the sparse grid are given by
X

i2[0,1]D,↵+i2I

(�1)kik1 .

While any tensor-product approximation can be used with sparse grids, e.g. based on piecewise-polynomials or splines,
in this tutorial we will build sparse grids with Lagrange polynomials (see Tensor-product Barycentric Interpolation).

The following code compares a tensor-product interpolant with a level-l isotropic sparse grid which sets

I(l) = {� | (max(0, l � 1)  k�k1  l +D � 2}, l � 0

which leads to a simpler expression for the coe�cients

c� = (�1)l�|�|1
✓

D � 1

l � |�|1

◆
.

First import the necessary modules and define the function we will approximate and its variable z.

f(z) = cos(⇡z1) cos(⇡z2/2)

import copy

import numpy as np

from scipy import stats
from pyapprox.util.visualization import get_meshgrid_function_data, plt
from pyapprox.variables.joint import IndependentMarginalsVariable
from pyapprox.surrogates.approximate import adaptive_approximate
from pyapprox.surrogates.interp.adaptive_sparse_grid import (

tensor_product_refinement_indicator, isotropic_refinement_indicator,
variance_refinement_indicator)

from pyapprox.surrogates.orthopoly.quadrature import (
clenshaw_curtis_in_polynomial_order, clenshaw_curtis_rule_growth)

from pyapprox.util.utilities import nchoosek
from pyapprox.benchmarks import setup_benchmark

variable = IndependentMarginalsVariable([stats.uniform(-1, 2)]*2)

def fun(zz):
return (np.cos(np.pi*zz[0])*np.cos(np.pi*zz[1]/2))[:, None]

Now plot the tensor product interpolants and the Smolyak coe�cients that make up the sparse grid. The coe�cients
are in the upper left corner of each subplot.

max_level = 2
fig, axs = plt.subplots(

max_level+1, max_level+1, figsize=((max_level+1)*8, (max_level+1)*6))
ranges = variable.get_statistics("interval", 1.0).flatten()
univariate_quad_rule_info = [

(continues on next page)

76 Chapter 4. Theoretical Tutorials

An isotropic sparse grid uses

V. Barthelmann, E. Novak and K. Ritter. High dimensional polynomial interpolation on sparse grid. Advances in Computational Mathematics (2000).
H. Bungartz and M. Griebel. Sparse grids. Acta Numerica (2004).

https://doi.org/10.1023/A:1018977404843
https://doi.org/10.1017/S0962492904000182

SPARSE GRID CONVERGENCEPyApprox, Release 1.0.2

Out:

Growth of number of sparse grid points
[[1, 5, 13, 29, 65], [1, 7, 25, 69, 177], [1, 11, 61, 241, 801]]
Growth of number of tensor-product points
[[1, 9, 25, 81, 289], [1, 27, 125, 729, 4913], [1, 243, 3125, 59049, 1419857]]

For a function with r continous mixed-derivatives, the isotropic level-l sparse grid, based on 1D Clenshaw Curtis
abscissa, with MI(l) points satisfies

kf � fI(l)kL1  CD,rM
�r
I(l)(logMI(l))

(r+2)(D�1)+1
.

In contrast the tensor-product interpolant with Ml points satifies

kf � fI(l)kL1  KD,rM
�r/D
l .

The following code compares the convergence of sparse grids and tensor-product lagrange interpolants. A callback is
used to compute the error as the level of the approximations increases

class IsotropicCallback():
def __init__(self, validation_samples, validation_values, istp):

self.level = -1
self.errors = []
self.nsamples = []
self.validation_samples = validation_samples
self.validation_values = validation_values
self.istp = istp

def __call__(self, approx):
if self.istp:

approx_level = approx.subspace_indices.max()
else:

approx_level = approx.subspace_indices.sum(axis=0).max()
if self.level != approx_level:

only compute error when all subspaces of the current
approximation level are added to the sparse grid.
The number of sparse grid points will be slightly larger
than an isotoropic grid of level=approx_level because
points associated with active indies will be included here.
self.level = approx_level
self.nsamples.append(approx.samples.shape[1])
approx_values = approx.evaluate_using_all_data(

self.validation_samples)
error = (np.linalg.norm(

self.validation_values-approx_values) /
self.validation_samples.shape[1])

self.errors.append(error)

def fun(xx):
return np.exp(-0.05*(((xx+1)/2-0.5)**2).sum(axis=0))[:, None]

do not go passed nvars,level = (4, 4) with clenshaw curtis rules
(continues on next page)

80 Chapter 4. Theoretical Tutorials

PyApprox, Release 1.0.2

Out:

Growth of number of sparse grid points
[[1, 5, 13, 29, 65], [1, 7, 25, 69, 177], [1, 11, 61, 241, 801]]
Growth of number of tensor-product points
[[1, 9, 25, 81, 289], [1, 27, 125, 729, 4913], [1, 243, 3125, 59049, 1419857]]

For a function with r continous mixed-derivatives, the isotropic level-l sparse grid, based on 1D Clenshaw Curtis
abscissa, with MI(l) points satisfies

kf � fI(l)kL1  CD,rM
�r
I(l)(logMI(l))

(r+2)(D�1)+1
.

In contrast the tensor-product interpolant with Ml points satifies

kf � fI(l)kL1  KD,rM
�r/D
l .

The following code compares the convergence of sparse grids and tensor-product lagrange interpolants. A callback is
used to compute the error as the level of the approximations increases

class IsotropicCallback():
def __init__(self, validation_samples, validation_values, istp):

self.level = -1
self.errors = []
self.nsamples = []
self.validation_samples = validation_samples
self.validation_values = validation_values
self.istp = istp

def __call__(self, approx):
if self.istp:

approx_level = approx.subspace_indices.max()
else:

approx_level = approx.subspace_indices.sum(axis=0).max()
if self.level != approx_level:

only compute error when all subspaces of the current
approximation level are added to the sparse grid.
The number of sparse grid points will be slightly larger
than an isotoropic grid of level=approx_level because
points associated with active indies will be included here.
self.level = approx_level
self.nsamples.append(approx.samples.shape[1])
approx_values = approx.evaluate_using_all_data(

self.validation_samples)
error = (np.linalg.norm(

self.validation_values-approx_values) /
self.validation_samples.shape[1])

self.errors.append(error)

def fun(xx):
return np.exp(-0.05*(((xx+1)/2-0.5)**2).sum(axis=0))[:, None]

do not go passed nvars,level = (4, 4) with clenshaw curtis rules
(continues on next page)

80 Chapter 4. Theoretical Tutorials

Isotropic sparse error grids is less
strongly dependent on dimension

Tensor product error grows
exponentially with dimension for fixed
smoothness 𝑟

𝑓 𝑧 = 	exp −
∑-.)/ 0.5 𝑧- + 1 − 0.5 *

20

Isotropic grids treat all dimensions equally, but for many models
some dimensions are more important than others

ADAPTIVE SPARSE GRIDS

PyApprox, Release 1.0.2

Experiment with changing nvars, e.g. try nvars = 2,3,4. Sparse grids become more e�ective as nvars increases.

So far we have used sparse grids based on Clenshaw-Curtis 1D quadrature rules. However other types of rules can
be used. PyApprox also supports 1D Leja sequences [NJ2014] (see Adaptive Leja Sequences). Change univari-
ate_quad_rule=None to use Leja rules and observe the di�erence in convergence.

