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UNCERTAINTY QUANTIFICATION

All models are approximations of reality. Sources of uncertainty must be
identified and their effect on predictions quantified

Variables ( A

Friction

Surface mass
balance

zZ =24, ..,2Zp] U, (z)




PARAMETERIZE UNCERTAINTY

Transient Advection diffusion
%(m,t,z) =V [k(z,2)Vu(z,t,2)] = V- (vu(z, t, 2)) + g(x,t)(x,t,2) € D x [0,1] x T
B(z,t,z) =0(z,t,2) € 0D x [0,1] x T
u(z,t,z) = up(x, 2)(x,t,2) € Dx {t =0} x T

Accuracy of Qol f(z) depends on numerical f(z) = / u(x, T, z)dx
S

discretization
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Often diffusion field 1s unknown so parameterize with a Karhunen Loeve expansion
(realizations shown below)
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SENSITIVITY ANALYSIS

Sensitivity Analysis quantifies the impact of variable subsets on predictions
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f(z) = fo+ Zfz(zz) + Z fii(zisz) 4+ fi.a(z1, .- 2a)
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BAYESIAN INFERENCE (CALIBRATION)

Bayesian inference uses data d to - (Z | d) _ mw(d | z) w(2)

update estimates of uncertainty
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BAYESIAN INFERENCE (CALIBRATION)

We can collect spatse And update prior distribution on

measurements of concentration coefficients

1.0
L
0.8 1
06- J—\
»
-3 -2 -1 [ 1 2 3
3
2
| .
]
-1
R -
-3
-3 -2 -1 [ 1 2 3

Experimental design can be used to
choose data that will most inform

uncertainty



FORWARD PROPAGATION

Forward propagation of uncertainty computes measures of prediction uncertainty

from a set of model evaluations

Variables (

Friction
Surface mass
balance

zZ =24, ..,2Zp] | U, (z) |

(9 O

e [>
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fa(ta(2))

Elfu ()] + VI
P[fa(2) = 6]

When a model is computational expensive only a limited number of evaluations may

be available.




UNCERTAINTIES EFFECT DESIGNS

Deterministic design Design under uncertainty
. . * . . .
Compute design at nominal values Z Create design that is robust to uncertainty
min L(u(z*, &) min E[£(u(z*
*
s.t. C(u(z*,§)) <0 s.t. Ple(u(z,8) <68]—e<0
Reliable/Robust Deterministic Failure region at Acceptable
Optimum Optimum deterministic optimum Failure Region
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Objective Constraint



END TO END WORKFLOW

Design Under

‘ ‘ Uncertainty

When a model is computational expensive only a limited number of evaluations may
be available.

Efficient methods are needed to reduce the
computational cost



MULTI-FIDELITY UQ

Goal:
Uncertainty
Quantification UQ

OUTER-LOOP
PROCESS

Challenge: Existing approach:
Expensive data intractable Use lower-fidelity data
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PROCESS
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SIMULATION

MF UQ AND MF SURROGATES CAN REDUCE
THE COST OF BUILDING SINGLE-FIDELITY BY
10-100X
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Multi-fidelity solution:
Use data from multiple
models
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NUMERICAL DISCRETIZATION IMPACTS ACCURACY

Transient Advection diffusion

ou

E(:{:,t,z) =V lk(z,2)Vu(z,t,2)] = V- (vu(z,t,2)) + g(z,t)(z,t,2) € D x [0,1] x T
B(z,t,z) =0(x,t,2) € 0D x [0,1] x T

u(z,t,z) = up(x, 2)(x,t,2) € Dx {t =0} x T

Accuracy of Qol f(z) depends on numerical discretization f(2) = / uw(z, T, z)dz
S
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MULTI-LEVEL VS MULTI-INDEX

