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Laser Powder Bed Fusion Qualification Challenges
• Laser Powder Bed Fusion (LPBF) is a leading 

additive technology for producing functional 
metal parts for critical applications

• Part qualification remains an expensive, time-
consuming, often ill-defined process

• Process physics of laser-induced melting and 
re-solidification produces difficult to predict, 
often unrepeatable outcomes
• Anisotropic microstructures
• Thermally-induced residual stresses and 

distortions

• Mod-Sim and UQ possible path forward to 
reduce cost of part qualification

• Model-based evidence to support process 
qualification
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Uncertainty Quantification Approach
• Uncertainty quantification techniques 

allow uncertainties in model inputs to  
be propagated to model predictions 

• Allows prediction of probability 
distributions for quantities of interest

• Goal is to take what we know about 
the uncertainties in machine 
operation and propagate them 
through physics models to predict 
distributions of as-built:
• Dimensional accuracy
• Microstructural features
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Input Uncertainties
• Huge number of parameters governing 

process physics
• Laser power
• Laser size/shape
• Laser path 
• Build plate stepping
• Gas flow
• Ambient chamber temperature
• Laser attenuation
• Oxygen content
• Feedstock
• Chemical composition
• Thermophysical properties

• Measurements, physical intuition, sensitivity 
analysis used to reduce dimensionality
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Estimating Uncertain Distributions
• Five uncertain parameters identified as 

inputs to high fidelity model
• Index of refraction [0.1682 - 0.2632]
• Calibration to ”flat plate” region of NIST integrating 

sphere absorptance data for spot weld

• Material sulfur content (controls surface 
tension) [0.0005 - 0.0030 %wt]

• Material specification

• Ambient chamber temperature [300 – 700 K]
• Literature review for thermocouple measurements in 

LPBF build chambers

• Laser power [87 – 139 W]
• Beam characterization study

• Laser radius [26.8 – 36.5 um]
• Beam characterization study

• All probability distributions uniform

• Feedstock (powder) uncertainties not 
needed for initial bead-on-plate simulations
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Validation of Bead on Plate Dimensions
• Uncertain parameters propagated through 

high fidelity model using gaussian process 
surrogates 

• Compared to bead-on-plate cross section 
metallography measurements

• Predicted distribution bounds the observed 
results for 91/100 samples in first case
• Contains a number of laser misfires, 

attributed to using non-standard baseplate

• Repeating using standard baseplate in two 
experiments, all samples bounded by 
predicted distribution

• At this point, model has seen no 
calibration data, just estimates of uncertain 
inputs
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Validation of Bead on Plate Microstructure
• Thermal results combined with undercooling-based 

microstructure prediction code (SPPARKS) to 
calculate average grain size
• Additional uncertain parameter: nucleation site 

density [1e12 – 1.25e17]
• Runs gambit of possible values (no sites in simulation 

volume to each pixel is a site)

• Compared to 5 EBSD cross section images from 
bead-on-plate builds
• Predictions bound results, but window is large
• Nucleation site density needs to be calibrated
• Calibration on 1 EBSD result gives tighter prediction 

interval
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Melt bead shapes with powder
• High fidelity model run including powder particles

• Compared to metallography images of 2cm cubes. 
Melt pool shapes of top layer measured

• Measurements span larger area than predictions

• Real process is many laser passes – expanding to two 
pass simulations extends prediction window

• 3+ passes needed?

• Multiple powder bed realizations?
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Part Scale Predictions
• Gaining confidence that uncertainties in thermal-

fluid model account for observed variations in 
melt pool shape

• Most real QoIs are at part scale. Thermal-fluid 
model only provides 3D melt pool shapes

• Model simplifications are needed for tractable 
performance
• Thermal only
• Continuum powder representation
• Volumetric laser source
• Linear physics (allows analytical solution)

• Mechanical: rapid computation of pointwise 
thermal histories

• Microstructure: compute temperatures only in 
solidification region with time stepping
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Part Scale UQ
• How to account for model form uncertainties in 

simplified part-scale model?

• Analytical model has only 7 constant parameters 
[k, cp, ⍴, P, σx, σy, σz]

• Approach
• Attempt to account for model form uncertainty 

through parametric uncertainty
• Generate distributions for heat source parameters 

(P, σx, σy, σz) that bounds range of melt pool shapes
• Uniform distributions for k and cp that span range 

of temperature-dependent properties (including 
latent heat effects)

• Use thermal results as inputs to microstructure 
and mechanical models
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Part Scale Measurements
• 2cm ‘house’ geometry builds performed. EBSD 

and blue light coordinate measurements 
collected

• Various features added to create areas of 
microstructural/mechanical interest

• Cut for EBSD in “arch” section of geometry

• Deflections compared along outer wall in the 
middle 
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Part Scale Microstructure
• Using SPPARKS undercooling based microstructure model

• Simulating small “window” of the part matching to EBSD cut

• Agreement for grain size, not shape. Metrics admittedly coarse

• Low sensitivity to thermal model uncertainties – explore 
sensitivity to nucleation parameters

• Need better methods to quantify microstructure
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Part Scale Deflection
• Make use of analytical pointwise temperature 

histories

• Impose pointwise stress source that’s a function 
of max thermal gradient magnitude

• Currently underestimating distortion 
observations

• Likely missing some uncertainties
• Where to compute maximum gradient?
• σ(max(|∇T|))
• Mechanical model parameters

• Exploring other approaches
• Calibration of σ(max(|∇T|)) from small-scale 

models
• Coarse time stepping
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Conclusions and future work
• Uncertainty quantification techniques have shown promise in bounding laser powder 

bed fusion build outcomes, particularly at bead scale

• Work is planned to fully propagate uncertainties from process physics to part distortion, 
residual stress, and material properties 

• Model form uncertainty quantification is an outstanding challenge in reduced fidelity 
conduction models and rapid solid mechanics models

• Final goal is to predict outcome distributions for part performance that can be used to 
assist with process qualification
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