Dimension adaptivity

The e�ciency of sparse grids can be improved using methods [GG2003], [H2003] that construct the index set I adap-
tively. This is the default behavior when using Pyapprox. The following applies the adaptive algorithm to an anisotropic
function, where one variable impacts the function much more than the other.

Finding an e�cient index set can be cast as an optimization problem. With this goal, let the di�erence in sparse grid
error before and after the interpolant f↵,� and the work from adding the new interpolant respectively be

�E� = kf↵,I[� � f↵,Ik �W� = kW↵,I[� �W↵,Ik

Then noting that the error in the sparse grid satisfies, we can formulate finding a quasi-optimal index set as a binary
knapsack problem

max
X

�

�E��� such that
X

�

�W���  Wmax,

for a total work budget Wmax. The solution to this problem balances the computational work of adding a specific
interpolant with the reduction in error that would be achieved.

82 Chapter 4. Theoretical Tutorials

PyApprox, Release 1.0.2

Experiment with changing nvars, e.g. try nvars = 2,3,4. Sparse grids become more e�ective as nvars increases.

So far we have used sparse grids based on Clenshaw-Curtis 1D quadrature rules. However other types of rules can
be used. PyApprox also supports 1D Leja sequences [NJ2014] (see Adaptive Leja Sequences). Change univari-
ate_quad_rule=None to use Leja rules and observe the di�erence in convergence.

Dimension adaptivity

The e�ciency of sparse grids can be improved using methods [GG2003], [H2003] that construct the index set I adap-
tively. This is the default behavior when using Pyapprox. The following applies the adaptive algorithm to an anisotropic
function, where one variable impacts the function much more than the other.

Finding an e�cient index set can be cast as an optimization problem. With this goal, let the di�erence in sparse grid
error before and after the interpolant f↵,� and the work from adding the new interpolant respectively be

�E� = kf↵,I[� � f↵,Ik �W� = kW↵,I[� �W↵,Ik

Then noting that the error in the sparse grid satisfies, we can formulate finding a quasi-optimal index set as a binary
knapsack problem

max
X

�

�E��� such that
X

�

�W���  Wmax,

for a total work budget Wmax. The solution to this problem balances the computational work of adding a specific
interpolant with the reduction in error that would be achieved.

82 Chapter 4. Theoretical Tutorials

Finding the optimal index set can be posed as binary
knapsack problem

A greedy algorithm can be used to find an approximate solution

T. Gerstner and M. Griebel. Dimension-adaptive tensor-product quadrature. Computing (2003).

https://doi.org/10.1007/s00607-003-0015-5

MULTI-FIDELITY APPROXIMATION: AN OBSERVATION

Surrogate that uses only low fidelity
model 𝑓",$! has small stochastic error but

has large deterministic error	

Surrogate that uses only high fidelity
model 𝑓%,$" has large stochastic error but

has no deterministic error

MF Surrogate has small stochastic error
and has no deterministic error

The discrepancy between model fidelities is often
“easier” to approximate than the high-fidelity function

MULTI-INDEX COLLOCATION

PyApprox, Release 1.0.2

(continued from previous page)

fun_colors = ['r', 'k', 'cyan']
approx_colors = ['b', 'g', 'pink']
for ii, subspace_index in enumerate(tp_approx.subspace_indices.T):

subspace_values = get_subspace_values(
tp_approx.values, tp_approx.subspace_values_indices_list[ii])

jj, kk = subspace_index
subspace_samples = tp_approx.samples_1d[0][jj]
ax = axs[max_level_1d[1]-kk, jj]
ax.plot(

subspace_samples, subspace_values, 'o', color=fun_colors[kk])
for ll in range(max_level_1d[1]+1):

ax.plot(zz, mi_model._model_ensemble.functions[ll](zz[None, :]),
'-', color=fun_colors[ll], label=r"$f_{%d}$" % (jj))

subspace_approx_vals = evaluate_sparse_grid_subspace(
zz[None, :], subspace_index, subspace_values,
tp_approx.samples_1d, tp_approx.config_variables_idx)

ax.plot(zz, subspace_approx_vals, '--', color=approx_colors[kk],
label=r"$f_{%d,%d}$" % (kk, jj))

ax.legend()
_ = [[ax.set_ylim([-1, 1]), ax.set_xlabel(r"z")] for ax in axs.flatten()]

Multi-level Collocation

Similar to sparse grids, multi-index collocation is a weighted combination of low-resolution tensor products, like those
shown in the last plot

fI(z) =
X

[↵,�]2I

c[↵,�]f↵,�(z),

where the Smolay coe�cients can be computed using the same formula used for traditional sparse grids. However,
unlike sparse grids, we now have introduced configuration variables that change what model discretization is being
evaluated.

4.4. Multi-Fidelity Methods 141

Like sparse grids MISC is a
linear combination of
tensor product interpolants

However, now additional
indices are used to increase
the fidelity of data being
used

Haji-Ali, F. Nobile, L. Tamellini, and R. Tempone. Multi-index stochastic collocation for random pdes. Computer Methods in Applied Mechanics and Engineering, 306:95 – 122, 2016.
A. Teckentrup, P. Jantsch, C. Webster, and M. Gunzburger. A multilevel stochastic collocation method for partial differential equations with random input data. SIAM/ASA Journal on Uncertainty
Quantification, 3(1):1046-1074, 2015.

http://www.sciencedirect.com/science/article/pii/S0045782516301141,doi:10.1016/j.cma.2016.03.029
https://doi.org/10.1137/140969002
https://doi.org/10.1137/140969002

ADAPTIVE MULTI-INDEX COLLOCATION

The sparse grid adaptation algorithm can be
modified for use with multi-fidelity models

J.D. Jakeman, M.S. Eldred, G. Geraci, and A. Gorodetsky. Adaptive Multi-index Collocation for Uncertainty
Quantification and Sensitivity Analysis. International Journal for Numerical Methods in Engineering (2019).

https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.6268
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.6268

MISC reduces the computational
cost of building a surrogate
relative to a single fidelity sparse
grid for a 3D hierarchy (x-
refinement, y refinement and time
refinement)

ADVECTION DIFFUSION MODEL

Work is allocated to each model according to cost
relative to the improvement in predictive accuracy.

Low fidelity meshes are used early on and higher-fidelity
meshes when requesting higher accuracy

N
um

be
r o

f
m

od
el

 e
va

lu
at

io
ns

GAUSSIAN PROCESSESPyApprox, Release 1.0.2

Given a kernel and mean function, a Gaussian process approximation assumes that the joint prior distribution of f ,
conditional on kernel hyper-parameters ✓ = [�2

, `
>]>, is multivariate normal such that

f(·) | ✓ ⇠ N
�
m(·), C(·, ·; ✓) + ✏

2
I
�

where ✏2 is the variance of the mean zero white noise in the observations.

The following plots realizations from the prior distribution of a Gaussian process at a set Z of values of z. Random
realizations are drawn by taking the singular value decomposition of the kernel evaluated at the set of points Z , such
that

USV = K(Z,Z),

where U, V are the left and right singular vectors and S are the singular values. The left singular vectors and singular
values are then used to generate random realizations y using independent and identically distributed draws X from the
multivariate standard Normal distribution N (0, IN), where IN is the identity matrix of size N , and N is the number
of samples in Z . Specifically

y = US
1
2X.