Multi-level methods Both assume Multi-index methods

Hf_fozH < Hf_foz’H

sy
2 o
5 =
5 2
a ® a, B
e c
z -
3 2
FIDELITY (ACCURACY)
a1
Use a 1D hierarchy of models Use a multi-dimensional hierarchy
controlled by a scalar index @ € N controlled by a multi-index

a = [al, a,, ]



MOVING BEYOND MULTI-INDEX METHODS

Some problems possess an Methods that can encode general
ensemble of models that do not dependencies are now being
admit a strict hierarchy developed

Ice speed (myr ')
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Gorodetsky et al. MFNets: Multi-fidelity data-driven networks for bayesian learning and prediction, International

Journal for Uncertainty Quantification, 2020.

A. Gorodetsky et al. MFNets: Learning network representations for multifidelity surrogate modeling, 2020.



https://www.alexgorodetsky.com/static/papers/gorodetsky_jakeman_geraci_eldred_mfnets_2020.pdf
https://www.alexgorodetsky.com/static/papers/gorodetsky_jakeman_geraci_eldred_mfnets_2020.pdf
https://res.arxiv.org/abs/2008.02672

MULTI-FIDELITY QUADRATURE

Goal: Compute the expected value using two (or If Q, = Q (unbiased) then CV estimator
more) models is also unbiased
(Ojt\,,N — Qa,N + 7 (Qn,N — :un)
16 { mem Qo E[Qon] = —2.34e — 03
S . . 5%, VIQo,n] = 9.70e - 03
Minimizing variance ratio to find 1) 149 con ELQ] = —7.40e - 04
VIQ§Y1=5.58e — 04
12 -
. V [QG! ] o
V|[Qea,N] N
Yields |
CovIN ' BV fu(z®), N1 BN £ (2P)]  Covife fil ©
7” = — - = — |
V[N EY fiu(zD)] VIRl ) .
°" 03 =02 -1 00 01 o2 03
Such that

But variance of CV estimator 1s much

Y= 1 — Cor [Qa,N; QK,,N]2

smaller than HF estimator if models are
highly correlated



MULTI-FIDELITY SURROGATES

1.5 4

GOAL
Build a surrogate using data 1.0 -
from models of varying
fidelity 05 1
Set of model fidelities including a * 0.0 -
(z) = fl7(2)

Z ~ * Z .
fan
Num samples per Highest fidelity
model —1.0 1

0.'0 0.'2 0.I4 0.'6 0.'8 1.10
A low-fidelity model can be used to accurately
extrapolate away from hioh-fidelity data



OVERVIEW

1. Multi-level /Multi-index collocation
* Tensor product interpolation
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* Sparse grid approximation
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e Multi-index collocation

0.4 4

024 ® b

2. Multi-level Gaussian processes
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* Single fidelity Gaussian processes and

experimental design N
* Multi-level Gaussian processes and
experimental design
3. Alternatives o —sea |
*  Deep GPs, neural networks, low-rank s S

methods, MFNets



TENSOR-PRODUCT INTERPOILATION

Tensor product Lagrange interpolation is based on one
dimensional interpolants

gbi,j(zi) = H ) Z(k), 1 € [d], Zij :COS< ) 3 )= 17"'7m5i
k=1,k#j 27— 2 mg,

Note other basis functions can be used, e.g. ptecewise
polynomials.




Lemma 3.1 (Strong convergence [9)).

1.501 -

Letv:E =R andw: = — R denote two densities which satisfy
1.251
6=1 —[ Acu(u)dlu 100,
=N= o
= 0.75
Given an approximation f, of f with approximation error €, i.e., -
0.50
€.= ”f - fVHL,Zj(E)7 p21,
0.25
then, if f is bounded with C¢ = || f||g (=), it holds that -

w(u)

If = folleez) < Ci/pe + Cf51/p, provided C, := max < 00.
uEEUE V(’LL) U



Interpolants for an oscillatory function parameterized by a Beta(10,10) random variable

The constant C;- of convergence significantly impacts error
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TENSOR-PRODUCT INTERPOILATION

The tensor product interpolant 1s

fa,ﬁ(z) = Z fa(z(j)) H i ().

