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UNCERTAINTY QUANTIFICATION
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All models are approximations of  reality. Sources of  uncertainty must be 
identified and their effect on predictions quantified



PARAMETERIZE UNCERTAINTY

PyApprox, Release 1.0.2

noiseless_obs [np.ndarray (nobs)] The solution u(xl) at the L locations {xl}Ll=1 determined by
obs_indices

obs [np.ndarray (nobs)] The noisy observations u(xl) + ✏l

true_sample [np.ndarray (nkle_vars)] The KLE coe�cients used to generate the noisy observa-
tions

obs_indices [np.ndarray (nobs)] The indices of the collocation mesh at which observations are
collected. If not specified the indices will be chosen randomly ensuring that no indices as-
sociated with boundary segments are selected.

obs_fun [callable] The function used to generate the noisless observations with signature

obs_fun(z) -> np.ndarray

where z is a 2D np.ndarray with shape (nvars, nsamples) and the output is a 2D np.ndarray
with shape (nsamples, nobs).

KLE [MeshKLE] KLE object containing the attributes needed to evaluate the KLE

Examples

>>> from pyapprox_dev.benchmarks.benchmarks import setup_benchmark
>>> benchmark = setup_benchmark('advection_diffusion_kle_inversion', nvars=2)
>>> print(benchmark.keys())
dict_keys(['fun', 'variable'])

setup_multi_index_advection_di�usion_benchmark

pyapprox.benchmarks.setup_multi_index_advection_diffusion_benchmark(kle_nvars=2,
kle_length_scale=0.5,
kle_stdev=1,
max_eval_concurrency=1,
time_scenario=None,
functional=None,
config_values=None,
source_loc=[0.25, 0.75],
source_scale=0.1,
source_amp=100.0,
vel_vec=[1.0, 0.0],
kle_mean_field=0)

This benchmark is used to test methods for forward propagation of uncertainty. The forward simulation model
is the transient advection-di�usion model

@u

@t
(x, t, z) = r · [k(x, z)ru(x, t, z)]�r · (vu(x, t, z)) + g(x, t)(x, t, z) 2 D ⇥ [0, 1]⇥ �

B(x, t, z) = 0(x, t, z) 2 @D ⇥ [0, 1]⇥ �

u(x, t, z) = u0(x, z)(x, t, z) 2 D ⇥ {t = 0}⇥ �

where

g(x, t) =
100

2⇡0.12
exp

✓
� |x� [0.25, 0.75]>|2

2 · 0.12

◆
� ssink

2⇡h2
sink

exp

✓
� |x� xsink|2

2h2
sink

◆

and B(x, t, z) enforces Robin boundary conditions, i.e.

K(x, z)ru(x, t, z) · n� 0.1u(x, t, z) = 0 on @D
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Transient Advection diffusion

S
Accuracy of  QoI 𝑓(𝑧) depends on numerical 
discretization

PyApprox, Release 1.0.2

As with the pyapprox.benchmarks.setup_advection_diffusion_kle_inversion_benchmark() we
parameterize the uncertain di�usivity with a Karhunen Loeve Expansion (KLE)

k(x, z) = exp

 
k0 +

DX

d=1

p
�d d(x)zd

!
.

If no initial condition is provided by the user then the governing equations in pyapprox.benchmarks.
setup_advection_diffusion_kle_inversion_benchmark() is used to create an initial condition, where
the forcing is set to be the first term of g here. I.e. the steady state solution before the second term of g is used
to remove the concentration u from the domain.

The quantity of interest f(z) is the integral of the final solution in the subdomain S = [0.75, 1]⇥ [0, 0.25], i.e.

f(z) =

Z

S
u(x, T, z)dx

This model can be evaluated using di�erent numerical discreizations that control the two spatial mesh reso-
lutions and the timestep. The model is evaluated by specifying the random variables and the three numerical
(configuration) variables.

If not time_scenario is provided. The QoI from the steady state solution is returned.

This benchmark can be modified by changing the default keyword arguments if necessary.

Parameters
nvars [integer] The number of variables of the KLE

kle_length_scale [float] The correlation length Lc of the covariance kernel

kle_sigma [float] The standard deviation of the KLE kernel

max_eval_concurrency [integer] The maximum number of simulations that can be run in par-
allel. Should be no more than the maximum number of cores on the computer being used

time_scenario [dict] Options defining the transient simulation. If None a steady state problem
will be solved If True the default time scenario will be used which corresponds to specifying
the dictionary

time_scenario = {
"final_time": 0.2,
"butcher_tableau": "im_crank2",
"deltat": 0.1, # default will be overwritten
"init_sol_fun": None,
"sink": None
}

Respectively, the entries of sink are ssink, hsink, xsink, e.g. [50, 0.1, [0.75, 0.75]]. If
None then the sink will be turned o�. init_sol is a callable function with signature
init_sol_fun(x) -> np.ndarray (nx, 1) where x is np.ndarray (nphys_vars, nx) are
physical coordinates in the mesh. butcher_tableau specifies the time-stepping scheme
which can be either im_beuler1 or im_crank2. final_time specifies T .

functional [callable] Function used to compute the Quantities of interest with signature

functional(sol, z) -> float

Here sol: torch.tensor (ndof) is the solution at the mesh points and z -> np.
ndarray(nkle_vars, 1) is the value of the KLE coe�cients that produced sol. If None
the subdomain intergral of sol at the final time will be used as defined above.
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Often diffusion field is unknown so parameterize with a Karhunen Loeve expansion 
(realizations shown below)

PyApprox, Release 1.0.2

and we model the di�usivity as a Karhunen Loeve Expansion (KLE)

k(x, z) = exp

 
DX

d=1
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!
.

The observations are noisy observations u(xl) at L locations {xl}Ll=1 with additive independent Gaussian noise
with mean zero and variance �2. These observations can be used to define the posterior distribution

⇡post(z) =
⇡(y|z)⇡(z)R

� ⇡(y|z)⇡(z)dz

where the prior is the tensor product of independent and identically distributed Gaussian with zero mean and
unit variance In this scenario the likelihood is given by

⇡(y|z) = 1

(2⇡)d/2�
exp

✓
�1

2

(y � f(z))T (y � f(z))

�2

◆

which can be used for Bayesian inference and maximum likelihood estimation of the parameters z.

Parameters
source_loc [np.ndarray (2)] The center of the source

source_amp [float] The source strength s

source_width [float] The source width h

kle_length_scale [float] The length scale of the KLE

kle_stdev [float] The standard deviation of the KLE covariance kernel

kle_nvars [integer] The number of KLE modes

true_sample [np.ndarray (2)] The true location of the source used to generate the observations
used in the likelihood function

orders [np.ndarray (2)] The degrees of the collocation polynomials in each mesh dimension

nobs [integer] The number of observations L

obs_indices [np.ndarray (nobs)] The indices of the collocation mesh at which observations are
collected. If not specified the indices will be chosen randomly ensuring that no indices as-
sociated with boundary segments are selected.

noise_stdev [float] The standard deviation � of the observational noise

max_eval_concurrency [integer] The maximum number of simulations that can be run in par-
allel. Should be no more than the maximum number of cores on the computer being used

Returns
benchmark [Benchmark] Object containing the benchmark attributes documented below

negloglike [callable] The negative log likelihood exp(⇡(y|z)) with signature

negloglike(z) -> np.ndarray

where z is a 2D np.ndarray with shape (nvars, nsamples) and the output is a 2D np.ndarray
with shape (nsamples, 1).

variable [IndependentMarginalsVariable] Object containing information of the joint den-
sity of the inputs z which is the tensor product of independent and identically distributed
uniform variables on [0, 1].
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SENSITIVITY ANALYSIS

CHAPTER

FOUR

THEORETICAL TUTORIALS

Below is a gallery of tutorials providing detailed mathematical background on the methods in PyApprox.

This tutorials provide more detail than the set of examples found here which simply show how to use di�erent methods
with the least amount of code.

4.1 Model Analysis

Below are tutorials on various model analysis techniques

4.1.1 Sensitivity Analysis

Quantifying the sensitivity of a model output f to the model parameters z can be an important component of any
modeling exercise. This section demonstrates how to use popular local and global sensitivity analysis.

Sobol Indices

Any function f with finite variance parameterized by a set of independent variables z with ⇢(z) =
Qd

j=1 ⇢(zj) and
support � =

Nd
j=1 �j can be decomposed into a finite sum, referred to as the ANOVA decomposition,

f(z) = f̂0 +
dX

i=1

f̂i(zi) +
dX

i,j=1

f̂i,j(zi, zj) + · · ·+ f̂1,...,d(z1, . . . , zd)

or more compactly

f(z) =
X

u✓D
f̂u(zu)

where f̂u quantifies the dependence of the function f on the variable dimensions i 2 u and u = (u1, . . . , us) ✓ D =
{1, . . . , d}.

The functions f̂u can be obtained by integration, specifically

f̂u(zu) =

Z

�D\u

f(z) d⇢D\u(z)�
X

v⇢u

f̂v(zv),

where d⇢D\u(z) =
Q

j /2u d⇢j(z) and �D\u =
N

j /2u �j .

The first-order terms f̂u(zi), kuk0 = 1 represent the e�ect of a single variable acting independently of all others.
Similarly, the second-order terms kuk0 = 2 represent the contributions of two variables acting together, and so on.
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The terms of the ANOVA expansion are orthogonal, i.e. the weighted L
2 inner product (f̂u, f̂v)L2

⇢
= 0,

for u 6= v. This orthogonality facilitates the following decomposition of the variance of the function f

V [f ] =
X

u✓D
V
h
f̂u

i
, V

h
f̂u

i
=

Z

�u

f
2
u d⇢u,

where d⇢u(z) =
Q

j2u d⇢j(z).

The quantities V
h
f̂u

i
/V [f ] are referred to as Sobol indices [SMCS2001] and are frequently used to estimate the

sensitivity of f to single, or combinations of input parameters. Note that this is a global sensitivity, reflecting a variance
attribution over the range of the input parameters, as opposed to the local sensitivity reflected by a derivative. Two
popular measures of sensitivity are the main e�ect and total e�ect indices given respectively by

Si =
V
h
f̂ei

i

V [f ]
, S

T
i =

P
u2J V

h
f̂u

i

V [f ]

where ei is the unit vector, with only one non-zero entry located at the i-th element, and J = {u : i 2 u}.

Sobol indices can be computed di�erent ways. In the following we will use polynomial chaos expansions, as in
[SRESS2008].

import matplotlib.pyplot as plt

from pyapprox.benchmarks import setup_benchmark
from pyapprox.surrogates import approximate
from pyapprox import analysis
benchmark = setup_benchmark("ishigami", a=7, b=0.1)

num_samples = 1000
train_samples = benchmark.variable.rvs(num_samples)
train_vals = benchmark.fun(train_samples)

approx_res = approximate(
train_samples, train_vals, 'polynomial_chaos',
{'basis_type': 'hyperbolic_cross', 'variable': benchmark.variable,
'options': {'max_degree': 8}})

pce = approx_res.approx

res = analysis.gpc_sobol_sensitivities(pce, benchmark.variable)

Now lets compare the estimated values with the exact value

print(res.main_effects[:, 0])
print(benchmark.main_effects[:, 0])

Out:

[3.13846967e-01 4.43332345e-01 3.51182285e-07]
[0.31390519 0.44241114 0. ]

We can visualize the sensitivity indices using the following

fig, axs = plt.subplots(1, 3, figsize=(3*8, 6))
analysis.plot_main_effects(benchmark.main_effects, axs[0])
analysis.plot_total_effects(benchmark.total_effects, axs[1])
analysis.plot_interaction_values(benchmark.sobol_indices,

(continues on next page)
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Sensitivity Analysis quantifies the impact of  variable subsets on predictions



BAYESIAN INFERENCE (CALIBRATION)

PyApprox, Release 1.0.2

Bayes Rule

Given a model M(z) parameterized by a set of parameters z, our goal is to infer the parameter z from data d.