Note the Cholesky decomposition could also be used instead of the singular value decomposition.

import numpy as np

import matplotlib.pyplot as plt

from pyapprox.surrogates import gaussianprocess as gps
np.random.seed(1)

kernel = gps.Matern(0.5, length_scale_bounds=(1e-1, 1e1), nu=np.inf)
gp = gps.GaussianProcess(kernel)

lb, ub = -1, 1
xx = np.linspace(lb, ub, 101)
nsamples = 40
rand_noise = np.random.normal(lb, ub, (xx.shape[0], nsamples))
for ii in range(nsamples):

plt.plot(xx, gp.predict_random_realization(xx[None, :], rand_noise[:, ii:ii+1]))

90 Chapter 4. Theoretical Tutorials

PyApprox, Release 1.0.2

•

References

Total running time of the script: (0 minutes 1.481 seconds)

4.3.4 Gaussian processes

Gaussian processes (GPs) are an extremely popular tool for approximating multivariate functions from limited data.
A GP is a distribution over a set of functions. Given a prior distribution on the class of admissible functions an
approximation of a deterministic function is obtained by conditioning the GP on available observations of the function.

Constructing a GP requires specifying a prior mean m(z) and covariance kernel C(z, z?). The GP leverages the
correlation between training samples to approximate the residuals between the training data and the mean function.
In the following we set the mean to zero. The covariance kernel should be tailored to the smoothness of the class of
functions under consideration. The matern kernel with hyper-parameters ✓ = [�2

, `
>]> is a common choice.

C⌫(z, z
?; ✓) = �

2 2
1�⌫

�(⌫)

 p
2⌫d(z, z?; `)

`

!⌫

K⌫

 p
2⌫d(z, z?; `)

`

!
.

Here d(z, z?; `) is the weighted Euclidean distance between two points parameterized by the vector hyper-parameters
` = [`1, . . . , `d]>. The variance of the kernel is determined by �

2 and K⌫ is the modified Bessel function of the
second kind of order ⌫ and � is the gamma function. Note that the parameter ⌫ dictates for the smoothness of the kernel
function. The analytic squared-exponential kernel can be obtained as ⌫ ! 1.

4.3. Surrogates 89

Gaussian processes are a distribution over a class of functions

The kernel C should be tailored to the smoothness of the
function being approximated. The Matern kernel is a
flexible choice

Noise variance

Controls
smoothness

Hyper-parameters

Mean function

Kernel variance. Controls
magnitude of function

Length scale. Controls
frequency of realizations

GAUSSIAN PROCESSES

PyApprox, Release 1.0.2

Given a set of training samples Z = {z(m)}Mm=1 and associated values y = [y(1), . . . , y(M)]> the posterior distribution
of the GP is

f(·) | ✓, y ⇠ N
�
m

?(·), C?(·, ·; ✓) + ✏
2
I
�

where

m
?(z) = t(z)>A�1

y C
?(z, z0) = C(z, z0)� t(z)>A�1

t(z0)

with

t(z) = [C(z, z(1)), . . . , C(z, z(N))]>

and A is a matrix with with elements Aij = C(z(i), z(j)) for i, j = 1, . . . ,M . Here we dropped the dependence on
the hyper-parameters ✓ for convenience.

Consider the univariate Runge function

f(z) =
1

1 + 25z2
, z 2 [�1, 1]

Lets construct a GP with a fixed set of training samples and associated values we can train the Gaussian process. But
first lets plot the true function and prior GP mean and plus/minus 2 standard deviations using the prior covariance

def func(x):
return 1/(1+25*x[0, :]**2)[:, np.newaxis]

(continues on next page)

92 Chapter 4. Theoretical Tutorials

PyApprox, Release 1.0.2

Given a set of training samples Z = {z(m)}Mm=1 and associated values y = [y(1), . . . , y(M)]> the posterior distribution
of the GP is

f(·) | ✓, y ⇠ N
�
m

?(·), C?(·, ·; ✓) + ✏
2
I
�

where

m
?(z) = t(z)>A�1

y C
?(z, z0) = C(z, z0)� t(z)>A�1

t(z0)

with

t(z) = [C(z, z(1)), . . . , C(z, z(N))]>

and A is a matrix with with elements Aij = C(z(i), z(j)) for i, j = 1, . . . ,M . Here we dropped the dependence on
the hyper-parameters ✓ for convenience.

Consider the univariate Runge function

f(z) =
1

1 + 25z2
, z 2 [�1, 1]

Lets construct a GP with a fixed set of training samples and associated values we can train the Gaussian process. But
first lets plot the true function and prior GP mean and plus/minus 2 standard deviations using the prior covariance

def func(x):
return 1/(1+25*x[0, :]**2)[:, np.newaxis]

(continues on next page)

92 Chapter 4. Theoretical Tutorials

PyApprox, Release 1.0.2

Given a set of training samples Z = {z(m)}Mm=1 and associated values y = [y(1), . . . , y(M)]> the posterior distribution
of the GP is

f(·) | ✓, y ⇠ N
�
m

?(·), C?(·, ·; ✓) + ✏
2
I
�

where

m
?(z) = t(z)>A�1

y C
?(z, z0) = C(z, z0)� t(z)>A�1

t(z0)

with

t(z) = [C(z, z(1)), . . . , C(z, z(N))]>

and A is a matrix with with elements Aij = C(z(i), z(j)) for i, j = 1, . . . ,M . Here we dropped the dependence on
the hyper-parameters ✓ for convenience.

Consider the univariate Runge function

f(z) =
1

1 + 25z2
, z 2 [�1, 1]

Lets construct a GP with a fixed set of training samples and associated values we can train the Gaussian process. But
first lets plot the true function and prior GP mean and plus/minus 2 standard deviations using the prior covariance

def func(x):
return 1/(1+25*x[0, :]**2)[:, np.newaxis]

(continues on next page)

92 Chapter 4. Theoretical Tutorials

PyApprox, Release 1.0.2

Given a set of training samples Z = {z(m)}Mm=1 and associated values y = [y(1), . . . , y(M)]> the posterior distribution
of the GP is

f(·) | ✓, y ⇠ N
�
m

?(·), C?(·, ·; ✓) + ✏
2
I
�

where

m
?(z) = t(z)>A�1

y C
?(z, z0) = C(z, z0)� t(z)>A�1

t(z0)

with

t(z) = [C(z, z(1)), . . . , C(z, z(N))]>

and A is a matrix with with elements Aij = C(z(i), z(j)) for i, j = 1, . . . ,M . Here we dropped the dependence on
the hyper-parameters ✓ for convenience.

Consider the univariate Runge function

f(z) =
1

1 + 25z2
, z 2 [�1, 1]

Lets construct a GP with a fixed set of training samples and associated values we can train the Gaussian process. But
first lets plot the true function and prior GP mean and plus/minus 2 standard deviations using the prior covariance

def func(x):
return 1/(1+25*x[0, :]**2)[:, np.newaxis]

(continues on next page)

92 Chapter 4. Theoretical Tutorials

The posterior distribution of the Gaussian processes conditional
on training data 𝑧 1 , 𝑦(1) = 𝑓(𝑧(1)) is

With posterior mean and covariance

where

C.E. Rasmussen and C. WIlliams. Gaussian Processes for Machine Learning. MIT Press (2006)

http://www.gaussianprocess.org/gpml/

EXPERIMENTAL DESIGN

Not all training data reduce variance equally.