J<p i€(d]
It requires evaluating the model on the tensor product
orid
d
Z5 = ®Z% = [z ... z(Mp)] ¢ RT*¥Ms
i=1

With number of points
Mg = [1;ciqms
And model evaluations

Fa,B = fa(Zﬁ) — [fa(z(l)) fa(Z(MB))

c RMBXq

)

]T



SMOOTHNESS MATTERS

The performance of Lagrange-based tensor products
depends on the smoothness s and the dimension of
the target function

—s/d
Hfa — foz,ﬂ ‘LOO(I‘) < Cd,sNB /

-1 —.—
e Lagrange
-®- Piecewise
1034 N TS~ linear rate
----- quadratic rate
1073 1
~~.o__
1077 4 o
D
1077 4 —
f(z) = cos | 2mw; + g Cdzd
10711 4 =
10713 1
10715 4 .
101 102 103

Exponential convergence 1s obtained for analytic functions



SMOOTHNESS MATTERS

Lagrange polynomials introduce Gibbs like phenomena
when approximating discontinuous functions

Only linear convergence 1s obtained for functions with
only integrable first order derivatives

f(z) = exp (—
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(QUADRATURE USING THE SURROGATE

The error in the Monte Carlo estimate of the mean
using the surrogate satisfies

E |(Qa —E[Q)°| = N7'V[Qu] + (E[Qa] - E[Q))*
< N_lv [Qa] —+ Od,rNg_S/d
Unlike the expensive model, the first term can be made
very small because the surrogate 1s cheap to evaluate

However the mean of tensor product interpolants can
be computed exactly.

Mﬁ—/Zf 219)) H(/ﬁmz (zi)w(z)dz =) fa(z9)

Uj<p J<p

Uj = gl‘l ¢i,jz‘ (Z%) dw(zz)7
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D
f(z) = cos <27rw1 + Z cdzd>
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SPARSE GRID APPROXIMATION

Isotropic sparse grid
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i[9 . 49, : .
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The number of tensor product points grows
exponentially with dimension (curse of
dimensionality)

Sparse grids can be used to exploit function
smoothness to mitigate the curse of
dimensionality

Index set controlling TP approx
accuracy

fel(=) ZC

numerical model
discretization

Tensor product
resolution



ISOTROPIC SPARSE GRID

An isotropic sparse grid uses

(1) = {8 | (max(0,1 1) < |8 <1+ D —2},

True function
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V. Barthelmann, E. Novak and K. Ritter. High dimensional polynomial interpolation on sparse orid. Advances in Computational Mathematics (2000).
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https://doi.org/10.1023/A:1018977404843
https://doi.org/10.1017/S0962492904000182

SPARSE GRID CONVERGENCE

Y4 _ (0.5(z4 + 1) — 0.5)2>

Tensor product error grows f(z) = exp (—
exponentially with dimension for fixed
smoothness 1 1076 -

20

—r/D N
Hf o fI(l)HLOO S KD,’I"MZ / 10

10—10 4

Isotropic sparse error grids is less
strongly dependent on dimension

10-12 1

If = fzaylle < CD,TMI_(?)(log Mz(l))(r+2)(D—1)+1 10244

101 102 103

Isotropic grids treat all dimensions equally, but for many models
some dimensions are more important than others



ADAPTIVE SPARSE GRIDS

Finding the optimal index set can be posed as binary
knapsack problem

maxz AE3zdg such that Z AWgog < Whax,
p

B
AEg = ||fazus — fazl AWg = ||Waz08 — Wa 1|

A greedy algorithm can be used to find an approximate solution
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T. Gerstner and M. Griebel. Dimension-adaptive tensor-product quadrature. Computing (2003).