Bayes Theorem describes the probability of the parameters z conditioned on the data d is proportional to the conditional
probability of observing the data given the parameters multiplied by the probability of observing the data, that is

⇡(z | d) = ⇡(d | z)⇡(z)
⇡(d)

=
⇡(d | z)⇡(z)R

Rd ⇡(d | z)⇡(z) dz

The density ⇡(z | d) is referred to as the posterior density.

Prior

To find the posterior density we must first quantify our prior belief of the possible values of the parameter that can give
the data. We do this by specifying the probability of observing the parameter independently of observing the data.

Here we specify the prior distribution to be Normally distributed, e.g

⇡ ⇠ N(mprior,⌃prior)

Likelihood

Next we must specify the likelihood ⇡(d | z) of observing the data given a realizations of the parameter z The likelihood
answers the question: what is the distribution of the data assuming that z are the exact parameters?

The form of the likelihood is derived from an assumed relationship between the model and the data.

It is often assumed that

d = M(z) + ⌘

where ⌘ ⇠ N(0,⌃noise) is normally distributed noise with zero mean and covariance ⌃noise.

In this case the likelihood is

⇡(d|z) = 1p
(2⇡)k|⌃noise|

exp

✓
�1

2
(M(z)� d)T⌃noise

�1(M(z)� d)

◆

where |⌃noise| = det⌃noise is the determinant of ⌃noise

Exact Linear-Gaussian Inference

In the following we will generate data at a truth parameter ztruth and use Bayesian inference to estimate the probability
of any model parameter z conditioned on the observations we generated. Firstly assume M is a linear model, i.e.

M(z) = Az + b,

and as above assume that

d = M(z) + ⌘
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data data

Bayesian inference uses data 𝑑 to 
update estimates of  uncertainty



BAYESIAN INFERENCE (CALIBRATION)
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FORWARD PROPAGATION
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Forward propagation of uncertainty computes measures of prediction uncertainty 
from a set of model evaluations

When a model is computational expensive only a limited number of evaluations may 
be available.



UNCERTAINTIES EFFECT DESIGNS

Failure region at 
deterministic optimum

Reliable/Robust 
Optimum

Objective Constraint

Acceptable 
Failure Region

Deterministic 
Optimum

min
%∈'

ℒ 𝑢 𝑧⋆, 𝜉 	

𝑠. 𝑡. 	 𝒞 𝑢 𝑧⋆, 𝜉 ≤ 0
min
%∈'

𝔼 ℒ 𝑢 𝑧⋆, 𝜉 	

𝑠. 𝑡. 	 ℙ 𝒞 𝑢 𝑧, 𝜉 ≤ 𝛿 − 𝜖 ≤ 0

Compute design at nominal values 𝑧⋆
Deterministic design Design under uncertainty

Create design that is robust to uncertainty



END TO END WORKFLOW

Model-form 
uncertainty

Inference

Propagation

Parameter
uncertainty

Inference

data data

data data

Design Under
Uncertainty

Model
uncertainty

When a model is computational expensive only a limited number of evaluations may 
be available. 

Efficient methods are needed to reduce the 
computational cost



MULTI-FIDELITY UQ
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NUMERICAL DISCRETIZATION IMPACTS ACCURACY

PyApprox, Release 1.0.2

noiseless_obs [np.ndarray (nobs)] The solution u(xl) at the L locations {xl}Ll=1 determined by
obs_indices

obs [np.ndarray (nobs)] The noisy observations u(xl) + ✏l

true_sample [np.ndarray (nkle_vars)] The KLE coe�cients used to generate the noisy observa-
tions

obs_indices [np.ndarray (nobs)] The indices of the collocation mesh at which observations are
collected. If not specified the indices will be chosen randomly ensuring that no indices as-
sociated with boundary segments are selected.

obs_fun [callable] The function used to generate the noisless observations with signature

obs_fun(z) -> np.ndarray

where z is a 2D np.ndarray with shape (nvars, nsamples) and the output is a 2D np.ndarray
with shape (nsamples, nobs).

KLE [MeshKLE] KLE object containing the attributes needed to evaluate the KLE

Examples

>>> from pyapprox_dev.benchmarks.benchmarks import setup_benchmark
>>> benchmark = setup_benchmark('advection_diffusion_kle_inversion', nvars=2)
>>> print(benchmark.keys())
dict_keys(['fun', 'variable'])

setup_multi_index_advection_di�usion_benchmark

pyapprox.benchmarks.setup_multi_index_advection_diffusion_benchmark(kle_nvars=2,
kle_length_scale=0.5,
kle_stdev=1,
max_eval_concurrency=1,
time_scenario=None,
functional=None,
config_values=None,
source_loc=[0.25, 0.75],
source_scale=0.1,
source_amp=100.0,
vel_vec=[1.0, 0.0],
kle_mean_field=0)

This benchmark is used to test methods for forward propagation of uncertainty. The forward simulation model
is the transient advection-di�usion model

@u

@t
(x, t, z) = r · [k(x, z)ru(x, t, z)]�r · (vu(x, t, z)) + g(x, t)(x, t, z) 2 D ⇥ [0, 1]⇥ �

B(x, t, z) = 0(x, t, z) 2 @D ⇥ [0, 1]⇥ �

u(x, t, z) = u0(x, z)(x, t, z) 2 D ⇥ {t = 0}⇥ �

where

g(x, t) =
100

2⇡0.12
exp

✓
� |x� [0.25, 0.75]>|2

2 · 0.12

◆
� ssink

2⇡h2
sink

exp
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2h2
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◆

and B(x, t, z) enforces Robin boundary conditions, i.e.

K(x, z)ru(x, t, z) · n� 0.1u(x, t, z) = 0 on @D
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Transient Advection diffusion

S
Accuracy of  QoI f(z) depends on numerical discretization

PyApprox, Release 1.0.2

As with the pyapprox.benchmarks.setup_advection_diffusion_kle_inversion_benchmark() we
parameterize the uncertain di�usivity with a Karhunen Loeve Expansion (KLE)

k(x, z) = exp

 
k0 +

DX

d=1

p
�d d(x)zd

!
.

If no initial condition is provided by the user then the governing equations in pyapprox.benchmarks.
setup_advection_diffusion_kle_inversion_benchmark() is used to create an initial condition, where
the forcing is set to be the first term of g here. I.e. the steady state solution before the second term of g is used
to remove the concentration u from the domain.

The quantity of interest f(z) is the integral of the final solution in the subdomain S = [0.75, 1]⇥ [0, 0.25], i.e.

f(z) =

Z

S
u(x, T, z)dx

This model can be evaluated using di�erent numerical discreizations that control the two spatial mesh reso-
lutions and the timestep. The model is evaluated by specifying the random variables and the three numerical
(configuration) variables.

If not time_scenario is provided. The QoI from the steady state solution is returned.

This benchmark can be modified by changing the default keyword arguments if necessary.

Parameters
nvars [integer] The number of variables of the KLE

kle_length_scale [float] The correlation length Lc of the covariance kernel

kle_sigma [float] The standard deviation of the KLE kernel

max_eval_concurrency [integer] The maximum number of simulations that can be run in par-
allel. Should be no more than the maximum number of cores on the computer being used

time_scenario [dict] Options defining the transient simulation. If None a steady state problem
will be solved If True the default time scenario will be used which corresponds to specifying
the dictionary

time_scenario = {
"final_time": 0.2,
"butcher_tableau": "im_crank2",
"deltat": 0.1, # default will be overwritten
"init_sol_fun": None,
"sink": None
}

Respectively, the entries of sink are ssink, hsink, xsink, e.g. [50, 0.1, [0.75, 0.75]]. If
None then the sink will be turned o�. init_sol is a callable function with signature
init_sol_fun(x) -> np.ndarray (nx, 1) where x is np.ndarray (nphys_vars, nx) are
physical coordinates in the mesh. butcher_tableau specifies the time-stepping scheme
which can be either im_beuler1 or im_crank2. final_time specifies T .

functional [callable] Function used to compute the Quantities of interest with signature

functional(sol, z) -> float

Here sol: torch.tensor (ndof) is the solution at the mesh points and z -> np.
ndarray(nkle_vars, 1) is the value of the KLE coe�cients that produced sol. If None
the subdomain intergral of sol at the final time will be used as defined above.
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Fig. 10: A multi-level hierarchy formed by increasing mesh discretizations.

An observation

Multilevel collocation was introduced to reduce the cost of building surrogates of models when a one-dimensional
hierarchy of numerical discretizations of a model f↵(z),↵ = 0, 1, . . . are available such that

kf � f↵k  kf � f↵0k

if ↵0
< ↵. and the work W↵ increases with fidelity.

Multilevel collocation can be implemented by modifying sparse grid interplation developed for a single model fidelity.
The modification is based on the observation that the discrepancy between two consecutive models and the lower-
fidelity model will be computationally cheaper to approximate than higher-fidelity model.

The following code demonstrates this observation for a simple 1D model with two numerical discretizations

f↵ = cos(⇡(z + 1)/2 + ✏↵)

import numpy as np

from functools import partial
from scipy import stats
from pyapprox.variables.joint import IndependentMarginalsVariable
import matplotlib.pyplot as plt

from pyapprox.surrogates.approximate import adaptive_approximate
from pyapprox.surrogates.interp.adaptive_sparse_grid import (

tensor_product_refinement_indicator, isotropic_refinement_indicator,
variance_refinement_indicator)

from pyapprox.variables.transforms import ConfigureVariableTransformation
(continues on next page)
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Gorodetsky et al. MFNets: Multi-fidelity data-driven networks for bayesian learning and prediction, International 
Journal for Uncertainty Quantification, 2020.
A. Gorodetsky et al. MFNets: Learning network representations for multifidelity surrogate modeling, 2020.

https://www.alexgorodetsky.com/static/papers/gorodetsky_jakeman_geraci_eldred_mfnets_2020.pdf
https://www.alexgorodetsky.com/static/papers/gorodetsky_jakeman_geraci_eldred_mfnets_2020.pdf
https://res.arxiv.org/abs/2008.02672
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In a series of tutorials starting with Control Variate Monte Carlo we show how to produce an unbiased estimator with
small variance using both these models.

Total running time of the script: ( 0 minutes 0.601 seconds)

4.3.2 Control Variate Monte Carlo

This tutorial describes how to implement and deploy control variate Monte Carlo sampling to compute the expectations
of the output of a high-fidelity model using a lower-fidelity model with a known mean. The information presented here
builds upon the tutorial sphx_glr_auto_tutorials_foundations_plot_monte_carlo.py.