Experimental design can be used to reduce variance
systematically.

Integrated variance (IVAR) designs minimize the posterior
distribution of the GP with respect to the distribution of the
inputs 𝑧

PyApprox, Release 1.0.2

(continued from previous page)

gp_vals[:, 0]+2*gp_std,
alpha=0.5, color='gray', label='GP posterior uncertainty')

_ = plt.legend()

Out:

Matern(length_scale=0.441, nu=inf)

Experimental design

The nature of the training samples significantly impacts the accuracy of a Gaussian process. Noting that the variance
of a GP reflects the accuracy of a Gaussian process, [SWMW1989] developed an experimental design procedure which
minimizes the average variance with respect to a specified measure. This measure is typically the probability measure
⇢(z) of the random variables z. Integrated variance designs, as they are often called, find a set of samples Z ⇢ ⌦ ⇢ �
from a set of candidate samples ⌦ by solving the minimization problem

Z† = argmin
Z⇢⌦⇢�,|Z|=M

Z

�
C

?(z, z | Z)⇢(z)dz

where we have made explicit the posterior variance dependence on Z .

The variance of a GP is not dependent on the values of the training data, only the sample locations, and thus the
procedure can be used to generate batches of samples. The IVAR criterion - also called active learning Cohn (ALC)

94 Chapter 4. Theoretical Tutorials

Note the designs do not depend on the data and can be
computed a priori

J. Sacks, W.J. Welch, T.J.Mitchell, H.P. Wynn Designs and analysis of computer experiments (with discussion).
Statistical Science, 4:409-435 (1989)

http://www.jstor.org/stable/2245858
http://www.jstor.org/stable/2245858

IVAR EXPERIMENTAL DESIGN

PyApprox, Release 1.0.2

- can be minimized over discrete [HJZ2021] or continuous [GM2016] design spaces ⌦. When employing a discrete
design space, greedy methods [C2006] are used to sample one at a time from a finite set of candidate samples to
minimize the learning objective. This approach requires a representative candidate set which, we have found, can
be generated with low-discrepancy sequences, e.g. Sobol sequences. The continuous optimization optimization is
non-convex and thus requires a good initial guess to start the gradient based optimization. Greedy methods can be
used to produce the initial guess, however in certain situation optimizing from the greedy design resulted in minimal
improvement.

The following code plots the samples chosen by greedily minimizing the IVAR criterion
Z

�
C

?(z, z | Z)⇢(z)dz = 1� Trace [AZPZ] PZ =

Z

�
AZ[{z}A

>
Z[{z}⇢(z)dz

from a set of candidate samples Zcand. Because the additive constant does not e�ect the design IVAR designs are found
by greedily adding points such that the N + 1 point satisfies

zN+1 = argmin
z02Zcand

Trace
⇥
AZN[{z0}PZN[{z0}

⇤
.

from pyapprox.surrogates.gaussianprocess.gaussian_process import (
IVARSampler, GreedyIntegratedVarianceSampler, CholeskySampler)

from pyapprox.variables.joint import IndependentMarginalsVariable, stats
variable = IndependentMarginalsVariable([stats.uniform(-1, 2)])
ncandidate_samples = 101
sampler = GreedyIntegratedVarianceSampler(

1, 100, ncandidate_samples, variable.rvs, variable,
use_gauss_quadrature=True, econ=False,
candidate_samples=np.linspace(
*variable.get_statistics("interval", 1)[0, :], 101)[None, :])

kernel = gps.Matern(0.5, length_scale_bounds="fixed", nu=np.inf)
sampler.set_kernel(kernel)

def plot_gp_samples(ntrain_samples, kernel, variable):
axs = plt.subplots(1, ntrain_samples, figsize=(ntrain_samples*8, 6))[1]
gp = gps.GaussianProcess(kernel)
for ii in range(1, ntrain_samples+1):

gp.plot_1d(101, variable.get_statistics("interval", 1)[0, :], ax=axs[ii-1])

train_samples = sampler(ntrain_samples)[0]
train_values = func(train_samples)*0
for ii in range(1, ntrain_samples+1):

gp.fit(train_samples[:, :ii], train_values[:ii])
gp.plot_1d(101, variable.get_statistics("interval", 1)[0, :], ax=axs[ii-1])
axs[ii-1].plot(train_samples[0, :ii], train_values[:ii, 0], 'ko', ms=15)

ntrain_samples = 5
plot_gp_samples(ntrain_samples, kernel, variable)

4.3. Surrogates 95

PyApprox, Release 1.0.2

- can be minimized over discrete [HJZ2021] or continuous [GM2016] design spaces ⌦. When employing a discrete
design space, greedy methods [C2006] are used to sample one at a time from a finite set of candidate samples to
minimize the learning objective. This approach requires a representative candidate set which, we have found, can
be generated with low-discrepancy sequences, e.g. Sobol sequences. The continuous optimization optimization is
non-convex and thus requires a good initial guess to start the gradient based optimization. Greedy methods can be
used to produce the initial guess, however in certain situation optimizing from the greedy design resulted in minimal
improvement.

The following code plots the samples chosen by greedily minimizing the IVAR criterion
Z

�
C

?(z, z | Z)⇢(z)dz = 1� Trace [AZPZ] PZ =

Z

�
AZ[{z}A

>
Z[{z}⇢(z)dz

from a set of candidate samples Zcand. Because the additive constant does not e�ect the design IVAR designs are found
by greedily adding points such that the N + 1 point satisfies

zN+1 = argmin
z02Zcand

Trace
⇥
AZN[{z0}PZN[{z0}

⇤
.

from pyapprox.surrogates.gaussianprocess.gaussian_process import (
IVARSampler, GreedyIntegratedVarianceSampler, CholeskySampler)

from pyapprox.variables.joint import IndependentMarginalsVariable, stats
variable = IndependentMarginalsVariable([stats.uniform(-1, 2)])
ncandidate_samples = 101
sampler = GreedyIntegratedVarianceSampler(

1, 100, ncandidate_samples, variable.rvs, variable,
use_gauss_quadrature=True, econ=False,
candidate_samples=np.linspace(
*variable.get_statistics("interval", 1)[0, :], 101)[None, :])

kernel = gps.Matern(0.5, length_scale_bounds="fixed", nu=np.inf)
sampler.set_kernel(kernel)

def plot_gp_samples(ntrain_samples, kernel, variable):
axs = plt.subplots(1, ntrain_samples, figsize=(ntrain_samples*8, 6))[1]
gp = gps.GaussianProcess(kernel)
for ii in range(1, ntrain_samples+1):

gp.plot_1d(101, variable.get_statistics("interval", 1)[0, :], ax=axs[ii-1])

train_samples = sampler(ntrain_samples)[0]
train_values = func(train_samples)*0
for ii in range(1, ntrain_samples+1):

gp.fit(train_samples[:, :ii], train_values[:ii])
gp.plot_1d(101, variable.get_statistics("interval", 1)[0, :], ax=axs[ii-1])
axs[ii-1].plot(train_samples[0, :ii], train_values[:ii, 0], 'ko', ms=15)

ntrain_samples = 5
plot_gp_samples(ntrain_samples, kernel, variable)

4.3. Surrogates 95

Which is typically solved greedily such that

The IVAR objective simplifies to

When 𝜌 and 𝐶 are separable then 𝑃 can be computed using 1D quadrature

MULTILEVEL GAUSSIAN PROCESSES

PyApprox, Release 1.0.2

Fig. 11: A multi-index hierarchy formed by increasing mesh discretizations in two di�erent spatial directions.