https://doi.org/10.1007/s00607-003-0015-5

MULTI-FIDELITY APPROXIMATION: AN OBSERVATION

The discrepancy between model fidelities 1s often
“easier” to approximate than the high-fidelity function
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Surrogate that uses only low fidelity Surrogate that uses only high fidelity MF Surrogate has small stochastic error
model f7 y, has small stochastic error but  model fo,n, has large stochastic error but and has no deterministic error

has large deterministic error has no deterministic error



MUILTI-INDEX COILLOCATION
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Haji-Ali. F. Nobile, L.. Tamellini, and R. Tempone. Multi-index stochastic collocation for random pdes. Computer Methods in Applied Mechanics and Engineering, 306:95 — 122. 2016.

A. Teckentrup, P. Jantsch, C. Webster, and M. Gunzbureger. A multilevel stochastic collocation method for partial differential equations with random input data. SIAM/ASA Journal on Uncertainty
Quantification, 3(1):1046-1074, 2015.



http://www.sciencedirect.com/science/article/pii/S0045782516301141,doi:10.1016/j.cma.2016.03.029
https://doi.org/10.1137/140969002
https://doi.org/10.1137/140969002

ADAPTIVE MULTI-INDEX COLLOCATION

The sparse grid adaptation algorithm can be
modified for use with multi-fidelity models

1 o
0O4{ e . o
—1.0 —0.5 0.0 0.5 1.0

|.D. Jakeman, M.S. Eldred, G. Geraci, and A. Gorodetsky. Adaptive Multi-index Collocation for Uncertainty

Quantification and Sensitivity Analysis. International Journal for Numerical Methods in Engineering (2019).



https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.6268
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.6268
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ADVECTION DIFFUSION MODEL

MISC reduces the computational
cost of building a surrogate
relative to a single fidelity sparse
grid for a 3D hierarchy (x-
refinement, y refinement and time
refinement)

Number of model evaluations
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)
Do
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Work 1s allocated to each model according to cost
relative to the improvement in predictive accuracy.

Low fidelity meshes are used early on and higher-fidelity
meshes when requesting higher accuracy
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(5-AUSSIAN PROCESSES

Gaussian processes are a distribution over a class of functions  +f

Mean function N
FC) [~ N [m(), O, 0) Her) .

Hyper-parameters Noise variance 0-

The kernel C should be tailored to the smoothness of the
function being approximated. The Matern kernel 1s a
flexible choice

v

5217V [ V2ud(z, 2% 0) V2uwd(z, 2% ()
‘ *, — ) ) 9 9
z,z 0) =|o ) ; K, ;

Controls  Kernel variance. Controls Length scale. Controls
smoothness  magnitude of function trequency of realizations




(GAUSSIAN PROCESSES

The posterior distribution of the Gaussian processes conditional

on training data (Z D y® = f(z (i))) is ol

FOY 10,y ~ N (m*(), C*(, 5 0) + 1) i -
With posterior mean and covariance N
m*(Z) f— t(z)TA_ly C*(Z’ Z,) —_— C(Z, Z/) — t(Z)TA_lt(Z/) - -1.00 -0.75 —-0.50 —0.25 0.00 025 050 075 100
where 2
. . . . 0.8
A = C’(z(z),z(”) fort,7=1,...,. M
0.4
0.2 // N ’//
t(z) = [C(z,21),..., Oz, 2] 1
=029 — Exact
C.E. Rasmussen and C. Williams. Gaussian Processes for Machine Learning. MIT Press (2006) S - gg S::::Z: :]riaer:tainty

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00


http://www.gaussianprocess.org/gpml/

EXPERIMENTAL DESIGN

Not all training data reduce variance equally.

Experimental design can be used to reduce variance
systematically.