Let us introduce a model Q with known mean µ. We can use this model to estimate the mean of Q↵ via
[LMWOR1982]

QCV
↵,N = Q↵,N + ⌘ (Q,N � µ)

Here ⌘ is a free parameter which can be optimized to the reduce the variance of this so called control variate estimator,
which is given by
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◆
.

The first line follows from the variance of sums of random variables.

We can measure the change in MSE bys using the control variate estimator, by looking at the ratio of the CVMC and
MC estimator variances. The variance reduction ratio is
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The variance reduction can be minimized by setting its gradient to zero and solving for ⌘, i.e.
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Thus if a two highly correlated models (one with a known mean) are available then we can drastically reduce the MSE
of our estimate of the unknown mean.
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Total running time of the script: ( 0 minutes 0.703 seconds)

4.3 Surrogates

4.3.1 Tensor-product Barycentric Interpolation

Many simulation models are extremely computationally expensive such that adequately understanding their behaviour
and quantifying uncertainty can be computationally intractable for any of the aforementioned techniques. Various
methods have been developed to produce surrogates of the model response to uncertain parameters, the most e�cient
are goal-oriented in nature and target very specific uncertainty measures.

Generally speaking surrogates are built using a “small” number of model simulations and are then substituted in place of
the expensive simulation models in future analysis. Some of the most popular surrogate types include polynomial chaos
expansions (PCE) [XKSISC2002], Gaussian processes (GP) [RWMIT2006], and sparse grids (SG) [BGAN2004].

Reduced order models (e.g. [SFIJNME2017]) can also be used to construct surrogates and have been applied success-
fully for UQ on many applications. These methods do not construct response surface approximations, but rather solve
the governing equations on a reduced basis. PyApprox does not currently implement reduced order modeling, however
the modeling analyis tools found in PyApprox can easily be applied to assess or design systems based on reduced order
models.

The use of surrogates for model analysis consists of two phases: (1) construction; and (2) post-processing.

Construction

In this section we show how to construct a surrogate using tensor-product Lagrange interpolation.

Tensor-product Lagrange interpolation

Let f̂↵,�(z) be an M-point tensor-product interpolant of the function f̂↵. This interpolant is a weighted linear combi-
nation of tensor-product of univariate Lagrange polynomials

�i,j(zi) =

m�iY

k=1,k 6=j

zi � z
(k)
i

z
(j)
i � z

(k)
i

, i 2 [d],

defined on a set of univariate points z(j)i , j 2 [m�i ] Specifically the multivariate interpolant is given by

f̂↵,�(z) =
X

j�

f̂↵(z
(j))

Y

i2[d]

�i,ji(zi).

The partial ordering j  � is true if all the component wise conditions are true.

Constructing the interpolant requires evaluating the function f̂↵ on the grid of points

Z� =
dO

i=1

Zi
�i

=
⇥
z(1) · · · z(M�)

⇤
2 Rd⇥M�

We denote the resulting function evaluations by

F↵,� = f̂↵(Z�) =
⇥
f̂↵(z(1)) · · · f̂↵(z(M�))

⇤T 2 RM�⇥q
,
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where the number of points in the grid is M� =
Q

i2[d] m�i

It is often reasonable to assume that, for any z, the cost of each simulation is constant for a given ↵. So letting W↵

denote the cost of a single simulation, we can write the total cost of evaluating the interpolant W↵,� = W↵M�. Here
we have assumed that the computational e�ort to compute the interpolant once data has been obtained is negligible,
which is true for su�ciently expensive models f̂↵. Here we will use the nested Clenshaw-Curtis points

z
(j)
i = cos

✓
(j � 1)⇡

m�i

◆
, j = 1, . . . ,m�i

to define the univariate Lagrange polynomials. The number of points m(l) of this rule grows exponentially with the
level l, specifically m(0) = 1 and m(l) = 2l + 1 for l � 1. The univariate Clenshaw-Curtis points, the tensor-product
grid Z�, and two multivariate Lagrange polynomials with their corresponding univariate Lagrange polynomials are
shown below for � = (2, 2).

import numpy as np

from pyapprox.util.utilities import cartesian_product
from pyapprox.util.visualization import get_meshgrid_function_data, plt
from pyapprox.surrogates.interp.barycentric_interpolation import (

plot_tensor_product_lagrange_basis_2d,
tensor_product_barycentric_lagrange_interpolation)

from pyapprox.util.utilities import get_tensor_product_quadrature_rule
from pyapprox.surrogates.orthopoly.quadrature import clenshaw_curtis_pts_wts_1D

quad_rule = clenshaw_curtis_pts_wts_1D
fig = plt.figure(figsize=(2*8, 6))
ax = fig.add_subplot(1, 2, 1, projection='3d')
level = 2
ii, jj = 1, 1
plot_tensor_product_lagrange_basis_2d(quad_rule, level, ii, jj, ax)

ax = fig.add_subplot(1, 2, 2, projection='3d')
level = 2
ii, jj = 1, 3
ii = 1
plot_tensor_product_lagrange_basis_2d(quad_rule, level, ii, jj, ax)

To construct a surrogate using tensor product interpolation we simply multiply all such basis functions by the value of
the function f↵ evaluated at the corresponding interpolation point. The following uses tensor product interpolation to
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Tensor product Lagrange interpolation is based on one 
dimensional interpolants 

Note other basis functions can be used, e.g. piecewise 
polynomials.
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where Ik is a set of concatenated multi-indices [↵,�].

3.3 Characterizing the coupling variables

Constructing a surrogate fk,Ik(uk) of a component requires specifying the ranges of the coupling variables.
The coupling variables ⇠k are functions of the random system variables z (either explicitly or via their
dependence on other components) and are thus themselves random, but their distribution are unknown
prior to simulation. Following [27, 9], we construct an approximation of a component over an estimated
range ⌅̂k of the input variables with respect to a simpler probability measure ⌫.

The following lemma characterizes the accuracy in a !-weighted norm given an approximation that is
accurate in the ⌫-weighted norm.

Lemma 3.1 (Strong convergence [9]). Let ⌫ : ⌅̂ ! R and ! : ⌅ ! R denote two densities which satisfy

� = 1 �
Z

⌅\⌅̂
!(u)du

Given an approximation f⌫ of f with approximation error ✏, i.e.,

✏ := kf � f⌫kLp
⌫(⌅), p � 1, (7)

then, if f is bounded with Cf = kfkL1(⌅), it holds that

kf � f⌫kLp
!(⌅)  C1/p

r ✏ + Cf�
1/p, provided Cr := max

u2⌅[⌅̂

!(u)

⌫(u)
< 1. (8)

This lemma suggests that treating the coupling variables as variables with an unknown distribution

Figure 4: Lagrange polynomial interpolants
of the Runge function f(u) = (1 + 25u2)�1

constructed using five function evaluations
on di↵erent intervals ⌅̂i, i = 1, 2, 3.

does not a↵ect the rate at which the error converges in a com-
ponent surrogate. The second term in (8) comes from truncat-
ing the tails of the true distribution of the coupling variables.
In many cases, the coupling variables are bounded and so this
term can be eliminated by using conservative estimates of the
range. For unbounded domains, the tail truncation error can
be made arbitrarily small by choosing a su�ciently large range
⌅̂k.

In the following, we set ⌫ to be the PDF of the uniform
distribution over a pre-defined range ⌅̂k. For some integrated
systems, the ranges can be determined from analysis of the
system components. However, for other systems, the ranges
of the coupling variables must be estimated. Figure 4 demon-
strates the importance of correctly estimating the range; un-
derestimating the range can lead to large approximation errors
outside ⌅̂.

In this paper, we use an adaptive algorithm, presented in
Section 4.3, to estimate the range of the coupling variables. We
investigate the performance of this algorithm and the impact of over-estimating and under-estimating the
range of the coupling variables in Section 5.1.1.

3.4 Evaluating system-level QoI using component surrogates

Once surrogates of each component have been constructed, they can be combined to make predictions of
system-level QoI using the procedures discussed in Section 2. We use the functional

Gz,J : (f1,I1 , . . . , fK,IK ) 7! f(z)

to represent the evaluation of the integrated system at a sample of z. Here J = {I1, . . . , IK} are the
index sets associated with each component surrogates fk,Ik k = 1, . . . ,K. The accuracy of the system-level
QoI, qJ = RyGz,J [f1,I1 , . . . , fK,IK ], obtained depends on the accuracy of each component surrogate. In
this section, we provide theoretical bounds on the error for systems involving feed-forward and feedback
coupling.

8 Friedman, Jakeman, Eldred, Tamellini, Gorodetsky, Allaire

where Ik is a set of concatenated multi-indices [↵,�].

3.3 Characterizing the coupling variables

Constructing a surrogate fk,Ik(uk) of a component requires specifying the ranges of the coupling variables.
The coupling variables ⇠k are functions of the random system variables z (either explicitly or via their
dependence on other components) and are thus themselves random, but their distribution are unknown
prior to simulation. Following [27, 9], we construct an approximation of a component over an estimated
range ⌅̂k of the input variables with respect to a simpler probability measure ⌫.

The following lemma characterizes the accuracy in a !-weighted norm given an approximation that is
accurate in the ⌫-weighted norm.

Lemma 3.1 (Strong convergence [9]). Let ⌫ : ⌅̂ ! R and ! : ⌅ ! R denote two densities which satisfy

� = 1 �
Z

⌅\⌅̂
!(u)du

Given an approximation f⌫ of f with approximation error ✏, i.e.,

✏ := kf � f⌫kLp
⌫(⌅), p � 1, (7)

then, if f is bounded with Cf = kfkL1(⌅), it holds that

kf � f⌫kLp
!(⌅)  C1/p

r ✏ + Cf�
1/p, provided Cr := max

u2⌅[⌅̂

!(u)

⌫(u)
< 1. (8)

This lemma suggests that treating the coupling variables as variables with an unknown distribution

Figure 4: Lagrange polynomial interpolants
of the Runge function f(u) = (1 + 25u2)�1

constructed using five function evaluations
on di↵erent intervals ⌅̂i, i = 1, 2, 3.

does not a↵ect the rate at which the error converges in a com-
ponent surrogate. The second term in (8) comes from truncat-
ing the tails of the true distribution of the coupling variables.
In many cases, the coupling variables are bounded and so this
term can be eliminated by using conservative estimates of the
range. For unbounded domains, the tail truncation error can
be made arbitrarily small by choosing a su�ciently large range
⌅̂k.

In the following, we set ⌫ to be the PDF of the uniform
distribution over a pre-defined range ⌅̂k. For some integrated
systems, the ranges can be determined from analysis of the
system components. However, for other systems, the ranges
of the coupling variables must be estimated. Figure 4 demon-
strates the importance of correctly estimating the range; un-
derestimating the range can lead to large approximation errors
outside ⌅̂.

In this paper, we use an adaptive algorithm, presented in
Section 4.3, to estimate the range of the coupling variables. We
investigate the performance of this algorithm and the impact of over-estimating and under-estimating the
range of the coupling variables in Section 5.1.1.

3.4 Evaluating system-level QoI using component surrogates

Once surrogates of each component have been constructed, they can be combined to make predictions of
system-level QoI using the procedures discussed in Section 2. We use the functional

Gz,J : (f1,I1 , . . . , fK,IK ) 7! f(z)

to represent the evaluation of the integrated system at a sample of z. Here J = {I1, . . . , IK} are the
index sets associated with each component surrogates fk,Ik k = 1, . . . ,K. The accuracy of the system-level
QoI, qJ = RyGz,J [f1,I1 , . . . , fK,IK ], obtained depends on the accuracy of each component surrogate. In
this section, we provide theoretical bounds on the error for systems involving feed-forward and feedback
coupling.