References

Total running time of the script: (0 minutes 3.766 seconds)

4.4.9 Multifidelity Gaussian processes

This tutorial describes how to implement and deploy multi-level Gaussian processes built using the output of a high-
fidelity model and evaluations of a set of lower-fidelity models of lower accuracy and cost [KOB2000]. This tutorial
assumes understanding of the concepts in Gaussian processes

Multilevel GPs assume that all the available models {fk}Kk=1 can be ordered into a hierarchy of increasing cost and
accuracy, where k = 1 denotes the lowest fidelity model and k = K denotes the hightest-fidelity model. We model
the output ym from the m-th level code as ym = fm(z) and assume the models satisfy the hierarchical relationship

fm(z) = ⇢m�1fm�1(z) + �m(z), m = 2, . . . ,M.

with f1(z) = �1(z). We assume that the prior distributions on �m(·) ⇠ N (0, Cm(·, ·)) are independent.

Just like traditional GPs the posterior mean and variance of the multi-fidelity GP are given by

m
?(z) = t(z)>C(Z,Z)�1

y C
?(z, z0) = C(z, z0)� t(z)>C(Z,Z)�1

t(z0),

where C(Z,Z) is the prior covariance evaluated at the training data Z .

The di�erence comes from the definitions of the prior covariance C and the vector t(z).

4.4. Multi-Fidelity Methods 147

PyApprox, Release 1.0.2

Two models

Given data Z = [Z1,Z2] from two models of di�ering fidelity, the data covariance of the multi-fidelity GP consisting
of two models can be expressed in block form

C(Z,Z) =


Cov [f1(Z1), f1(Z1)] Cov [f1(Z1), f2(Z2)]
Cov [f2(Z2), f1(Z1)] Cov [f2(Z2), f2(Z2)]

�

The upper-diagonal block is given by

Cov [f1(Z1), f1(Z1)] = Cov [�1(Z1), �1(Z1)] = C1(Z1,Z1)

The lower-diagonal block is given by

Cov [f2(Z2), f2(Z2)] = Cov [⇢1f1(Z2) + �2(Z2), ⇢1f1(Z2) + �2(Z2)]

= Cov [⇢1�2(Z2) + �2(Z2), ⇢1�1(Z2) + �2(Z2)]

= Cov [⇢1�2(Z1), ⇢1�1(Z2)] + Cov [�2(Z2), �2(Z2)]

= ⇢
2
1C1(Z2,Z2) + C2(Z2,Z2)

Where on the second last line we used that �1 and �2 are independent.

The upper-right block is given by

Cov [f1(Z1), f2(Z2)] = Cov [�1(Z1), ⇢1�1(Z2) + �2(Z2)]

= Cov [�1(Z1), ⇢1�1(Z2)] = ⇢1C1(Z1,Z2)

and Cov [f2(Z2), f1(Z1)] = Cov [f1(Z2), f2(Z2)]
>
.

Combining yields

C(Z,Z) =


C1(Z1,Z1) ⇢1C1(Z1,Z2)
⇢1C1(Z2,Z1) ⇢

2
1C1(Z2,Z2) + C2(Z2,Z2)

�

In this tutorial we assume ⇢m are scalars. However PyApprox supports polynomial versions ⇢m(z). The above formulas
must be slightly modified in this case.

Similary we have

tm(z;Z)> = [Cov [fm(z), fm(Z1)] ,Cov [fm(z), fm(Z2)]]

where

t1(z;Z)> = [C1(z,Z1), ⇢1C1(z,Z2)]
>

t2(z;Z)> =
⇥
⇢1C1(z,Z1), ⇢

2
1C1(z,Z2) + C2(z,Z2)

⇤

M models

The diagonal covariance blocks of the prior covariance C for m > 1 satisfy

Cm(Zm,Zm) + ⇢
2
m�1Cm�1(Zm,Zm) + · · ·+

m�1Y

i=1

⇢
2
iC1(Zm,Zm).

148 Chapter 4. Theoretical Tutorials

Multilevel GPs assume

For 𝒵 = 𝒵), … , 𝒵2 , the posterior mean and
covariance again satisfy

Where for two models

PyApprox, Release 1.0.2

Fig. 11: A multi-index hierarchy formed by increasing mesh discretizations in two di�erent spatial directions.

References

Total running time of the script: (0 minutes 3.766 seconds)

4.4.9 Multifidelity Gaussian processes

This tutorial describes how to implement and deploy multi-level Gaussian processes built using the output of a high-
fidelity model and evaluations of a set of lower-fidelity models of lower accuracy and cost [KOB2000]. This tutorial
assumes understanding of the concepts in Gaussian processes

Multilevel GPs assume that all the available models {fk}Kk=1 can be ordered into a hierarchy of increasing cost and
accuracy, where k = 1 denotes the lowest fidelity model and k = K denotes the hightest-fidelity model. We model
the output ym from the m-th level code as ym = fm(z) and assume the models satisfy the hierarchical relationship

fm(z) = ⇢m�1fm�1(z) + �m(z), m = 2, . . . ,M.

with f1(z) = �1(z). We assume that the prior distributions on �m(·) ⇠ N (0, Cm(·, ·)) are independent.

Just like traditional GPs the posterior mean and variance of the multi-fidelity GP are given by

m
?(z) = t(z)>C(Z,Z)�1

y C
?(z, z0) = C(z, z0)� t(z)>C(Z,Z)�1

t(z0),

where C(Z,Z) is the prior covariance evaluated at the training data Z .

The di�erence comes from the definitions of the prior covariance C and the vector t(z).

4.4. Multi-Fidelity Methods 147

PyApprox, Release 1.0.2

Fig. 11: A multi-index hierarchy formed by increasing mesh discretizations in two di�erent spatial directions.

References

Total running time of the script: (0 minutes 3.766 seconds)

4.4.9 Multifidelity Gaussian processes

This tutorial describes how to implement and deploy multi-level Gaussian processes built using the output of a high-
fidelity model and evaluations of a set of lower-fidelity models of lower accuracy and cost [KOB2000]. This tutorial
assumes understanding of the concepts in Gaussian processes

Multilevel GPs assume that all the available models {fk}Kk=1 can be ordered into a hierarchy of increasing cost and
accuracy, where k = 1 denotes the lowest fidelity model and k = K denotes the hightest-fidelity model. We model
the output ym from the m-th level code as ym = fm(z) and assume the models satisfy the hierarchical relationship

fm(z) = ⇢m�1fm�1(z) + �m(z), m = 2, . . . ,M.

with f1(z) = �1(z). We assume that the prior distributions on �m(·) ⇠ N (0, Cm(·, ·)) are independent.

Just like traditional GPs the posterior mean and variance of the multi-fidelity GP are given by

m
?(z) = t(z)>C(Z,Z)�1

y C
?(z, z0) = C(z, z0)� t(z)>C(Z,Z)�1

t(z0),

where C(Z,Z) is the prior covariance evaluated at the training data Z .