Integrated variance (IVAR) designs minimize the posterior
distribution of the GP with respect to the distribution of the
inputs Z

ZT = argmin / C*(z,z | Z2)p(z)dz
ZCQCT,|Z|=M JT

Note the designs do not depend on the data and can be

computed a priori

]. Sacks, W.]. Welch. T.].Mitchell, H.P. Wynn Desions and analysis of computer experiments (with discussion).
Statistical Science, 4:409-435 (1989)
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http://www.jstor.org/stable/2245858
http://www.jstor.org/stable/2245858

IVAR EXPERIMENTAL DESIGN

The IVAR objective simplifies to
/ C*(z,z | Z2)p(z)dz =1 — Trace [Az Pz] Pz = / AZU{z}A;U{z}p(z)dz
r r
Which 1s typically solved greedily such that

ZN+1 = argmin Trace [AZNU{z’}PZNU{z’}} :
2’ € Zcand

When p and C are separable then P can be computed using 1D quadrature




MULTILEVEL GAUSSIAN PROCESSES

1
fi(2) = 2 (By = 1)? + 1) sin((10y - 2))

Multilevel GPs assume 9 v — 1
f(2) = @) + ()

fm(2) = pm—1fm—1(2) + om(2)

For Z = (Z4, ..., Zy), the posterior mean and L0-
covariance again satisty

m*(2) = 1(z) TC(2, 2) 1y

C*(2,7)=Cl(z,2) —t(z) ' C(Z,2)" ()

—0.5 1

Where for two models

0.0 0.2 0.4 0.6 0.8 1.0

Cov [fi1(21), f1(Z1)] Cov [f1(Z1), f2(Z2)]]
Cov [fa(22), f1(Z1)] Cov|f2(Z22), f2(Z2)]

M. C. Kennedy and A. O’Hagan. Predicting the Output from a Complex Computer Code When Fast Approximations Are Available. Biometrika, 87(1), 1-13. 2000.

C(Z,2) =



http://www.jstor.org/stable/2673557

MULTILEVEL KERNEILS

For two models Z = [Z1, 23]

C(Z,2) = [ C1(21, 21) p1C1 (21, Z5) ]

p1C1(22, 21) piC1(Z2, Z2) + Co( 22, 25)

The low-fidelity covariance is
Cov [f1(21), f1(21)] = Cov [61(21),01(21)] = C1(21, Z1)
The high-fidelity covariance is

Cov [f2(22), f2(22)] = Cov [p1 f1(Z22) + 62(Z22), p1.f1(Z2) + 62(Z2)]
= Cov [p102(22) + 02(22), p101(Z2) + 62(Z2)]
= Cov [p102(Z1), p161(Z2)] + Cov [62(Z22), 02(22)]
= piC1(22, Z2) + Co( 22, 25)

The covariance between models 1s

Cov [f1(Z1), f2(Z2)] = Cov [61(21), p101(Z22) + 02(Z2)]
= Cov [01(21), p101(22)] = p1C1(21, 22)




MULTILEVEL GAUSSIAN PROCESSES

The multilevel GP is a better approximation  Alternative methods build GP sequentially
than the single fidelity GP using only the HF similar to multilevel collocation. However there
data is no way to estimate error consistently and the
resulting GP 1s often less accurate
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MI. GP EXPERIMENTAI DESIGN

Similar to single-fidelity GPs, not all training data
reduce variance equally.

But ML GPs have the additional complication that
function data evaluated using different models at the
same sample zZ reduce uncertainty differently.

The relative cost of evaluating each model must also
be accounted for. Two low-fidelity evaluations may be
more cost effective at reducing variance in HF
prediction

L. L.e Gratiet and |. Garnier Recursive co-kriging model for desion of computer experiments with multiple levels of

fidelity. International Journal for Uncertainty Quantification, 4(5), 365-386, 2014.