8 Friedman, Jakeman, Eldred, Tamellini, Gorodetsky, Allaire

where Ik is a set of concatenated multi-indices [↵,�].

3.3 Characterizing the coupling variables

Constructing a surrogate fk,Ik(uk) of a component requires specifying the ranges of the coupling variables.
The coupling variables ⇠k are functions of the random system variables z (either explicitly or via their
dependence on other components) and are thus themselves random, but their distribution are unknown
prior to simulation. Following [27, 9], we construct an approximation of a component over an estimated
range ⌅̂k of the input variables with respect to a simpler probability measure ⌫.

The following lemma characterizes the accuracy in a !-weighted norm given an approximation that is
accurate in the ⌫-weighted norm.

Lemma 3.1 (Strong convergence [9]). Let ⌫ : ⌅̂ ! R and ! : ⌅ ! R denote two densities which satisfy

� = 1 �
Z

⌅\⌅̂
!(u)du

Given an approximation f⌫ of f with approximation error ✏, i.e.,

✏ := kf � f⌫kLp
⌫(⌅), p � 1, (7)

then, if f is bounded with Cf = kfkL1(⌅), it holds that

kf � f⌫kLp
!(⌅)  C1/p

r ✏ + Cf�
1/p, provided Cr := max

u2⌅[⌅̂

!(u)

⌫(u)
< 1. (8)

This lemma suggests that treating the coupling variables as variables with an unknown distribution

Figure 4: Lagrange polynomial interpolants
of the Runge function f(u) = (1 + 25u2)�1

constructed using five function evaluations
on di↵erent intervals ⌅̂i, i = 1, 2, 3.

does not a↵ect the rate at which the error converges in a com-
ponent surrogate. The second term in (8) comes from truncat-
ing the tails of the true distribution of the coupling variables.
In many cases, the coupling variables are bounded and so this
term can be eliminated by using conservative estimates of the
range. For unbounded domains, the tail truncation error can
be made arbitrarily small by choosing a su�ciently large range
⌅̂k.

In the following, we set ⌫ to be the PDF of the uniform
distribution over a pre-defined range ⌅̂k. For some integrated
systems, the ranges can be determined from analysis of the
system components. However, for other systems, the ranges
of the coupling variables must be estimated. Figure 4 demon-
strates the importance of correctly estimating the range; un-
derestimating the range can lead to large approximation errors
outside ⌅̂.

In this paper, we use an adaptive algorithm, presented in
Section 4.3, to estimate the range of the coupling variables. We
investigate the performance of this algorithm and the impact of over-estimating and under-estimating the
range of the coupling variables in Section 5.1.1.

3.4 Evaluating system-level QoI using component surrogates

Once surrogates of each component have been constructed, they can be combined to make predictions of
system-level QoI using the procedures discussed in Section 2. We use the functional

Gz,J : (f1,I1 , . . . , fK,IK ) 7! f(z)

to represent the evaluation of the integrated system at a sample of z. Here J = {I1, . . . , IK} are the
index sets associated with each component surrogates fk,Ik k = 1, . . . ,K. The accuracy of the system-level
QoI, qJ = RyGz,J [f1,I1 , . . . , fK,IK ], obtained depends on the accuracy of each component surrogate. In
this section, we provide theoretical bounds on the error for systems involving feed-forward and feedback
coupling.

8 Friedman, Jakeman, Eldred, Tamellini, Gorodetsky, Allaire

where Ik is a set of concatenated multi-indices [↵,�].

3.3 Characterizing the coupling variables

Constructing a surrogate fk,Ik(uk) of a component requires specifying the ranges of the coupling variables.
The coupling variables ⇠k are functions of the random system variables z (either explicitly or via their
dependence on other components) and are thus themselves random, but their distribution are unknown
prior to simulation. Following [27, 9], we construct an approximation of a component over an estimated
range ⌅̂k of the input variables with respect to a simpler probability measure ⌫.

The following lemma characterizes the accuracy in a !-weighted norm given an approximation that is
accurate in the ⌫-weighted norm.

Lemma 3.1 (Strong convergence [9]). Let ⌫ : ⌅̂ ! R and ! : ⌅ ! R denote two densities which satisfy

� = 1 �
Z

⌅\⌅̂
!(u)du

Given an approximation f⌫ of f with approximation error ✏, i.e.,

✏ := kf � f⌫kLp
⌫(⌅), p � 1, (7)

then, if f is bounded with Cf = kfkL1(⌅), it holds that

kf � f⌫kLp
!(⌅)  C1/p

r ✏ + Cf�
1/p, provided Cr := max

u2⌅[⌅̂

!(u)

⌫(u)
< 1. (8)

This lemma suggests that treating the coupling variables as variables with an unknown distribution

Figure 4: Lagrange polynomial interpolants
of the Runge function f(u) = (1 + 25u2)�1

constructed using five function evaluations
on di↵erent intervals ⌅̂i, i = 1, 2, 3.

does not a↵ect the rate at which the error converges in a com-
ponent surrogate. The second term in (8) comes from truncat-
ing the tails of the true distribution of the coupling variables.
In many cases, the coupling variables are bounded and so this
term can be eliminated by using conservative estimates of the
range. For unbounded domains, the tail truncation error can
be made arbitrarily small by choosing a su�ciently large range
⌅̂k.

In the following, we set ⌫ to be the PDF of the uniform
distribution over a pre-defined range ⌅̂k. For some integrated
systems, the ranges can be determined from analysis of the
system components. However, for other systems, the ranges
of the coupling variables must be estimated. Figure 4 demon-
strates the importance of correctly estimating the range; un-
derestimating the range can lead to large approximation errors
outside ⌅̂.

In this paper, we use an adaptive algorithm, presented in
Section 4.3, to estimate the range of the coupling variables. We
investigate the performance of this algorithm and the impact of over-estimating and under-estimating the
range of the coupling variables in Section 5.1.1.

3.4 Evaluating system-level QoI using component surrogates

Once surrogates of each component have been constructed, they can be combined to make predictions of
system-level QoI using the procedures discussed in Section 2. We use the functional

Gz,J : (f1,I1 , . . . , fK,IK ) 7! f(z)

to represent the evaluation of the integrated system at a sample of z. Here J = {I1, . . . , IK} are the
index sets associated with each component surrogates fk,Ik k = 1, . . . ,K. The accuracy of the system-level
QoI, qJ = RyGz,J [f1,I1 , . . . , fK,IK ], obtained depends on the accuracy of each component surrogate. In
this section, we provide theoretical bounds on the error for systems involving feed-forward and feedback
coupling.

8 Friedman, Jakeman, Eldred, Tamellini, Gorodetsky, Allaire

where Ik is a set of concatenated multi-indices [↵,�].

3.3 Characterizing the coupling variables

Constructing a surrogate fk,Ik(uk) of a component requires specifying the ranges of the coupling variables.
The coupling variables ⇠k are functions of the random system variables z (either explicitly or via their
dependence on other components) and are thus themselves random, but their distribution are unknown
prior to simulation. Following [27, 9], we construct an approximation of a component over an estimated
range ⌅̂k of the input variables with respect to a simpler probability measure ⌫.

The following lemma characterizes the accuracy in a !-weighted norm given an approximation that is
accurate in the ⌫-weighted norm.

Lemma 3.1 (Strong convergence [9]). Let ⌫ : ⌅̂ ! R and ! : ⌅ ! R denote two densities which satisfy

� = 1 �
Z

⌅\⌅̂
!(u)du

Given an approximation f⌫ of f with approximation error ✏, i.e.,

✏ := kf � f⌫kLp
⌫(⌅), p � 1, (7)

then, if f is bounded with Cf = kfkL1(⌅), it holds that

kf � f⌫kLp
!(⌅)  C1/p

r ✏ + Cf�
1/p, provided Cr := max

u2⌅[⌅̂

!(u)

⌫(u)
< 1. (8)

This lemma suggests that treating the coupling variables as variables with an unknown distribution

Figure 4: Lagrange polynomial interpolants
of the Runge function f(u) = (1 + 25u2)�1

constructed using five function evaluations
on di↵erent intervals ⌅̂i, i = 1, 2, 3.

does not a↵ect the rate at which the error converges in a com-
ponent surrogate. The second term in (8) comes from truncat-
ing the tails of the true distribution of the coupling variables.
In many cases, the coupling variables are bounded and so this
term can be eliminated by using conservative estimates of the
range. For unbounded domains, the tail truncation error can
be made arbitrarily small by choosing a su�ciently large range
⌅̂k.

In the following, we set ⌫ to be the PDF of the uniform
distribution over a pre-defined range ⌅̂k. For some integrated
systems, the ranges can be determined from analysis of the
system components. However, for other systems, the ranges
of the coupling variables must be estimated. Figure 4 demon-
strates the importance of correctly estimating the range; un-
derestimating the range can lead to large approximation errors
outside ⌅̂.

In this paper, we use an adaptive algorithm, presented in
Section 4.3, to estimate the range of the coupling variables. We
investigate the performance of this algorithm and the impact of over-estimating and under-estimating the
range of the coupling variables in Section 5.1.1.

3.4 Evaluating system-level QoI using component surrogates

Once surrogates of each component have been constructed, they can be combined to make predictions of
system-level QoI using the procedures discussed in Section 2. We use the functional

Gz,J : (f1,I1 , . . . , fK,IK ) 7! f(z)

to represent the evaluation of the integrated system at a sample of z. Here J = {I1, . . . , IK} are the
index sets associated with each component surrogates fk,Ik k = 1, . . . ,K. The accuracy of the system-level
QoI, qJ = RyGz,J [f1,I1 , . . . , fK,IK ], obtained depends on the accuracy of each component surrogate. In
this section, we provide theoretical bounds on the error for systems involving feed-forward and feedback
coupling.

8 Friedman, Jakeman, Eldred, Tamellini, Gorodetsky, Allaire

where Ik is a set of concatenated multi-indices [↵,�].

3.3 Characterizing the coupling variables

Constructing a surrogate fk,Ik(uk) of a component requires specifying the ranges of the coupling variables.
The coupling variables ⇠k are functions of the random system variables z (either explicitly or via their
dependence on other components) and are thus themselves random, but their distribution are unknown
prior to simulation. Following [27, 9], we construct an approximation of a component over an estimated
range ⌅̂k of the input variables with respect to a simpler probability measure ⌫.

The following lemma characterizes the accuracy in a !-weighted norm given an approximation that is
accurate in the ⌫-weighted norm.