The di�erence comes from the definitions of the prior covariance C and the vector t(z).

4.4. Multi-Fidelity Methods 147

𝑓! 𝑧 =
1
5

3𝑦 − 1 " + 1 sin((10𝑦 − 2))

𝑓" 𝑧 =
9
10 𝑓! 𝑧 + (

2𝑦 − 1
4)

M. C. Kennedy and A. O’Hagan. Predicting the Output from a Complex Computer Code When Fast Approximations Are Available. Biometrika, 87(1), 1-13, 2000.

http://www.jstor.org/stable/2673557

MULTILEVEL KERNELS
PyApprox, Release 1.0.2

Two models

Given data Z = [Z1,Z2] from two models of di�ering fidelity, the data covariance of the multi-fidelity GP consisting
of two models can be expressed in block form

C(Z,Z) =


Cov [f1(Z1), f1(Z1)] Cov [f1(Z1), f2(Z2)]
Cov [f2(Z2), f1(Z1)] Cov [f2(Z2), f2(Z2)]

�

The upper-diagonal block is given by

Cov [f1(Z1), f1(Z1)] = Cov [�1(Z1), �1(Z1)] = C1(Z1,Z1)

The lower-diagonal block is given by

Cov [f2(Z2), f2(Z2)] = Cov [⇢1f1(Z2) + �2(Z2), ⇢1f1(Z2) + �2(Z2)]

= Cov [⇢1�2(Z2) + �2(Z2), ⇢1�1(Z2) + �2(Z2)]

= Cov [⇢1�2(Z1), ⇢1�1(Z2)] + Cov [�2(Z2), �2(Z2)]

= ⇢
2
1C1(Z2,Z2) + C2(Z2,Z2)

Where on the second last line we used that �1 and �2 are independent.

The upper-right block is given by

Cov [f1(Z1), f2(Z2)] = Cov [�1(Z1), ⇢1�1(Z2) + �2(Z2)]

= Cov [�1(Z1), ⇢1�1(Z2)] = ⇢1C1(Z1,Z2)

and Cov [f2(Z2), f1(Z1)] = Cov [f1(Z2), f2(Z2)]
>
.

Combining yields

C(Z,Z) =


C1(Z1,Z1) ⇢1C1(Z1,Z2)
⇢1C1(Z2,Z1) ⇢

2
1C1(Z2,Z2) + C2(Z2,Z2)

�

In this tutorial we assume ⇢m are scalars. However PyApprox supports polynomial versions ⇢m(z). The above formulas
must be slightly modified in this case.

Similary we have

tm(z;Z)> = [Cov [fm(z), fm(Z1)] ,Cov [fm(z), fm(Z2)]]

where

t1(z;Z)> = [C1(z,Z1), ⇢1C1(z,Z2)]
>

t2(z;Z)> =
⇥
⇢1C1(z,Z1), ⇢

2
1C1(z,Z2) + C2(z,Z2)

⇤

M models

The diagonal covariance blocks of the prior covariance C for m > 1 satisfy

Cm(Zm,Zm) + ⇢
2
m�1Cm�1(Zm,Zm) + · · ·+

m�1Y

i=1

⇢
2
iC1(Zm,Zm).

148 Chapter 4. Theoretical Tutorials

PyApprox, Release 1.0.2

Two models

Given data Z = [Z1,Z2] from two models of di�ering fidelity, the data covariance of the multi-fidelity GP consisting
of two models can be expressed in block form

C(Z,Z) =


Cov [f1(Z1), f1(Z1)] Cov [f1(Z1), f2(Z2)]
Cov [f2(Z2), f1(Z1)] Cov [f2(Z2), f2(Z2)]

�

The upper-diagonal block is given by

Cov [f1(Z1), f1(Z1)] = Cov [�1(Z1), �1(Z1)] = C1(Z1,Z1)

The lower-diagonal block is given by

Cov [f2(Z2), f2(Z2)] = Cov [⇢1f1(Z2) + �2(Z2), ⇢1f1(Z2) + �2(Z2)]

= Cov [⇢1�2(Z2) + �2(Z2), ⇢1�1(Z2) + �2(Z2)]

= Cov [⇢1�2(Z1), ⇢1�1(Z2)] + Cov [�2(Z2), �2(Z2)]

= ⇢
2
1C1(Z2,Z2) + C2(Z2,Z2)

Where on the second last line we used that �1 and �2 are independent.

The upper-right block is given by

Cov [f1(Z1), f2(Z2)] = Cov [�1(Z1), ⇢1�1(Z2) + �2(Z2)]

= Cov [�1(Z1), ⇢1�1(Z2)] = ⇢1C1(Z1,Z2)

and Cov [f2(Z2), f1(Z1)] = Cov [f1(Z2), f2(Z2)]
>
.

Combining yields

C(Z,Z) =


C1(Z1,Z1) ⇢1C1(Z1,Z2)
⇢1C1(Z2,Z1) ⇢

2
1C1(Z2,Z2) + C2(Z2,Z2)

�

In this tutorial we assume ⇢m are scalars. However PyApprox supports polynomial versions ⇢m(z). The above formulas
must be slightly modified in this case.

Similary we have

tm(z;Z)> = [Cov [fm(z), fm(Z1)] ,Cov [fm(z), fm(Z2)]]

where

t1(z;Z)> = [C1(z,Z1), ⇢1C1(z,Z2)]
>

t2(z;Z)> =
⇥
⇢1C1(z,Z1), ⇢

2
1C1(z,Z2) + C2(z,Z2)

⇤

M models

The diagonal covariance blocks of the prior covariance C for m > 1 satisfy

Cm(Zm,Zm) + ⇢
2
m�1Cm�1(Zm,Zm) + · · ·+

m�1Y

i=1

⇢
2
iC1(Zm,Zm).

148 Chapter 4. Theoretical Tutorials

PyApprox, Release 1.0.2

Two models

Given data Z = [Z1,Z2] from two models of di�ering fidelity, the data covariance of the multi-fidelity GP consisting
of two models can be expressed in block form

C(Z,Z) =


Cov [f1(Z1), f1(Z1)] Cov [f1(Z1), f2(Z2)]
Cov [f2(Z2), f1(Z1)] Cov [f2(Z2), f2(Z2)]

�

The upper-diagonal block is given by

Cov [f1(Z1), f1(Z1)] = Cov [�1(Z1), �1(Z1)] = C1(Z1,Z1)

The lower-diagonal block is given by

Cov [f2(Z2), f2(Z2)] = Cov [⇢1f1(Z2) + �2(Z2), ⇢1f1(Z2) + �2(Z2)]

= Cov [⇢1�2(Z2) + �2(Z2), ⇢1�1(Z2) + �2(Z2)]

= Cov [⇢1�2(Z1), ⇢1�1(Z2)] + Cov [�2(Z2), �2(Z2)]

= ⇢
2
1C1(Z2,Z2) + C2(Z2,Z2)

Where on the second last line we used that �1 and �2 are independent.

The upper-right block is given by

Cov [f1(Z1), f2(Z2)] = Cov [�1(Z1), ⇢1�1(Z2) + �2(Z2)]

= Cov [�1(Z1), ⇢1�1(Z2)] = ⇢1C1(Z1,Z2)

and Cov [f2(Z2), f1(Z1)] = Cov [f1(Z2), f2(Z2)]
>
.