——=- 1LF data
--=- 1 HF data

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

—-=-- 1HF data
~-=- 2LFdata

0.0 0.2 0.4 0.6 0.8 1.0



http://dx.doi.org/10.1615/Int.J.UncertaintyQuantification.2014006914
http://dx.doi.org/10.1615/Int.J.UncertaintyQuantification.2014006914

MIL. GP EXPERIMENTAL DESIGN

Assume cost of evaluating each model is Wy = 1, W, = 3
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The MI.-GP 1s much more accurate for the same amount of work



NONLINEAR MULTI-FIDELITY SURROGATES

Multilevel GPs assume a linear relationship between

models

fm(2) = pm—1fm—1(2) + 0m(2)

However, a nonlinear model may more efficiently

capture the relationship.

f2(2) = g(f1(2))

Deep Gaussian processes where g and f; are
both Gaussian process have been proposed

P. Perdikaris, et al. Nonlinear information fusion aloorithms for data-efficient multi-fidelity modelling. Proceedings of

the Roval Society of London A. 2017
K. Cutajar et al. Deep Gaussian Processes for Multi-fidelity Modeling. 2019

Using neural networks for g and f; has also
been proposed

Motamed, Mohammad. "A multi-fidelity neural network surrogate sampline method for uncertainty quantification."

International Journal for Uncertainty Quantification 10.4 (2020).
X.Meng, G. Karniadakis, A composite neural network that learns from multi-fidelity data: Application to function

approximation and inverse PDE problems, Journal of Computational Physics, (2020)



http://rspa.royalsocietypublishing.org/content/473/2198/20160751
http://rspa.royalsocietypublishing.org/content/473/2198/20160751
https://doi.org/10.48550/arXiv.1903.07320

MFE DEEP GAUSSIAN PROCESSES

f1(z) = sin(8mz)
f2(z) = (X - \/E)f1(2)2

1.0+




MFE DEEP GAUSSIAN PROCESSES

Linear MF GPs tend to perform worse than the non-linear MF GPs when the
correlation between models is highly complicated
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NON-HIERARCHICAIL SURROGATES

Often models do not admit a 1D hierarchy. In
this case we can build multi-fidelity surrogates
for models with relationships represented by
directed acyclic graphs

Gorodetsky et al. MENets: Multi-fidelity data-driven networks for bayesian learning and prediction, International

Journal for Uncertainty Quantification, 2020.

A. Gorodetsky et al. MFNets: Learning network representations for multifidelity surrogate modeling, 2020.



https://www.alexgorodetsky.com/static/papers/gorodetsky_jakeman_geraci_eldred_mfnets_2020.pdf
https://www.alexgorodetsky.com/static/papers/gorodetsky_jakeman_geraci_eldred_mfnets_2020.pdf
https://res.arxiv.org/abs/2008.02672

DIRECT FIELD ACOUSTIC TESTING

We can fuse multiple experiments that characterize performance of

engineered structures under extreme vibration environments simulated
using the Helmholtz equation

Ap(x) +k?p(x) =0, x €D
d¢(x)

= PoWZ;, x € dD
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PYAPPROX

REPOSITORY
https://github.com/sandialabs/pyapprox/actions
DOCUMENTATION

https://sandialabs.github.io/pyapprox/index.html
e —

=

ILICENSE MIT

python

INSTALLATION Installation of PyApprox and its
dependencies managed by Pip or Pip+Anaconda

™ Lt
ython
Package it

" ANACONDA

TARGET PLATFORMS PyApprox is currently built
and tested on multiple platforms

cJ §-

AUTOMATED TESTING: Over 550 tests run on
each commit to master



https://github.com/sandialabs/pyapprox/actions
https://sandialabs.github.io/pyapprox/index.html

FORWARD PROPAGATION OF UNCERTAINTY

Variables ( h

Friction

Surface mass

balance
A o ©
z = [ f ] Ua(2) 2o et f fu@n(2) dz
Zp o ® :;o o .‘
fa(ua(2)) I

Must compute statistics from limited number of samples (simulations)
So build surrogate that can be used in place of the expensive model