Lemma 3.1 (Strong convergence [9]). Let ⌫ : ⌅̂ ! R and ! : ⌅ ! R denote two densities which satisfy

� = 1 �
Z

⌅\⌅̂
!(u)du

Given an approximation f⌫ of f with approximation error ✏, i.e.,

✏ := kf � f⌫kLp
⌫(⌅), p � 1, (7)

then, if f is bounded with Cf = kfkL1(⌅), it holds that

kf � f⌫kLp
!(⌅)  C1/p

r ✏ + Cf�
1/p, provided Cr := max

u2⌅[⌅̂

!(u)

⌫(u)
< 1. (8)

This lemma suggests that treating the coupling variables as variables with an unknown distribution

Figure 4: Lagrange polynomial interpolants
of the Runge function f(u) = (1 + 25u2)�1

constructed using five function evaluations
on di↵erent intervals ⌅̂i, i = 1, 2, 3.

does not a↵ect the rate at which the error converges in a com-
ponent surrogate. The second term in (8) comes from truncat-
ing the tails of the true distribution of the coupling variables.
In many cases, the coupling variables are bounded and so this
term can be eliminated by using conservative estimates of the
range. For unbounded domains, the tail truncation error can
be made arbitrarily small by choosing a su�ciently large range
⌅̂k.

In the following, we set ⌫ to be the PDF of the uniform
distribution over a pre-defined range ⌅̂k. For some integrated
systems, the ranges can be determined from analysis of the
system components. However, for other systems, the ranges
of the coupling variables must be estimated. Figure 4 demon-
strates the importance of correctly estimating the range; un-
derestimating the range can lead to large approximation errors
outside ⌅̂.

In this paper, we use an adaptive algorithm, presented in
Section 4.3, to estimate the range of the coupling variables. We
investigate the performance of this algorithm and the impact of over-estimating and under-estimating the
range of the coupling variables in Section 5.1.1.

3.4 Evaluating system-level QoI using component surrogates

Once surrogates of each component have been constructed, they can be combined to make predictions of
system-level QoI using the procedures discussed in Section 2. We use the functional

Gz,J : (f1,I1 , . . . , fK,IK ) 7! f(z)

to represent the evaluation of the integrated system at a sample of z. Here J = {I1, . . . , IK} are the
index sets associated with each component surrogates fk,Ik k = 1, . . . ,K. The accuracy of the system-level
QoI, qJ = RyGz,J [f1,I1 , . . . , fK,IK ], obtained depends on the accuracy of each component surrogate. In
this section, we provide theoretical bounds on the error for systems involving feed-forward and feedback
coupling.



Interpolants for an oscillatory function parameterized by a Beta(10,10) random variable

The constant 𝐶, of  convergence significantly impacts error



TENSOR-PRODUCT INTERPOLATION

PyApprox, Release 1.0.2

References

Total running time of the script: ( 0 minutes 0.703 seconds)

4.3 Surrogates

4.3.1 Tensor-product Barycentric Interpolation

Many simulation models are extremely computationally expensive such that adequately understanding their behaviour
and quantifying uncertainty can be computationally intractable for any of the aforementioned techniques. Various
methods have been developed to produce surrogates of the model response to uncertain parameters, the most e�cient
are goal-oriented in nature and target very specific uncertainty measures.

Generally speaking surrogates are built using a “small” number of model simulations and are then substituted in place of
the expensive simulation models in future analysis. Some of the most popular surrogate types include polynomial chaos
expansions (PCE) [XKSISC2002], Gaussian processes (GP) [RWMIT2006], and sparse grids (SG) [BGAN2004].

Reduced order models (e.g. [SFIJNME2017]) can also be used to construct surrogates and have been applied success-
fully for UQ on many applications. These methods do not construct response surface approximations, but rather solve
the governing equations on a reduced basis. PyApprox does not currently implement reduced order modeling, however
the modeling analyis tools found in PyApprox can easily be applied to assess or design systems based on reduced order
models.

The use of surrogates for model analysis consists of two phases: (1) construction; and (2) post-processing.

Construction

In this section we show how to construct a surrogate using tensor-product Lagrange interpolation.

Tensor-product Lagrange interpolation

Let f̂↵,�(z) be an M-point tensor-product interpolant of the function f̂↵. This interpolant is a weighted linear combi-
nation of tensor-product of univariate Lagrange polynomials
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defined on a set of univariate points z(j)i , j 2 [m�i ] Specifically the multivariate interpolant is given by
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(j))
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The partial ordering j  � is true if all the component wise conditions are true.

Constructing the interpolant requires evaluating the function f̂↵ on the grid of points
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dO

i=1

Zi
�i

=
⇥
z(1) · · · z(M�)
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We denote the resulting function evaluations by
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⇥
f̂↵(z(1)) · · · f̂↵(z(M�))
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F↵,� = f̂↵(Z�) =
⇥
f̂↵(z(1)) · · · f̂↵(z(M�))

⇤T 2 RM�⇥q
,
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where the number of points in the grid is M� =
Q

i2[d] m�i

It is often reasonable to assume that, for any z, the cost of each simulation is constant for a given ↵. So letting W↵

denote the cost of a single simulation, we can write the total cost of evaluating the interpolant W↵,� = W↵M�. Here
we have assumed that the computational e�ort to compute the interpolant once data has been obtained is negligible,
which is true for su�ciently expensive models f̂↵. Here we will use the nested Clenshaw-Curtis points

z
(j)
i = cos

✓
(j � 1)⇡

m�i

◆
, j = 1, . . . ,m�i

to define the univariate Lagrange polynomials. The number of points m(l) of this rule grows exponentially with the
level l, specifically m(0) = 1 and m(l) = 2l + 1 for l � 1. The univariate Clenshaw-Curtis points, the tensor-product
grid Z�, and two multivariate Lagrange polynomials with their corresponding univariate Lagrange polynomials are
shown below for � = (2, 2).

import numpy as np

from pyapprox.util.utilities import cartesian_product
from pyapprox.util.visualization import get_meshgrid_function_data, plt
from pyapprox.surrogates.interp.barycentric_interpolation import (

plot_tensor_product_lagrange_basis_2d,
tensor_product_barycentric_lagrange_interpolation)

from pyapprox.util.utilities import get_tensor_product_quadrature_rule
from pyapprox.surrogates.orthopoly.quadrature import clenshaw_curtis_pts_wts_1D

quad_rule = clenshaw_curtis_pts_wts_1D
fig = plt.figure(figsize=(2*8, 6))
ax = fig.add_subplot(1, 2, 1, projection='3d')
level = 2
ii, jj = 1, 1
plot_tensor_product_lagrange_basis_2d(quad_rule, level, ii, jj, ax)

ax = fig.add_subplot(1, 2, 2, projection='3d')
level = 2
ii, jj = 1, 3
ii = 1
plot_tensor_product_lagrange_basis_2d(quad_rule, level, ii, jj, ax)

To construct a surrogate using tensor product interpolation we simply multiply all such basis functions by the value of
the function f↵ evaluated at the corresponding interpolation point. The following uses tensor product interpolation to
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grid

With number of  points 

And model evaluations
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The performance of  Lagrange-based tensor products 
depends on the smoothness 𝑠	and the dimension of  
the target function
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The error in the tensor product interpolant is given by

kf↵ � f↵,�kL1(�)  Cd,sN
�s/d
�

where f↵ has continuous mixed derivatives of order s.

Post-processing

Once a surrogate has been constructed it can be used for many di�erent purposes. For example one can use it to estimate
moments, perform sensitivity analysis, or simply approximate the evaluation of the expensive model at new locations
where expensive simulation model data is not available.

To use the surrogate for computing moments we simply draw realizations of the input random variables z and evaluate
the surrogate at those samples. We can approximate the mean of the expensive simluation model as the average of the
surrogate values at the random samples.

We know from Monte Carlo Quadrature that the error in the Monte carlo estimate of the mean using the surrogate is

E
h
(Q↵ � E [Q])2

i
= N

�1V [Q↵] + (E [Q↵]� E [Q])2

 N
�1V [Q↵] + Cd,sN

�s/d
�

Because a surrogate is inexpensive to evaluate the first term can be driven to zero so that only the bias remains. Thus
the error in the Monte Carlo estimate of the mean using the surrogate is dominated by the error in the surrogate. If this
error can be reduced more quickly than frac{N^{-1}} (as is the case for low-dimensional tensor-product interpolation)
then using surrogates for computing moments is very e�ective.
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Returns
benchmark

[pyapprox.benchmarks.Benchmark] Object containing the benchmark attributes

fun
[callable] The function being analyzed

variable
[JointVariable] Class containing information about each of the nvars inputs to fun

mean: np.ndarray (nvars)
The mean of the function with respect to the PDF of var

Notes

The six Genz test function are:

Oscillatory (‘oscillatory’)

f(z) = cos

 
2⇡w1 +

DX

d=1

cdzd

!

Product Peak (‘product_peak’)

f(z) =
DY

d=1

�
c
�2
d + (zd � wd)

2
��1

Corner Peak (‘corner_peak’)

f(z) =

 
1 +

DX

d=1

cdzd

!�(D+1)

Gaussian Peak (‘gaussian’)

f(z) = exp

 
�

DX

d=1

c
2
d(zd � wd)

2

!

C0 Continuous (‘c0continuous’)

f(z) = exp

 
�

DX

d=1

cd|zd � wd|
!

Discontinuous (‘discontinuous’)

f(z) =

(
0 z1 > w1 or z2 > w2

exp
⇣PD

d=1 cdzd

⌘
otherwise

Increasing kck will in general make the integrands more di�cult.

The 0  wd  1 parameters do not a�ect the di�culty of the integration problem. We setw1 = w2 = . . . = WD.

The coe�cient types implement di�erent decay rates for cd. This allows testing of methods that can identify and
exploit anisotropy. They are as follows:

No decay (none)

ĉd =
d+ 0.5

D
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Exponential convergence is obtained for analytic functions
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ĉd =
d+ 0.5

D

6.3. pyapprox.benchmarks Package 193



QUADRATURE USING THE SURROGATE

PyApprox, Release 1.0.2

The error in the tensor product interpolant is given by

kf↵ � f↵,�kL1(�)  Cd,rN
�s/d
�

Post-processing

Once a surrogate has been constructed it can be used for many di�erent purposes. For example one can use it to estimate
moments, perform sensitivity analysis, or simply approximate the evaluation of the expensive model at new locations
where expensive simulation model data is not available.

To use the surrogate for computing moments we simply draw realizations of the input random variables z and evaluate
the surrogate at those samples. We can approximate the mean of the expensive simluation model as the average of the
surrogate values at the random samples.

We know from Monte Carlo Quadrature that the error in the Monte carlo estimate of the mean using the surrogate is

E
h
(Q↵ � E [Q])2

i
= N

�1V [Q↵] + (E [Q↵]� E [Q])2

 N
�1V [Q↵] + Cd,rN

�s/d
�

Because a surrogate is inexpensive to evaluate the first term can be driven to zero so that only the bias remains. Thus
the error in the Monte Carlo estimate of the mean using the surrogate is dominated by the error in the surrogate. If this
error can be reduced more quickly than frac{N^{-1}} (as is the case for low-dimensional tensor-product interpolation)
then using surrogates for computing moments is very e�ective.
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Note that moments can be estimated without using Monte-Carlo sampling by levaraging properties of the univariate in-
terpolation rules used to build the multi-variate interpolant. Specifically, the expectation of a tensor product interpolant
can be computed without explicitly forming the interpolant and is given by

µ� =

Z

�

X

j�

f↵(z
(j))

dY

i=1

�i,ji(zi)w(z) dz =
X

j�

f↵(z
(j))vj .