Combining yields

C(Z,Z) =


C1(Z1,Z1) ⇢1C1(Z1,Z2)
⇢1C1(Z2,Z1) ⇢

2
1C1(Z2,Z2) + C2(Z2,Z2)

�

In this tutorial we assume ⇢m are scalars. However PyApprox supports polynomial versions ⇢m(z). The above formulas
must be slightly modified in this case.

Similary we have

tm(z;Z)> = [Cov [fm(z), fm(Z1)] ,Cov [fm(z), fm(Z2)]]

where

t1(z;Z)> = [C1(z,Z1), ⇢1C1(z,Z2)]
>

t2(z;Z)> =
⇥
⇢1C1(z,Z1), ⇢

2
1C1(z,Z2) + C2(z,Z2)

⇤

M models

The diagonal covariance blocks of the prior covariance C for m > 1 satisfy

Cm(Zm,Zm) + ⇢
2
m�1Cm�1(Zm,Zm) + · · ·+

m�1Y

i=1

⇢
2
iC1(Zm,Zm).

148 Chapter 4. Theoretical Tutorials

PyApprox, Release 1.0.2

Two models

Given data Z = [Z1,Z2] from two models of di�ering fidelity, the data covariance of the multi-fidelity GP consisting
of two models can be expressed in block form

C(Z,Z) =


Cov [f1(Z1), f1(Z1)] Cov [f1(Z1), f2(Z2)]
Cov [f2(Z2), f1(Z1)] Cov [f2(Z2), f2(Z2)]

�

The upper-diagonal block is given by

Cov [f1(Z1), f1(Z1)] = Cov [�1(Z1), �1(Z1)] = C1(Z1,Z1)

The lower-diagonal block is given by

Cov [f2(Z2), f2(Z2)] = Cov [⇢1f1(Z2) + �2(Z2), ⇢1f1(Z2) + �2(Z2)]

= Cov [⇢1�2(Z2) + �2(Z2), ⇢1�1(Z2) + �2(Z2)]

= Cov [⇢1�2(Z1), ⇢1�1(Z2)] + Cov [�2(Z2), �2(Z2)]

= ⇢
2
1C1(Z2,Z2) + C2(Z2,Z2)

Where on the second last line we used that �1 and �2 are independent.

The upper-right block is given by

Cov [f1(Z1), f2(Z2)] = Cov [�1(Z1), ⇢1�1(Z2) + �2(Z2)]

= Cov [�1(Z1), ⇢1�1(Z2)] = ⇢1C1(Z1,Z2)

and Cov [f2(Z2), f1(Z1)] = Cov [f1(Z2), f2(Z2)]
>
.

Combining yields

C(Z,Z) =


C1(Z1,Z1) ⇢1C1(Z1,Z2)
⇢1C1(Z2,Z1) ⇢

2
1C1(Z2,Z2) + C2(Z2,Z2)

�

In this tutorial we assume ⇢m are scalars. However PyApprox supports polynomial versions ⇢m(z). The above formulas
must be slightly modified in this case.

Similary we have

tm(z;Z)> = [Cov [fm(z), fm(Z1)] ,Cov [fm(z), fm(Z2)]]

where

t1(z;Z)> = [C1(z,Z1), ⇢1C1(z,Z2)]
>

t2(z;Z)> =
⇥
⇢1C1(z,Z1), ⇢

2
1C1(z,Z2) + C2(z,Z2)

⇤

M models

The diagonal covariance blocks of the prior covariance C for m > 1 satisfy

Cm(Zm,Zm) + ⇢
2
m�1Cm�1(Zm,Zm) + · · ·+

m�1Y

i=1

⇢
2
iC1(Zm,Zm).

148 Chapter 4. Theoretical Tutorials

PyApprox, Release 1.0.2

Two models

Given data Z = [Z1,Z2] from two models of di�ering fidelity, the data covariance of the multi-fidelity GP consisting
of two models can be expressed in block form

C(Z,Z) =


Cov [f1(Z1), f1(Z1)] Cov [f1(Z1), f2(Z2)]
Cov [f2(Z2), f1(Z1)] Cov [f2(Z2), f2(Z2)]

�

The upper-diagonal block is given by

Cov [f1(Z1), f1(Z1)] = Cov [�1(Z1), �1(Z1)] = C1(Z1,Z1)

The lower-diagonal block is given by

Cov [f2(Z2), f2(Z2)] = Cov [⇢1f1(Z2) + �2(Z2), ⇢1f1(Z2) + �2(Z2)]

= Cov [⇢1�2(Z2) + �2(Z2), ⇢1�1(Z2) + �2(Z2)]

= Cov [⇢1�2(Z1), ⇢1�1(Z2)] + Cov [�2(Z2), �2(Z2)]

= ⇢
2
1C1(Z2,Z2) + C2(Z2,Z2)

Where on the second last line we used that �1 and �2 are independent.

The upper-right block is given by

Cov [f1(Z1), f2(Z2)] = Cov [�1(Z1), ⇢1�1(Z2) + �2(Z2)]

= Cov [�1(Z1), ⇢1�1(Z2)] = ⇢1C1(Z1,Z2)

and Cov [f2(Z2), f1(Z1)] = Cov [f1(Z2), f2(Z2)]
>
.

Combining yields

C(Z,Z) =


C1(Z1,Z1) ⇢1C1(Z1,Z2)
⇢1C1(Z2,Z1) ⇢

2
1C1(Z2,Z2) + C2(Z2,Z2)

�

In this tutorial we assume ⇢m are scalars. However PyApprox supports polynomial versions ⇢m(z). The above formulas
must be slightly modified in this case.

Similary we have

tm(z;Z)> = [Cov [fm(z), fm(Z1)] ,Cov [fm(z), fm(Z2)]]

where

t1(z;Z)> = [C1(z,Z1), ⇢1C1(z,Z2)]
>

t2(z;Z)> =
⇥
⇢1C1(z,Z1), ⇢

2
1C1(z,Z2) + C2(z,Z2)

⇤

M models

The diagonal covariance blocks of the prior covariance C for m > 1 satisfy

Cm(Zm,Zm) + ⇢
2
m�1Cm�1(Zm,Zm) + · · ·+

m�1Y

i=1

⇢
2
iC1(Zm,Zm).

148 Chapter 4. Theoretical Tutorials

For two models

The low-fidelity covariance is

The high-fidelity covariance is

The covariance between models is

𝜌
∈
ℝ
	

𝜌
𝑧
=
𝜌 3
+
𝜌)
𝑧	

MULTILEVEL GAUSSIAN PROCESSES
The multilevel GP is a better approximation
than the single fidelity GP using only the HF

data

Alternative methods build GP sequentially
similar to multilevel collocation. However there
is no way to estimate error consistently and the

resulting GP is often less accurate

ML GP EXPERIMENTAL DESIGN

Similar to single-fidelity GPs, not all training data
reduce variance equally.

But ML GPs have the additional complication that
function data evaluated using different models at the
same sample 𝑧 reduce uncertainty differently.