The expectation is simply the weighted sum of the Cartesian-product of the univariate quadrature weights

vj =
dY

i=1

Z

�i

�i,ji(zi) dw(zi),

which can be computed analytically.

x, w = get_tensor_product_quadrature_rule(level, 2, clenshaw_curtis_pts_wts_1D)
surrogate_mean = f(x)[:, 0].dot(w)
print('Quadrature mean', surrogate_mean)

Out:

Quadrature mean 0.10540659444426355

Here we have recomptued the values of f at the interpolation samples, but in practice we sould just re-use the values
collected when building the interpolant.

Now let us compare the quadrature mean with the MC mean computed using the surrogate

num_samples = int(1e6)
samples = np.random.uniform(-1, 1, (2, num_samples))
values = interp(samples)
mc_mean = values.mean()
print('Monte Carlo surrogate mean', mc_mean)

Out:

Monte Carlo surrogate mean -0.00034332115275673044

References

Total running time of the script: ( 0 minutes 0.665 seconds)

4.3.2 Sparse Grids

The number of model evaluations required by tensor product interpolation grows exponentitally with the number of
model inputs. This tutorial introduces sparse grids [BNR2000], [BG2004] which can be used to overcome the so called
curse of dimensionality faced by tensor-product methods.

Sparse grids approximate a model (function) f↵ with D inputs z = [z1, . . . , zD]> as a linear combination of low-
resolution tensor product interpolantsm that is

f↵,I(z) =
X

�2I
c�f↵,�(z),
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The number of model evaluations required by tensor product interpolation grows exponentitally with the number of
model inputs. This tutorial introduces sparse grids [BNR2000], [BG2004] which can be used to overcome the so called
curse of dimensionality faced by tensor-product methods.

Sparse grids approximate a model (function) f↵ with D inputs z = [z1, . . . , zD]> as a linear combination of low-
resolution tensor product interpolantsm that is

f↵,I(z) =
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The error in the Monte Carlo estimate of  the mean 
using the surrogate satisfies

Unlike the expensive model, the first term can be made 
very small because the surrogate is cheap to evaluate

However the mean of  tensor product interpolants can 
be computed exactly.
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Returns
benchmark

[pyapprox.benchmarks.Benchmark] Object containing the benchmark attributes

fun
[callable] The function being analyzed

variable
[JointVariable] Class containing information about each of the nvars inputs to fun

mean: np.ndarray (nvars)
The mean of the function with respect to the PDF of var

Notes

The six Genz test function are:

Oscillatory (‘oscillatory’)

f(z) = cos

 
2⇡w1 +

DX

d=1

cdzd

!

Product Peak (‘product_peak’)

f(z) =
DY

d=1

�
c
�2
d + (zd � wd)

2
��1

Corner Peak (‘corner_peak’)

f(z) =

 
1 +

DX

d=1

cdzd

!�(D+1)

Gaussian Peak (‘gaussian’)

f(z) = exp

 
�

DX

d=1

c
2
d(zd � wd)

2

!

C0 Continuous (‘c0continuous’)

f(z) = exp

 
�

DX

d=1

cd|zd � wd|
!

Discontinuous (‘discontinuous’)

f(z) =

(
0 z1 > w1 or z2 > w2

exp
⇣PD

d=1 cdzd

⌘
otherwise

Increasing kck will in general make the integrands more di�cult.

The 0  wd  1 parameters do not a�ect the di�culty of the integration problem. We setw1 = w2 = . . . = WD.

The coe�cient types implement di�erent decay rates for cd. This allows testing of methods that can identify and
exploit anisotropy. They are as follows:

No decay (none)

ĉd =
d+ 0.5

D
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The number of  tensor product points grows 
exponentially with dimension (curse of  
dimensionality)

Sparse grids can be used to exploit function 
smoothness to mitigate the curse of  
dimensionality
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where � = [�1, . . . ,�D] is a multi-index controlling the number of samples in each dimension of the tensor-product
interpolants, and the index set I controls the approximation accuracy and data-e�ciency of the sparse grid. If the set
I is downward closed, that is

�  � and � 2 I =) � 2 I,

where the  is applied per entry, then the (Smolyak) coe�cients of the sparse grid are given by
X

i2[0,1]D,↵+i2I

(�1)kik1 .

While any tensor-product approximation can be used with sparse grids, e.g. based on piecewise-polynomials or splines,
in this tutorial we will build sparse grids with Lagrange polynomials (see Tensor-product Barycentric Interpolation).

The following code compares a tensor-product interpolant with a level-l isotropic sparse grid which sets

I(l) = {� | (max(0, l � 1)  k�k1  l +D � 2}, l � 0

which leads to a simpler expression for the coe�cients

c� = (�1)l�|�|1
✓

D � 1

l � |�|1

◆
.

First import the necessary modules and define the function we will approximate and its variable z.

f(z) = cos(⇡z1) cos(⇡z2/2)

import copy

import numpy as np

from scipy import stats
from pyapprox.util.visualization import get_meshgrid_function_data, plt
from pyapprox.variables.joint import IndependentMarginalsVariable
from pyapprox.surrogates.approximate import adaptive_approximate
from pyapprox.surrogates.interp.adaptive_sparse_grid import (

tensor_product_refinement_indicator, isotropic_refinement_indicator,
variance_refinement_indicator)

from pyapprox.surrogates.orthopoly.quadrature import (
clenshaw_curtis_in_polynomial_order, clenshaw_curtis_rule_growth)

from pyapprox.util.utilities import nchoosek
from pyapprox.benchmarks import setup_benchmark

variable = IndependentMarginalsVariable([stats.uniform(-1, 2)]*2)

def fun(zz):
return (np.cos(np.pi*zz[0])*np.cos(np.pi*zz[1]/2))[:, None]

Now plot the tensor product interpolants and the Smolyak coe�cients that make up the sparse grid. The coe�cients
are in the upper left corner of each subplot.

max_level = 2
fig, axs = plt.subplots(

max_level+1, max_level+1, figsize=((max_level+1)*8, (max_level+1)*6))
ranges = variable.get_statistics("interval", 1.0).flatten()
univariate_quad_rule_info = [

(continues on next page)
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(continues on next page)
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An isotropic sparse grid uses
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Out:

Growth of number of sparse grid points
[[1, 5, 13, 29, 65], [1, 7, 25, 69, 177], [1, 11, 61, 241, 801]]
Growth of number of tensor-product points
[[1, 9, 25, 81, 289], [1, 27, 125, 729, 4913], [1, 243, 3125, 59049, 1419857]]

For a function with r continous mixed-derivatives, the isotropic level-l sparse grid, based on 1D Clenshaw Curtis
abscissa, with MI(l) points satisfies

kf � fI(l)kL1  CD,rM
�r
I(l)(logMI(l))

(r+2)(D�1)+1
.

In contrast the tensor-product interpolant with Ml points satifies

kf � fI(l)kL1  KD,rM
�r/D
l .

The following code compares the convergence of sparse grids and tensor-product lagrange interpolants. A callback is
used to compute the error as the level of the approximations increases

class IsotropicCallback():
def __init__(self, validation_samples, validation_values, istp):

self.level = -1
self.errors = []
self.nsamples = []
self.validation_samples = validation_samples
self.validation_values = validation_values
self.istp = istp

def __call__(self, approx):
if self.istp:

approx_level = approx.subspace_indices.max()
else:

approx_level = approx.subspace_indices.sum(axis=0).max()
if self.level != approx_level:

# only compute error when all subspaces of the current
# approximation level are added to the sparse grid.
# The number of sparse grid points will be slightly larger
# than an isotoropic grid of level=approx_level because
# points associated with active indies will be included here.
self.level = approx_level
self.nsamples.append(approx.samples.shape[1])
approx_values = approx.evaluate_using_all_data(

self.validation_samples)
error = (np.linalg.norm(

self.validation_values-approx_values) /
self.validation_samples.shape[1])

self.errors.append(error)

def fun(xx):
return np.exp(-0.05*(((xx+1)/2-0.5)**2).sum(axis=0))[:, None]

# do not go passed nvars,level = (4, 4) with clenshaw curtis rules
(continues on next page)
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def __init__(self, validation_samples, validation_values, istp):

self.level = -1
self.errors = []
self.nsamples = []
self.validation_samples = validation_samples
self.validation_values = validation_values
self.istp = istp

def __call__(self, approx):
if self.istp:

approx_level = approx.subspace_indices.max()
else:

approx_level = approx.subspace_indices.sum(axis=0).max()
if self.level != approx_level:

# only compute error when all subspaces of the current
# approximation level are added to the sparse grid.
# The number of sparse grid points will be slightly larger
# than an isotoropic grid of level=approx_level because
# points associated with active indies will be included here.
self.level = approx_level
self.nsamples.append(approx.samples.shape[1])
approx_values = approx.evaluate_using_all_data(

self.validation_samples)
error = (np.linalg.norm(

self.validation_values-approx_values) /
self.validation_samples.shape[1])

self.errors.append(error)

def fun(xx):
return np.exp(-0.05*(((xx+1)/2-0.5)**2).sum(axis=0))[:, None]

# do not go passed nvars,level = (4, 4) with clenshaw curtis rules
(continues on next page)
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Isotropic sparse error grids is less 
strongly dependent on dimension

Tensor product error grows 
exponentially with dimension for fixed 
smoothness 𝑟

𝑓 𝑧 = 	exp −
∑-.)/ 0.5 𝑧- + 1 − 0.5 *

20

Isotropic grids treat all dimensions equally, but for many models 
some dimensions are more important than others
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Experiment with changing nvars, e.g. try nvars = 2,3,4. Sparse grids become more e�ective as nvars increases.

So far we have used sparse grids based on Clenshaw-Curtis 1D quadrature rules. However other types of rules can
be used. PyApprox also supports 1D Leja sequences [NJ2014] (see Adaptive Leja Sequences). Change univari-
ate_quad_rule=None to use Leja rules and observe the di�erence in convergence.

Dimension adaptivity

The e�ciency of sparse grids can be improved using methods [GG2003], [H2003] that construct the index set I adap-
tively. This is the default behavior when using Pyapprox. The following applies the adaptive algorithm to an anisotropic
function, where one variable impacts the function much more than the other.

Finding an e�cient index set can be cast as an optimization problem. With this goal, let the di�erence in sparse grid
error before and after the interpolant f↵,� and the work from adding the new interpolant respectively be

�E� = kf↵,I[� � f↵,Ik �W� = kW↵,I[� �W↵,Ik

Then noting that the error in the sparse grid satisfies, we can formulate finding a quasi-optimal index set as a binary
knapsack problem

max
X

�

�E��� such that
X

�

�W���  Wmax,

for a total work budget Wmax. The solution to this problem balances the computational work of adding a specific
interpolant with the reduction in error that would be achieved.
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Finding the optimal index set can be posed as binary 
knapsack problem

A greedy algorithm can be used to find an approximate solution

T. Gerstner and M. Griebel. Dimension-adaptive tensor-product quadrature. Computing (2003).

https://doi.org/10.1007/s00607-003-0015-5


MULTI-FIDELITY APPROXIMATION: AN OBSERVATION

Surrogate that uses only low fidelity 
model 𝑓",$! has small stochastic error but 

has large deterministic error	

Surrogate that uses only high fidelity 
model 𝑓%,$" has large stochastic error but 

has no deterministic error 

MF Surrogate has small stochastic error 
and has no deterministic error 

The discrepancy between model fidelities is often 
“easier” to approximate than the high-fidelity function 
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(continued from previous page)

fun_colors = ['r', 'k', 'cyan']
approx_colors = ['b', 'g', 'pink']
for ii, subspace_index in enumerate(tp_approx.subspace_indices.T):

subspace_values = get_subspace_values(
tp_approx.values, tp_approx.subspace_values_indices_list[ii])

jj, kk = subspace_index
subspace_samples = tp_approx.samples_1d[0][jj]
ax = axs[max_level_1d[1]-kk, jj]
ax.plot(

subspace_samples, subspace_values, 'o', color=fun_colors[kk])
for ll in range(max_level_1d[1]+1):

ax.plot(zz, mi_model._model_ensemble.functions[ll](zz[None, :]),
'-', color=fun_colors[ll], label=r"$f_{%d}$" % (jj))

subspace_approx_vals = evaluate_sparse_grid_subspace(
zz[None, :], subspace_index, subspace_values,
tp_approx.samples_1d, tp_approx.config_variables_idx)

ax.plot(zz, subspace_approx_vals, '--', color=approx_colors[kk],
label=r"$f_{%d,%d}$" % (kk, jj))

ax.legend()
_ = [[ax.set_ylim([-1, 1]), ax.set_xlabel(r"$z$")] for ax in axs.flatten()]

Multi-level Collocation

Similar to sparse grids, multi-index collocation is a weighted combination of low-resolution tensor products, like those
shown in the last plot

fI(z) =
X

[↵,�]2I

c[↵,�]f↵,�(z),

where the Smolay coe�cients can be computed using the same formula used for traditional sparse grids. However,
unlike sparse grids, we now have introduced configuration variables that change what model discretization is being
evaluated.
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Like sparse grids MISC is a 
linear combination of  
tensor product interpolants

However, now additional 
indices are used to increase 
the fidelity of  data being 
used

Haji-Ali, F. Nobile, L. Tamellini, and R. Tempone. Multi-index stochastic collocation for random pdes. Computer Methods in Applied Mechanics and Engineering, 306:95 – 122, 2016.
A. Teckentrup, P. Jantsch, C. Webster, and M. Gunzburger. A multilevel stochastic collocation method for partial differential equations with random input data. SIAM/ASA Journal on Uncertainty 
Quantification, 3(1):1046-1074, 2015.

http://www.sciencedirect.com/science/article/pii/S0045782516301141,doi:10.1016/j.cma.2016.03.029
https://doi.org/10.1137/140969002
https://doi.org/10.1137/140969002


ADAPTIVE MULTI-INDEX COLLOCATION

The sparse grid adaptation algorithm can be 
modified for use with multi-fidelity models

J.D. Jakeman, M.S. Eldred, G. Geraci, and A. Gorodetsky. Adaptive Multi-index Collocation for Uncertainty 
Quantification and Sensitivity Analysis. International Journal for Numerical Methods in Engineering (2019).

https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.6268
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.6268


MISC reduces the computational 
cost of  building a surrogate 
relative to a single fidelity sparse 
grid for a 3D hierarchy (x-
refinement, y refinement and time 
refinement)

ADVECTION DIFFUSION MODEL

Work is allocated to each model according to cost 
relative to the improvement in predictive accuracy. 

Low fidelity meshes are used early on and higher-fidelity 
meshes when requesting higher accuracy
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GAUSSIAN PROCESSESPyApprox, Release 1.0.2

Given a kernel and mean function, a Gaussian process approximation assumes that the joint prior distribution of f ,
conditional on kernel hyper-parameters ✓ = [�2

, `
>]>, is multivariate normal such that

f(·) | ✓ ⇠ N
�
m(·), C(·, ·; ✓) + ✏

2
I
�

where ✏2 is the variance of the mean zero white noise in the observations.

The following plots realizations from the prior distribution of a Gaussian process at a set Z of values of z. Random
realizations are drawn by taking the singular value decomposition of the kernel evaluated at the set of points Z , such
that

USV = K(Z,Z),

where U, V are the left and right singular vectors and S are the singular values. The left singular vectors and singular
values are then used to generate random realizations y using independent and identically distributed draws X from the
multivariate standard Normal distribution N (0, IN ), where IN is the identity matrix of size N , and N is the number
of samples in Z . Specifically

y = US
1
2X.

Note the Cholesky decomposition could also be used instead of the singular value decomposition.

import numpy as np

import matplotlib.pyplot as plt

from pyapprox.surrogates import gaussianprocess as gps
np.random.seed(1)

kernel = gps.Matern(0.5, length_scale_bounds=(1e-1, 1e1), nu=np.inf)
gp = gps.GaussianProcess(kernel)

lb, ub = -1, 1
xx = np.linspace(lb, ub, 101)
nsamples = 40
rand_noise = np.random.normal(lb, ub, (xx.shape[0], nsamples))
for ii in range(nsamples):

plt.plot(xx, gp.predict_random_realization(xx[None, :], rand_noise[:, ii:ii+1]))
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References

Total running time of the script: ( 0 minutes 1.481 seconds)

4.3.4 Gaussian processes

Gaussian processes (GPs) are an extremely popular tool for approximating multivariate functions from limited data.
A GP is a distribution over a set of functions. Given a prior distribution on the class of admissible functions an
approximation of a deterministic function is obtained by conditioning the GP on available observations of the function.

Constructing a GP requires specifying a prior mean m(z) and covariance kernel C(z, z?). The GP leverages the
correlation between training samples to approximate the residuals between the training data and the mean function.
In the following we set the mean to zero. The covariance kernel should be tailored to the smoothness of the class of
functions under consideration. The matern kernel with hyper-parameters ✓ = [�2

, `
>]> is a common choice.

C⌫(z, z
?; ✓) = �

2 2
1�⌫

�(⌫)

 p
2⌫d(z, z?; `)

`

!⌫

K⌫

 p
2⌫d(z, z?; `)

`

!
.

Here d(z, z?; `) is the weighted Euclidean distance between two points parameterized by the vector hyper-parameters
` = [`1, . . . , `d]>. The variance of the kernel is determined by �

2 and K⌫ is the modified Bessel function of the
second kind of order ⌫ and � is the gamma function. Note that the parameter ⌫ dictates for the smoothness of the kernel
function. The analytic squared-exponential kernel can be obtained as ⌫ ! 1.
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Gaussian processes are a distribution over a class of  functions

The kernel C should be tailored to the smoothness of  the 
function being approximated. The Matern kernel is a 
flexible choice

Noise variance

Controls 
smoothness

Hyper-parameters

Mean function

Kernel variance. Controls 
magnitude of  function

Length scale. Controls 
frequency of  realizations
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Given a set of training samples Z = {z(m)}Mm=1 and associated values y = [y(1), . . . , y(M)]> the posterior distribution
of the GP is

f(·) | ✓, y ⇠ N
�
m

?(·), C?(·, ·; ✓) + ✏
2
I
�

where

m
?(z) = t(z)>A�1

y C
?(z, z0) = C(z, z0)� t(z)>A�1

t(z0)

with

t(z) = [C(z, z(1)), . . . , C(z, z(N))]>

and A is a matrix with with elements Aij = C(z(i), z(j)) for i, j = 1, . . . ,M . Here we dropped the dependence on
the hyper-parameters ✓ for convenience.

Consider the univariate Runge function

f(z) =
1

1 + 25z2
, z 2 [�1, 1]

Lets construct a GP with a fixed set of training samples and associated values we can train the Gaussian process. But
first lets plot the true function and prior GP mean and plus/minus 2 standard deviations using the prior covariance

def func(x):
return 1/(1+25*x[0, :]**2)[:, np.newaxis]

(continues on next page)
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The posterior distribution of  the Gaussian processes conditional 
on training data 𝑧 1 , 𝑦(1) = 𝑓(𝑧(1))  is

With posterior mean and covariance

where 

C.E. Rasmussen and C. WIlliams. Gaussian Processes for Machine Learning. MIT Press (2006)

http://www.gaussianprocess.org/gpml/


EXPERIMENTAL DESIGN

Not all training data reduce variance equally.

Experimental design can be used to reduce variance 
systematically.

Integrated variance (IVAR) designs minimize the posterior 
distribution of  the GP with respect to the distribution of  the 
inputs 𝑧

PyApprox, Release 1.0.2

(continued from previous page)

gp_vals[:, 0]+2*gp_std,
alpha=0.5, color='gray', label='GP posterior uncertainty')

_ = plt.legend()

Out:

Matern(length_scale=0.441, nu=inf)

Experimental design

The nature of the training samples significantly impacts the accuracy of a Gaussian process. Noting that the variance
of a GP reflects the accuracy of a Gaussian process, [SWMW1989] developed an experimental design procedure which
minimizes the average variance with respect to a specified measure. This measure is typically the probability measure
⇢(z) of the random variables z. Integrated variance designs, as they are often called, find a set of samples Z ⇢ ⌦ ⇢ �
from a set of candidate samples ⌦ by solving the minimization problem

Z† = argmin
Z⇢⌦⇢�,|Z|=M

Z

�
C

?(z, z | Z)⇢(z)dz

where we have made explicit the posterior variance dependence on Z .

The variance of a GP is not dependent on the values of the training data, only the sample locations, and thus the
procedure can be used to generate batches of samples. The IVAR criterion - also called active learning Cohn (ALC)
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Note the designs do not depend on the data and can be 
computed a priori

J. Sacks, W.J. Welch, T.J.Mitchell, H.P. Wynn Designs and analysis of computer experiments (with discussion). 
Statistical Science, 4:409-435 (1989)

http://www.jstor.org/stable/2245858
http://www.jstor.org/stable/2245858
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- can be minimized over discrete [HJZ2021] or continuous [GM2016] design spaces ⌦. When employing a discrete
design space, greedy methods [C2006] are used to sample one at a time from a finite set of candidate samples to
minimize the learning objective. This approach requires a representative candidate set which, we have found, can
be generated with low-discrepancy sequences, e.g. Sobol sequences. The continuous optimization optimization is
non-convex and thus requires a good initial guess to start the gradient based optimization. Greedy methods can be
used to produce the initial guess, however in certain situation optimizing from the greedy design resulted in minimal
improvement.