The relative cost of evaluating each model must also
be accounted for. Two low-fidelity evaluations may be
more cost effective at reducing variance in HF
prediction

L. Le Gratiet and J. Garnier Recursive co-kriging model for design of computer experiments with multiple levels of
fidelity. International Journal for Uncertainty Quantification, 4(5), 365–386, 2014.

http://dx.doi.org/10.1615/Int.J.UncertaintyQuantification.2014006914
http://dx.doi.org/10.1615/Int.J.UncertaintyQuantification.2014006914

ML GP EXPERIMENTAL DESIGN

Assume cost of evaluating each model is 𝑊) = 1,𝑊* = 3

The ML-GP is much more accurate for the same amount of work

NONLINEAR MULTI-FIDELITY SURROGATES

Deep Gaussian processes where 𝑔 and 𝑓) are
both Gaussian process have been proposed

However, a nonlinear model may more efficiently
capture the relationship.

Multilevel GPs assume a linear relationship between
models

PyApprox, Release 1.0.2

Fig. 11: A multi-index hierarchy formed by increasing mesh discretizations in two di�erent spatial directions.

References

Total running time of the script: (0 minutes 3.766 seconds)

4.4.9 Multifidelity Gaussian processes

This tutorial describes how to implement and deploy multi-level Gaussian processes built using the output of a high-
fidelity model and evaluations of a set of lower-fidelity models of lower accuracy and cost [KOB2000]. This tutorial
assumes understanding of the concepts in Gaussian processes

Multilevel GPs assume that all the available models {fk}Kk=1 can be ordered into a hierarchy of increasing cost and
accuracy, where k = 1 denotes the lowest fidelity model and k = K denotes the hightest-fidelity model. We model
the output ym from the m-th level code as ym = fm(z) and assume the models satisfy the hierarchical relationship

fm(z) = ⇢m�1fm�1(z) + �m(z), m = 2, . . . ,M.

with f1(z) = �1(z). We assume that the prior distributions on �m(·) ⇠ N (0, Cm(·, ·)) are independent.

Just like traditional GPs the posterior mean and variance of the multi-fidelity GP are given by

m
?(z) = t(z)>C(Z,Z)�1

y C
?(z, z0) = C(z, z0)� t(z)>C(Z,Z)�1

t(z0),

where C(Z,Z) is the prior covariance evaluated at the training data Z .

The di�erence comes from the definitions of the prior covariance C and the vector t(z).

4.4. Multi-Fidelity Methods 147

𝑓*(𝑧) = 𝑔(𝑓) 𝑧)

𝑓"(𝑧, 𝑦!; 𝜃")

𝑓!(𝑧; 𝜃!)

𝑦#

𝑧 𝑦$

Loss

𝑧

P. Perdikaris, et al. Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling. Proceedings of
the Royal Society of London A. 2017
K. Cutajar et al. Deep Gaussian Processes for Multi-fidelity Modeling. 2019,

Motamed, Mohammad. "A multi-fidelity neural network surrogate sampling method for uncertainty quantification."
International Journal for Uncertainty Quantification 10.4 (2020).
X.Meng, G. Karniadakis, A composite neural network that learns from multi-fidelity data: Application to function
approximation and inverse PDE problems, Journal of Computational Physics, (2020)

Using neural networks for 𝑔 and 𝑓) has also
been proposed

http://rspa.royalsocietypublishing.org/content/473/2198/20160751
http://rspa.royalsocietypublishing.org/content/473/2198/20160751
https://doi.org/10.48550/arXiv.1903.07320

MF DEEP GAUSSIAN PROCESSES

0.0 0.2 0.4 0.6 0.8 1.0
z

°1.0

°0.5

0.0

0.5

1.0

f
(z

)

f1(z)

f2(z)

f linear-MF
2

0.0 0.2 0.4 0.6 0.8 1.0
z

°1.0

°0.5

0.0

0.5

1.0

f
(z

)

f1(z)

f2(z)

fnonlinear-MF
2 (z)

Plots generated using Emukit https://github.com/EmuKit/emukit/

𝑓) 𝑧 = sin 8𝜋z
𝑓* 𝑧 = 𝑥 − 2 𝑓) 𝑧 *

MF DEEP GAUSSIAN PROCESSES

Linear MF GPs tend to perform worse than the non-linear MF GPs when the
correlation between models is highly complicated

NON-HIERARCHICAL SURROGATES

𝑦%

𝑓!(𝑧, 𝜂!; 𝜃!)

𝑓"(𝑧, 𝜂"; 𝜃") 𝑓%(𝑧, 𝜃%)

𝑦#

𝑦$

𝑧 𝜂$

Loss

𝑧 𝑧𝜂#

𝑦&

𝑧

𝑓'(𝑧; 𝜃')
Gorodetsky et al. MFNets: Multi-fidelity data-driven networks for bayesian learning and prediction, International
Journal for Uncertainty Quantification, 2020.
A. Gorodetsky et al. MFNets: Learning network representations for multifidelity surrogate modeling, 2020.

Often models do not admit a 1D hierarchy. In
this case we can build multi-fidelity surrogates
for models with relationships represented by
directed acyclic graphs

https://www.alexgorodetsky.com/static/papers/gorodetsky_jakeman_geraci_eldred_mfnets_2020.pdf
https://www.alexgorodetsky.com/static/papers/gorodetsky_jakeman_geraci_eldred_mfnets_2020.pdf
https://res.arxiv.org/abs/2008.02672

DIRECT FIELD ACOUSTIC TESTING

Δ𝜙 𝑥 + 𝜅*𝜙 𝑥 = 0	, 	𝑥 ∈ 𝐷
45 6
47 = 𝜌3𝜔𝑧1, 	 𝑥 ∈ 𝜕𝐷

We can fuse multiple experiments that characterize performance of
engineered structures under extreme vibration environments simulated
using the Helmholtz equation

PYAPPROX

REPOSITORY
https://github.com/sandialabs/pyapprox/actions
DOCUMENTATION
https://sandialabs.github.io/pyapprox/index.html

TARGET PLATFORMS PyApprox is currently built
and tested on multiple platforms

INSTALLATION Installation of PyApprox and its
dependencies managed by Pip or Pip+Anaconda

LICENSE MIT

AUTOMATED TESTING: Over 550 tests run on
each commit to master

https://github.com/sandialabs/pyapprox/actions
https://sandialabs.github.io/pyapprox/index.html

FORWARD PROPAGATION OF UNCERTAINTY

Must compute statistics from limited number of samples (simulations)
So build surrogate that can be used in place of the expensive model

2

6664

z1
z2
...
zd

3

7775

Variables

u = f (z)

Model

2

64
q1
...

qnq

3

75 = Q(u)

QoI

CMC

Ti-HC
Gr/BMI

Air gap
Gr/BMI

Variables
Inner wall shape

Wall thicknesses

Stringer locations

…

Material properties

Inlet conditions

Heat transfer coefficient 𝑓!(𝑢!(𝑧))

𝑧 =
𝑧"
⋮
𝑧#

𝑄 = 8
(
𝑓) 𝑧 𝜋 𝑧 	d𝑧

2

6664

z1
z2
...
zd

3

7775

Variables

u = f (z)

Model

2

64
q1
...

qnq

3

75 = Q(u)

QoI

Gr/BMI

Gr/BMI

Variables

Friction

Surface mass
balance

… 0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0

1.5

2.0

2.5
K

ºf
D

º̂f
D

𝑢!(𝑧)