The following code plots the samples chosen by greedily minimizing the IVAR criterion
Z

�
C

?(z, z | Z)⇢(z)dz = 1� Trace [AZPZ ] PZ =

Z

�
AZ[{z}A

>
Z[{z}⇢(z)dz

from a set of candidate samples Zcand. Because the additive constant does not e�ect the design IVAR designs are found
by greedily adding points such that the N + 1 point satisfies

zN+1 = argmin
z02Zcand

Trace
⇥
AZN[{z0}PZN[{z0}

⇤
.

from pyapprox.surrogates.gaussianprocess.gaussian_process import (
IVARSampler, GreedyIntegratedVarianceSampler, CholeskySampler)

from pyapprox.variables.joint import IndependentMarginalsVariable, stats
variable = IndependentMarginalsVariable([stats.uniform(-1, 2)])
ncandidate_samples = 101
sampler = GreedyIntegratedVarianceSampler(

1, 100, ncandidate_samples, variable.rvs, variable,
use_gauss_quadrature=True, econ=False,
candidate_samples=np.linspace(
*variable.get_statistics("interval", 1)[0, :], 101)[None, :])

kernel = gps.Matern(0.5, length_scale_bounds="fixed", nu=np.inf)
sampler.set_kernel(kernel)

def plot_gp_samples(ntrain_samples, kernel, variable):
axs = plt.subplots(1, ntrain_samples, figsize=(ntrain_samples*8, 6))[1]
gp = gps.GaussianProcess(kernel)
for ii in range(1, ntrain_samples+1):

gp.plot_1d(101, variable.get_statistics("interval", 1)[0, :], ax=axs[ii-1])

train_samples = sampler(ntrain_samples)[0]
train_values = func(train_samples)*0
for ii in range(1, ntrain_samples+1):

gp.fit(train_samples[:, :ii], train_values[:ii])
gp.plot_1d(101, variable.get_statistics("interval", 1)[0, :], ax=axs[ii-1])
axs[ii-1].plot(train_samples[0, :ii], train_values[:ii, 0], 'ko', ms=15)

ntrain_samples = 5
plot_gp_samples(ntrain_samples, kernel, variable)
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Which is typically solved greedily such that

The IVAR objective simplifies to

When 𝜌 and 𝐶 are separable then 𝑃 can be computed using 1D quadrature
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Fig. 11: A multi-index hierarchy formed by increasing mesh discretizations in two di�erent spatial directions.

References

Total running time of the script: ( 0 minutes 3.766 seconds)

4.4.9 Multifidelity Gaussian processes

This tutorial describes how to implement and deploy multi-level Gaussian processes built using the output of a high-
fidelity model and evaluations of a set of lower-fidelity models of lower accuracy and cost [KOB2000]. This tutorial
assumes understanding of the concepts in Gaussian processes

Multilevel GPs assume that all the available models {fk}Kk=1 can be ordered into a hierarchy of increasing cost and
accuracy, where k = 1 denotes the lowest fidelity model and k = K denotes the hightest-fidelity model. We model
the output ym from the m-th level code as ym = fm(z) and assume the models satisfy the hierarchical relationship

fm(z) = ⇢m�1fm�1(z) + �m(z), m = 2, . . . ,M.

with f1(z) = �1(z). We assume that the prior distributions on �m(·) ⇠ N (0, Cm(·, ·)) are independent.

Just like traditional GPs the posterior mean and variance of the multi-fidelity GP are given by

m
?(z) = t(z)>C(Z,Z)�1

y C
?(z, z0) = C(z, z0)� t(z)>C(Z,Z)�1

t(z0),

where C(Z,Z) is the prior covariance evaluated at the training data Z .

The di�erence comes from the definitions of the prior covariance C and the vector t(z).
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Two models

Given data Z = [Z1,Z2] from two models of di�ering fidelity, the data covariance of the multi-fidelity GP consisting
of two models can be expressed in block form

C(Z,Z) =


Cov [f1(Z1), f1(Z1)] Cov [f1(Z1), f2(Z2)]
Cov [f2(Z2), f1(Z1)] Cov [f2(Z2), f2(Z2)]

�

The upper-diagonal block is given by

Cov [f1(Z1), f1(Z1)] = Cov [�1(Z1), �1(Z1)] = C1(Z1,Z1)

The lower-diagonal block is given by

Cov [f2(Z2), f2(Z2)] = Cov [⇢1f1(Z2) + �2(Z2), ⇢1f1(Z2) + �2(Z2)]

= Cov [⇢1�2(Z2) + �2(Z2), ⇢1�1(Z2) + �2(Z2)]

= Cov [⇢1�2(Z1), ⇢1�1(Z2)] + Cov [�2(Z2), �2(Z2)]

= ⇢
2
1C1(Z2,Z2) + C2(Z2,Z2)

Where on the second last line we used that �1 and �2 are independent.

The upper-right block is given by

Cov [f1(Z1), f2(Z2)] = Cov [�1(Z1), ⇢1�1(Z2) + �2(Z2)]

= Cov [�1(Z1), ⇢1�1(Z2)] = ⇢1C1(Z1,Z2)

and Cov [f2(Z2), f1(Z1)] = Cov [f1(Z2), f2(Z2)]
>
.

Combining yields

C(Z,Z) =


C1(Z1,Z1) ⇢1C1(Z1,Z2)
⇢1C1(Z2,Z1) ⇢

2
1C1(Z2,Z2) + C2(Z2,Z2)

�

In this tutorial we assume ⇢m are scalars. However PyApprox supports polynomial versions ⇢m(z). The above formulas
must be slightly modified in this case.

Similary we have

tm(z;Z)> = [Cov [fm(z), fm(Z1)] ,Cov [fm(z), fm(Z2)]]

where

t1(z;Z)> = [C1(z,Z1), ⇢1C1(z,Z2)]
>

t2(z;Z)> =
⇥
⇢1C1(z,Z1), ⇢

2
1C1(z,Z2) + C2(z,Z2)

⇤

M models

The diagonal covariance blocks of the prior covariance C for m > 1 satisfy

Cm(Zm,Zm) + ⇢
2
m�1Cm�1(Zm,Zm) + · · ·+

m�1Y

i=1

⇢
2
iC1(Zm,Zm).
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Multilevel GPs assume

For 𝒵 = 𝒵), … , 𝒵2 , the posterior mean and 
covariance again satisfy

Where for two models 
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Fig. 11: A multi-index hierarchy formed by increasing mesh discretizations in two di�erent spatial directions.
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4.4.9 Multifidelity Gaussian processes

This tutorial describes how to implement and deploy multi-level Gaussian processes built using the output of a high-
fidelity model and evaluations of a set of lower-fidelity models of lower accuracy and cost [KOB2000]. This tutorial
assumes understanding of the concepts in Gaussian processes

Multilevel GPs assume that all the available models {fk}Kk=1 can be ordered into a hierarchy of increasing cost and
accuracy, where k = 1 denotes the lowest fidelity model and k = K denotes the hightest-fidelity model. We model
the output ym from the m-th level code as ym = fm(z) and assume the models satisfy the hierarchical relationship

fm(z) = ⇢m�1fm�1(z) + �m(z), m = 2, . . . ,M.

with f1(z) = �1(z). We assume that the prior distributions on �m(·) ⇠ N (0, Cm(·, ·)) are independent.

Just like traditional GPs the posterior mean and variance of the multi-fidelity GP are given by

m
?(z) = t(z)>C(Z,Z)�1

y C
?(z, z0) = C(z, z0)� t(z)>C(Z,Z)�1

t(z0),

where C(Z,Z) is the prior covariance evaluated at the training data Z .

The di�erence comes from the definitions of the prior covariance C and the vector t(z).
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In this tutorial we assume ⇢m are scalars. However PyApprox supports polynomial versions ⇢m(z). The above formulas
must be slightly modified in this case.
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For two models

The low-fidelity covariance is

The high-fidelity covariance is

The covariance between models is
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MULTILEVEL GAUSSIAN PROCESSES
The multilevel GP is a better approximation 
than the single fidelity GP using only the HF 

data

Alternative methods build GP sequentially 
similar to multilevel collocation. However there 
is no way to estimate error consistently and the 

resulting GP is often less accurate



ML GP EXPERIMENTAL DESIGN

Similar to single-fidelity GPs, not all training data 
reduce variance equally.

But ML GPs have the additional complication that 
function data evaluated using different models at the 
same sample 𝑧 reduce uncertainty differently.

The relative cost of  evaluating each model must also 
be accounted for. Two low-fidelity evaluations may be 
more cost effective at reducing variance in HF 
prediction

L. Le Gratiet and J. Garnier Recursive co-kriging model for design of computer experiments with multiple levels of 
fidelity. International Journal for Uncertainty Quantification, 4(5), 365–386, 2014.

http://dx.doi.org/10.1615/Int.J.UncertaintyQuantification.2014006914
http://dx.doi.org/10.1615/Int.J.UncertaintyQuantification.2014006914


ML GP EXPERIMENTAL DESIGN

Assume cost of  evaluating each model is 𝑊) = 1,𝑊* = 3

The ML-GP is much more accurate for the same amount of  work



NONLINEAR MULTI-FIDELITY SURROGATES

Deep Gaussian processes where 𝑔 and 𝑓) are 
both Gaussian process have been proposed

However,  a nonlinear model may more efficiently 
capture the relationship.

Multilevel GPs assume a linear relationship between 
models

PyApprox, Release 1.0.2

Fig. 11: A multi-index hierarchy formed by increasing mesh discretizations in two di�erent spatial directions.
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with f1(z) = �1(z). We assume that the prior distributions on �m(·) ⇠ N (0, Cm(·, ·)) are independent.

Just like traditional GPs the posterior mean and variance of the multi-fidelity GP are given by
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where C(Z,Z) is the prior covariance evaluated at the training data Z .

The di�erence comes from the definitions of the prior covariance C and the vector t(z).
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P. Perdikaris, et al. Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling. Proceedings of 
the Royal Society of London A. 2017
K. Cutajar et al. Deep Gaussian Processes for Multi-fidelity Modeling. 2019,

Motamed, Mohammad. "A multi-fidelity neural network surrogate sampling method for uncertainty quantification." 
International Journal for Uncertainty Quantification 10.4 (2020).
X.Meng, G. Karniadakis, A composite neural network that learns from multi-fidelity data: Application to function 
approximation and inverse PDE problems, Journal of Computational Physics, (2020)

Using neural networks for  𝑔 and 𝑓) has also 
been proposed

http://rspa.royalsocietypublishing.org/content/473/2198/20160751
http://rspa.royalsocietypublishing.org/content/473/2198/20160751
https://doi.org/10.48550/arXiv.1903.07320
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MF DEEP GAUSSIAN PROCESSES

Linear MF GPs tend to perform worse than the non-linear MF GPs when the 
correlation between models is highly complicated



NON-HIERARCHICAL SURROGATES
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Often models do not admit a 1D hierarchy. In 
this case we can build multi-fidelity surrogates 
for models with relationships represented by 
directed acyclic graphs

https://www.alexgorodetsky.com/static/papers/gorodetsky_jakeman_geraci_eldred_mfnets_2020.pdf
https://www.alexgorodetsky.com/static/papers/gorodetsky_jakeman_geraci_eldred_mfnets_2020.pdf
https://res.arxiv.org/abs/2008.02672


DIRECT FIELD ACOUSTIC TESTING

Δ𝜙 𝑥 + 𝜅*𝜙 𝑥 = 0	, 	𝑥 ∈ 𝐷
45 6
47 = 𝜌3𝜔𝑧1, 	 𝑥 ∈ 𝜕𝐷 

We can fuse multiple experiments that characterize performance of  
engineered structures under extreme vibration environments simulated 
using the Helmholtz equation



PYAPPROX

REPOSITORY
https://github.com/sandialabs/pyapprox/actions  
DOCUMENTATION
https://sandialabs.github.io/pyapprox/index.html

TARGET PLATFORMS PyApprox is currently built 
and tested on multiple platforms

INSTALLATION Installation of  PyApprox and its 
dependencies managed by Pip or  Pip+Anaconda

LICENSE MIT

AUTOMATED TESTING: Over 550 tests run on 
each commit to master

https://github.com/sandialabs/pyapprox/actions
https://sandialabs.github.io/pyapprox/index.html


FORWARD PROPAGATION OF UNCERTAINTY

Must compute statistics from limited number of samples (simulations)
So build surrogate that can be used in place of the expensive model
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